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Abstract

Factorizing low-rank matrices is a problem with many applications in machine learning and
statistics, ranging from sparse PCA to community detection and sub-matrix localization.
For probabilistic models in the Bayes optimal setting, general expressions for the mutual
information have been proposed using powerful heuristic statistical physics computations
via the replica and cavity methods, and proven in few specific cases by a variety of meth-
ods. Here, we use the spatial coupling methodology developed in the framework of error
correcting codes, to rigorously derive the mutual information for the symmetric rank-one
case. We characterize the detectability phase transitions in a large set of estimation prob-
lems, where we show that there exists a gap between what currently known polynomial
algorithms (in particular spectral methods and approximate message-passing) can do and
what is expected information theoretically. Moreover, we show that the computational gap
vanishes for the proposed spatially coupled model, a promising feature with many possible
applications. Our proof technique has an interest on its own and exploits three essential
ingredients: the interpolation method first introduced in statistical physics, the analysis
of approximate message-passing algorithms first introduced in compressive sensing, and
the theory of threshold saturation for spatially coupled systems first developed in coding
theory. Our approach is very generic and can be applied to many other open problems in
statistical estimation where heuristic statistical physics predictions are available.

Keywords: Sparse PCA, Wigner spike model, community detection, low-rank matrix es-
timation, spatial coupling, replica and cavity methods, interpolation method, approximate
message-passing
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1. Introduction

We consider the following probabilistic rank-one matrix estimation (or rank-one matrix
factorization) problem: one has access to noisy observations w = (wij)

n
i,j=1 ∈ Rn,n of the

pair-wise product of the components of a vector s = (si)
n
i=1 ∈ Rn where the components are

i.i.d random variables distributed according to Si ∼ P0, i = 1, . . . , n. The matrix elements
of w are observed through a noisy element-wise (possibly non-linear) output probabilistic
channel Pout(wij |sisj), with i, j = 1, . . . , n. The goal is to estimate the vector s from w,
up to a global flip of sign in general, assuming that both distributions P0 and Pout are
known. We assume the noise to be symmetric so that wij = wji. There are many important
problems in statistics and machine learning that can be expressed in this way, among which:

• Sparse PCA: Sparse principal component analysis (PCA) is a dimensionality reduction
technique where one looks for a low-rank representation of a data matrix with sparsity
constraints [Zou et al. (2006)]. The following is the simplest probabilistic symmetric
version where one estimates a rank-one matrix. Consider a sparse random vector S,
for instance drawn from a Gauss-Bernoulli distribution, and take an additive white
Gaussian noise (AWGN) channel where the observations are Wij = SiSj/

√
n+ ∆Zij

whith Zij ∼ N (0, 1). Here1 Pout(wij |sisj) = N (wij |sisj/
√
n,∆).

• Spiked Wigner model : In this model the noise is still Gaussian, but the vector S is
assumed to be a Bernoulli random vector with i.i.d components Si ∼ Ber(ρ). This
formulation is a particular case of the spiked covariance model in statistics introduced
by [Johnstone and Lu (2004, 2012)]. It has also attracted a lot of attention in the
framework of random matrix theory (see for instance [Baik et al. (2005)] and references
therein).

• Community detection: In its simplest setting, one uses a Rademacher vector S where
each variable take values Si ∈ {−1, 1} depending on the “community” it belongs
to. The observation model then introduces missing information and errors such that,
for instance, Pout(wij |sisj) = p1δ(wij − sisj) + p2δ(wij + sisj) + (1 − p1 − p2)δ(wij),
where δ(·) is the Delta dirac function. These models have recently attracted a lot
of attention both in statistics and machine learning contexts (see e.g. [Bickel and
Chen (2009); Decelle et al. (2011); Karrer and Newman (2011); Saade et al. (2014);
Massoulié (2014); Ricci-Tersenghi et al. (2016)]).

• Sub-matrix localization: This is the problem of finding a submatrix with an elevated
mean in a large noisy matrix, as in [Hajek et al. (2015); Chen and Xu (2014)].

• Matrix completion: A last example is the matrix completion problem where a part
of the information (the matrix elements) is hidden, while the rest is given with noise.
For instance, a classical model is Pout(wij |sisj) = pδ(wij) + (1 − p)N (wij |sisj ,∆).
Such problems have been extensively discussed over the last decades, in particular
because of their connection to collaborative filtering (see for instance [Candès and
Recht (2009); Cai et al. (2010); Keshavan et al. (2009); Saade et al. (2015)]).

1. In this paper N (x|m,σ2) = (2πσ2)−1/2 exp(−(x−m)2/2σ2))
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Here we shall consider the probabilistic formulation of these problems and focus on es-
timation in the mean square error (MSE) sense. We rigorously derive an explicit formula
for the mutual information in the asymptotic limit, and for the information theoretic min-
imal mean square error (MMSE). Our results imply that in a large region of parameters,
the posterior expectation of the underlying signal, a quantity often assumed intractable to
compute, can be obtained using a polynomial-time scheme via the approximate message-
passing (AMP) framework [Rangan and Fletcher (2012); Matsushita and Tanaka (2013);
Deshpande and Montanari (2014); Deshpande et al. (2015); Lesieur et al. (2015b)]. We
also demonstrate the existence of a region where no known tractable algorithm is able to
find a solution correlated with the ground truth. Nevertheless, we prove explicitly that it is
information theoretically possible to do so (even in this region), and discuss the implications
in terms of computational complexity.

The crux of our analysis rests on an ”auxiliary” spatially coupled (SC) system. The
hallmark of SC models is that one can tune them so that the gap between the algorithmic and
information theoretic limits is eliminated, while at the same time the mutual information is
maintained unchanged for the coupled and original models. Roughly speaking, this means
that it is possible to algorithmically compute the information theoretic limit of the original
model because a suitable algorithm is optimal on the coupled system.

Our proof technique has an interest by its own as it combines recent rigorous results
in coding theory along the study of capacity-achieving SC codes [Hassani et al. (2010);
Kudekar et al. (2011); Yedla et al. (2014); Giurgiu et al. (2016); Barbier et al. (2017a);
Dia (2018)] with other progress coming from developments in mathematical physics of
spin glass theory [Guerra (2005)]. Moreover, our proof exploits the “threshold saturation”
phenomenon of the AMP algorithm and uses spatial coupling as a proof technique. From
this point of view, we believe that the theorem proven in this paper is relevant in a broader
context going beyond low-rank matrix estimation and can be applied for a wide range of
inference problems where message-passing algorithm and spatial coupling can be applied.
Furthermore, our work provides important results on the exact formula for the MMSE and
on the optimality of the AMP algorithm.

Hundreds of papers have been published in statistics, machine learning or information
theory using the non-rigorous statistical physics approach. We believe that our result helps
setting a rigorous foundation of a broad line of work. While we focus on rank-one symmet-
ric matrix estimation, our proof technique is readily extendable to more generic low-rank
symmetric matrix or low-rank symmetric tensor estimation. We also believe that it can be
extended to other problems of interest in machine learning and signal processing. It has
already been extended to linear estimation and compressed sensing [Barbier et al. (2016a,
2017b)].

We conclude this introduction by giving a few pointers to the recent literature on rigorous
results. For rank-one symmetric matrix estimation problems, AMP has been introduced by
[Rangan and Fletcher (2012)], who also computed the state evolution formula to analyze
its performance, generalizing techniques developed by [Bayati and Montanari (2011)] and
[Javanmard and Montanari (2013)]. State evolution was further studied by [Deshpande
and Montanari (2014)] and [Deshpande et al. (2015)]. In [Lesieur et al. (2015a,b)], the
generalization to larger rank was also considered. The mutual information was already
computed in the special case when Si=±1∼Ber(1/2) in [Korada and Macris (2009)] where
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an equivalent spin glass model was analyzed. The results of [Korada and Macris (2009)] were
first generalized in [Krzakala et al. (2016)] who, notably, obtained a generic matching upper
bound. The same formula was also rigorously computed following the study of AMP in
[Deshpande and Montanari (2014)] for spike models (provided, however, that the signal was
not too sparse) and in [Deshpande et al. (2015)] for strictly symmetric community detection.
The general formula proposed by [Lesieur et al. (2015a)] for the conditional entropy and
the MMSE on the basis of the heuristic cavity method from statistical physics was first
demonstrated in full generality by the current authors in [Barbier et al. (2016b)]. This
paper represents an extended version of [Barbier et al. (2016b)] that includes all the proofs
and derivations along with more detailed discussions. All preexisting proofs could not reach
the more interesting regime where a gap between the algorithmic and information theoretic
performances appears (i.e. in the presence of “first order” phase transition), leaving a
gap with the statistical physics conjectured formula. Following the work of [Barbier et al.
(2016b)], the replica formula for rank-one symmetric matrix estimation has been proven
again several times using totally different techniques that involve the concentration’s proof
of the overlaps [Lelarge and Miolane (2017); Barbier and Macris (2018)]. Our proof strategy
does not require any concentration and it uses AMP and spatial coupling as proof techniques.
Hence, our result has more practical implications in terms of proving the range of optimality
of the AMP algorithm for both the underlying (uncoupled) and spatially coupled models.

This paper is organized as follows: the problem statement and the main results are
given in Section 2 along with a sketch of the proof, two applications for symmetric rank-one
matrix estimation are presented in Section 3, the threshold saturation phenomenon and the
relation between the underlying and spatially coupled models are proven in Section 4 and
Section 5 respectively, the proof of the main results follows in Section 6 and Section 7.

A word about notations: in this paper, we use capital letters for random variables, and
small letters for fixed realizations. Matrices and vectors are bold while scalars are not.
Components of vectors or matrices are identified by the presence of lower indices.

2. Setting and main results

2.1 Basic underlying model

A standard and natural setting is to consider an additive white gausian noise (AWGN)
channel with variance ∆ assumed to be known. The model reads

wij =
sisj√
n

+
√

∆zij , (1)

where z = (zij)
n
i,j=1 is a symmetric matrix with Zij ∼ N (0, 1), 1 ≤ i ≤ j ≤ n, and

s = (si)
n
i=1 has i.i.d components Si ∼ P0. We set E[S2] = v. Precise hypothesis on P0 are

given later.

Perhaps surprisingly, it turns out that the study of this Gaussian setting is sufficient to
completely characterize all the problems discussed in the introduction, even if we are dealing
with more complicated (noisy) observation models. This is made possible by a theorem of
channel universality. Essentially, the theorem states that for any output channel Pout(w|y)
such that at y = 0 the function y 7→ logPout(w|y) is three times differentiable with bounded
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second and third derivatives, then the mutual information satisfies

I(S; W) = I(SSᵀ; SSᵀ +
√

∆ Z) +O(
√
n), (2)

where ∆ is the inverse Fisher information (evaluated at y = 0) of the output channel

∆−1 :=

∫
dwPout(w|0)

(
∂ logPout(w|y)

∂y

∣∣∣
y=0

)2

. (3)

This means that the mutual information per variable I(S; W)/n is asymptotically equal
the mutual information per variable of an AWGN channel. Informally, it implies that we
only have to compute the mutual information for an “effective” Gaussian channel to take
care of a wide range of problems. The statement was conjectured in [Lesieur et al. (2015a)]
and can be proven by an application of the Lindeberg principle [Deshpande et al. (2015)],
[Krzakala et al. (2016)].

2.2 AMP algorithm and state evolution

AMP has been applied for the rank-one symmetric matrix estimation problems by [Ran-
gan and Fletcher (2012)], who also computed the state evolution formula to analyze its
performance, generalizing techniques developed by [Bayati and Montanari (2011)] and [Ja-
vanmard and Montanari (2013)]. State evolution was further studied by [Deshpande and
Montanari (2014)] and [Deshpande et al. (2015)]. AMP is an iterative algorithm that pro-
vides an estimate ŝ(t)(w), at each iteration t ∈ N, of the vector s. It turns out that tracking
the asymptotic vector and matrix MSE of the AMP algorithm is equivalent to running a
simple recursion called state evolution (SE).

The AMP algorithm reads{
ŝ

(t)
j = ηt((wŝ(t−1))j − b(t−1)ŝ

(t−2)
j ),

b(t) = 1
n

∑n
i=1 η

′
t((wŝ(t−1))i − b(t−1)ŝ

(t−2)
i )

(4)

for j = 1, · · · , n, where ηt(y) is called the denoiser and η′t(y) is the derivative w.r.t y. The
denoiser is the MMSE estimate associated to an “equivalent scalar denoising problem”

y = s+ Σ(E)z, Σ(E)−2 :=
v − E

∆
. (5)

with Z ∼ N (0, 1) and

η(y) = E[X|Y = y] =

∫
dxxP0(x)e

− (x−Y )2

2Σ(E)2∫
dxP0(x)e

− (x−Y )2

2Σ(E)2

, (6)

where E is updated at each time instance t according to the recursion (10).

Natural performance measures are the “vector” and “matrix” MSE’s of the AMP esti-
mator defined below.
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Definition 1 (Vector and matrix MSE of AMP) The vector and matrix MSE of the

AMP estimator Ŝ
(t)

(W) at iteration t are defined respectively as follows

Vmse
(t)
n,AMP(∆−1) :=

1

n
ES,W

[
‖Ŝ (t) − S‖22

]
, (7)

Mmse
(t)
n,AMP(∆−1) :=

1

n2
ES,W

[
‖Ŝ (t)

Ŝ
(t)ᵀ − SSᵀ‖2F

]
, (8)

where ‖A‖2F =
∑

i,j A
2
ij stands for the Frobenius norm of a matrix A.

A remarkable fact that follows from a general theorem of [Bayati and Montanari (2011)]
(see [Deshpande et al. (2015)] for its use in the matrix case) is that the state evolution
sequence tracks these two MSE’s and thus allows to assess the performance of AMP. Con-
sider the scalar denoising problem (5). Hence, the (scalar) mmse function associated to this
problem reads

mmse(Σ(E)−2) := ES,Y [(S − E[X|Y ])2] . (9)

The state evolution sequence E(t), t ∈ N is defined as

E(t+1) = mmse(Σ(E(t))−2), E(0) = v. (10)

Since the mmse function is monotone decreasing (its argument has the dimension of a signal
to noise ratio) it is easy to see that that E(t) is a decreasing non-negative sequence. Thus
limt→+∞E

(t) := E(∞) exists. One of the basic results of [Bayati and Montanari (2011)],
[Deshpande et al. (2015)] is

lim
n→+∞

Vmse
(t)
n,AMP(∆−1) = E(t), and lim

n→+∞
Mmse

(t)
n,AMP(∆−1) = v2 − (v − E(t))2. (11)

We note that the results in [Bayati and Montanari (2011)], [Deshpande et al. (2015)] are
stronger in the sense that the non-averaged algorithmic mean square errors are tracked by
state evolution with probability one.

Note that when E[S] = 0 then v is an unstable fixed point, and as such, state evolution
“does not start”, in other words we have E(t) = v. While this is not really a problem when
one runs AMP in practice, for analysis purposes one can circumvent this problem by slightly
biasing P0 and remove the bias at the end of the analysis. For simplicity, we always assume
that P0 is biased so that E[S] is not zero.

Assumption 1: In this work we assume that P0 is discrete with bounded support.
Moreover, we assume that P0 is biased such that E[S] is non-zero.

A fundamental quantity computed by state evolution is the algorithmic threshold.

Definition 2 (AMP threshold) For ∆ > 0 small enough, the fixed point equation cor-
responding to (10) has a unique solution for all noise values in ]0,∆[. We define ∆AMP as
the supremum of all such ∆.
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2.3 Spatially coupled model

The present spatially coupled construction is similar to the one used for the coupled Curie-
Weiss model [Hassani et al. (2010)] and is also similar to mean field spin glass systems
introduced in [Franz and Toninelli (2004); Caltagirone et al. (2014)]. We consider a chain
(or a ring) of underlying systems positioned at µ∈ {0, . . . , L} and coupled to neighboring
blocks {µ−w, . . . , µ+w}. Positions µ are taken modulo L+1 and the integer w∈{0, . . . , L/2}
equals the size of the coupling window. The coupled model is

wiµjν = siµsjν

√
Λµν
n

+ ziµjν
√

∆, (12)

where the index iµ∈{1, . . . , n} (resp. jν) belongs to the block µ (resp. ν) along the ring, Λ
is an (L+1)×(L+1) matrix which describes the strength of the coupling between blocks, and
Ziµjν ∼N (0, 1) are i.i.d. For the analysis to work, the matrix elements have to be chosen
appropriately. We assume that:

i) Λ is a doubly stochastic matrix;

ii) Λµν depends on |µ−ν|;

iii) Λµν is not vanishing for |µ−ν| ≤ w and vanishes for |µ−ν|>w;

iv) Λ is smooth in the sense |Λµν−Λµ+1ν |=O(w−2) and Λ∗ := supµ,ν Λµν = O(w−1);

v) Λ has a non-negative Fourier transform.

All these conditions can easily be met, the simplest example being a triangle of base 2w+1
and height 1/(w+1), more precisely:

Λµν =

 1
w+1

(
1− |µ−ν|w+1

)
, |µ− ν| ≤ w

0, |µ− ν| > w
(13)

We will always denote by Sµ := {ν |Λµν 6= 0} the set of 2w + 1 blocks coupled to block µ.
The construction of the coupled system is completed by introducing a seed in the ring:

we assume perfect knowledge of the signal components {siµ} for µ∈B :={−w−1, . . . , w−1}
mod L+1. This seed is what allows to close the gap between the algorithmic and information
theoretic limits and therefore plays a crucial role. We sometimes refer to the seed as the
pinning construction. Note that the seed can also be viewed as an “opening” of the chain
with fixed boundary conditions.

AMP has been applied for the rank-one symmetric matrix estimation problems by [Ran-
gan and Fletcher (2012)], who also computed the state evolution formula to analyze its
performance, generalizing techniques developed by [Bayati and Montanari (2011)] and [Ja-
vanmard and Montanari (2013)]. State evolution was further studied by [Deshpande and
Montanari (2014)] and [Deshpande et al. (2015)].

The AMP algorithm and the state evolution recursion [Deshpande and Montanari (2014);
Deshpande et al. (2015)] can be easily adapted to the spatially coupled model as done in
Section 4. The proof that the state evolution for the symmetric rank-one matrix estimation
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problem tracks the AMP on a spatially coupled model is an extension of the analysis done
in [Deshpande and Montanari (2014); Deshpande et al. (2015)] for the uncoupled model.
The full re-derivation of such result would be lengthy and beyond the scope of our analysis.
We thus assume that state evolution tracks the AMP performance for our coupled prob-
lem. However, we believe that the proof will be similar to the one done for the spatially
coupled compressed sensing problem [Javanmard and Montanari (2013)]. This assumption
is vindicated numerically.

Assumption 2: We consider the spatially coupled model (12) with P0 satisfying As-
sumption 1. We assume that state evolution tracks the AMP algorithm for this model.

2.4 Main results: basic underlying model

One of our central results is a proof of the expression for the asymptotic mutual information
per variable via the so-called replica symmetric (RS) potential. This is the function E ∈
[0, v] 7→ iRS(E; ∆) ∈ R defined as

iRS(E; ∆) :=
(v − E)2 + v2

4∆
− ES,Z

[
ln

(∫
dxP0(x)e

− x2

2Σ(E)2
+x
(

S
Σ(E)2

+ Z
Σ(E)

))]
, (14)

with Z∼N (0, 1), S∼P0. Most of our results will assume that P0 is a discrete distribution
over a finite bounded real alphabet P0(s) =

∑ν
α=1 pαδ(s−aα) (see Assumption 1). Thus

the only continuous integral in (14) is the Gaussian over Z. The extension to mixtures of
continuous and discrete signals can be obtained by approximation methods not discussed
in this paper (see e.g. the methods in [Lelarge and Miolane (2017)]).

It turns out that both the information theoretic and algorithmic AMP thresholds are
determined by the set of stationary points of (14) (w.r.t E). It is possible to show that
for all ∆ > 0 there always exist at least one stationary minimum.2 In this contribution
we suppose that at most three stationary points exist, corresponding to situations with at
most one phase transition as depicted in Fig. 1 (see Assumption 3 below). Situations with
multiple transitions could also be covered by our techniques.

Assumption 3: We assume that P0 is such that there exist at most three stationary
points for the potential (14).

To summarize, our main assumptions in this paper are:

(A1) The prior P0 is discrete with bounded support. Moreover, we assume that P0 is biased
such that E[S] is non-zero.

(A2) We consider the spatially coupled model (12) with P0 satisfying Assumption (A1).
We assume that state evolution tracks the AMP algorithm for this model.

(A3) We assume that P0 is such that there exist at most three stationary points for the
potential (14).

Remark 3 An important property of the replica symmetric potential is that the stationary
points satisfy the state evolution fixed point equation. In other words ∂iRS/∂E = 0 implies
E = mmse(Σ(E)−2) and conversely. Moreover it is not difficult to see that the ∆AMP

2. Note E= 0 is never a stationary point (except for the trivial case of P0 a single Dirac mass which we
exclude from the discussion) and E = v is stationary only if E[S] = 0.
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is given by the smallest solution of ∂iRS/∂E = ∂2iRS/∂E
2 = 0. In other words the AMP

threshold is the “first” horizontal inflexion point appearing in iRS(E; ∆) when ∆ increases
from 0 to +∞.

One of the main results of this paper is formulated in the following theorem which pro-
vides a proof of the conjectured single-letter formula for the asymptotic mutual information
per variable.

Theorem 4 (RS formula for the mutual information) Fix ∆ > 0 and let P0 satisfy
Assumptions (A1)-(A3). Then

lim
n→∞

1

n
I(S;W) = min

E∈[0,v]
iRS(E; ∆). (15)

Proof See Section 6.

The proof of the existence of the limit does not require the above hypothesis on P0. Also,
it was first shown in [Krzakala et al. (2016)] that

lim sup
n→+∞

1

n
I(S; W) ≤ min

E∈[0,v]
iRS(E; ∆), (16)

an inequality that we will use in the proof section. Note that, interestingly, and perhaps
surprisingly, the analysis of [Krzakala et al. (2016)] leads to a sharp upper bound on the
“free energy” for all finite n. We will make extensive use of this inequality and for sake of
completeness, we summarize its proof in Appendix A.

Theorem 4 allows to compute the information theoretic phase transition threshold which
we define in the following way.

Definition 5 (Information theoretic or optimal threshold) Define ∆opt as the first
non-analyticity point of the mutual information as ∆ increases. Formally

∆opt := sup{∆| lim
n→∞

1

n
I(S;W) is analytic in ]0,∆[}. (17)

The information theoretic threshold is also called “optimal threshold” because we expect
∆AMP ≤ ∆opt. This is indeed proven in Lemma 37.

When P0 is s.t (14) has at most three stationary points, then minE∈[0,v] iRS(E; ∆) has
at most one non-analyticity point denoted ∆RS (see Fig. 1). In case of analyticity over all
R+, we set ∆RS =∞. We call ∆RS the RS or potential threshold. Theorem 4 gives us a
mean to concretely compute the information theoretic threshold: ∆opt =∆RS.

From Theorem 4 we will also deduce the expressions for the vector MMSE and the
matrix MMSE defined below.

Definition 6 (Vector and matrix MMSE) The vector and matrix MMSE are defined
respectively as follows

Vmmsen(∆−1) :=
1

n
ES,W

[∥∥S− E[X|W]
∥∥2

2

]
. (18)

Mmmsen(∆−1) :=
1

n2
ES,W

[∥∥SSᵀ − E[XXᵀ|W]
∥∥2

F

]
. (19)
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Figure 1: The replica symmetric potential iRS(E) for four values of ∆ in the spiked Wigner
model with Si ∼ Ber(ρ). The normalized mutual information is min iRS(E) (the
black dot, while the black cross corresponds to the local minimum) and the asymp-
totic MMSE is argminiRS(E), where v= ρ in this case with ρ= 0.02. From top
left to bottom right: i) For low noise values, here ∆ = 0.0008 < ∆AMP, there
exists a unique “good” minimum corresponding to the MMSE and AMP is Bayes
optimal. ii) As the noise increases, a second local “bad” minimum appears: this
is the situation at ∆AMP <∆ = 0.0012<∆RS. iii) For ∆ = 0.00125>∆RS, the
“bad” minimum becomes the global one and the MMSE suddenly deteriorates.
iv) For larger values of ∆, only the “bad” minimum exists. AMP can be seen
as a naive minimizer of this curve starting from E = v = 0.02. AMP can reach
the global minimum in situations i), iii) and iv). However, in situation ii), when
∆AMP<∆<∆RS, AMP is trapped by the local minimum with large MSE instead
of reaching the global one corresponding to the MMSE.

The conditional expectation E[ · |W] in Definition 6 is w.r.t the posterior distribution

P (x|w) =
1

Z̃(w)
e
− 1

2∆

∑
i≤j

(
xixj√
n
−wij

)2 n∏
i=1

P0(xi), (20)

with the normalizing factor depending on the observation given by

Z̃(w) =

∫ { n∏
i=1

dxiP0(xi)
}
e
− 1

2∆

∑
i≤j

(
xixj√
n
−wij

)2

(21)

The expectation ES,W[ · ] is the one w.r.t P (w)P (s) = Z̃(w)
∏n
i=1 P0(si). The expressions

for the MMSE’s in terms of (14) are given in the following corollary.

Corollary 7 (Exact formula for the MMSE) For all ∆ 6= ∆RS, the matrix MMSE is
asymptotically

lim
n→∞

Mmmsen(∆−1) = v2 − (v − argminE∈[0,v]iRS(E; ∆))2. (22)

Moreover, if ∆<∆AMP or ∆>∆RS, then the usual vector MMSE satisfies

lim
n→∞

Vmmsen(∆−1) = argminE∈[0,v]iRS(E; ∆). (23)
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Proof See Section 7.

It is natural to conjecture that the vector MMSE is given by argminE∈[0,v]iRS(E; ∆) in the
whole range ∆ 6= ∆RS, but our proof does not quite yield the full statement.

Another fundamental consequence of Theorem 4 concerns the optimality of the perfor-
mance of AMP.

Corollary 8 (Optimality of AMP) For ∆ < ∆AMP or ∆ > ∆RS, the AMP is asymp-
totically optimal in the sense that it yields upon convergence the asymptotic vector-MMSE
and matrix-MMSE of Corollary 7. Namely,

lim
t→+∞

lim
n→+∞

Mmse
(t)
n,AMP(∆−1) = lim

n→∞
Mmmsen(∆−1). (24)

lim
t→+∞

lim
n→+∞

Vmse
(t)
n,AMP(∆−1) = lim

n→∞
Vmmsen(∆−1). (25)

On the other hand, for ∆AMP < ∆ < ∆RS the AMP algorithm is strictly suboptimal, namely

lim
t→+∞

lim
n→+∞

Mmse
(t)
n,AMP(∆−1) > lim

n→∞
Mmmsen(∆−1). (26)

lim
t→+∞

lim
n→+∞

Vmse
(t)
n,AMP(∆−1) > lim

n→∞
Vmmsen(∆−1). (27)

Proof See Section 7.

This leaves the region ∆AMP < ∆ < ∆RS algorithmically open for efficient polynomial
time algorithms. A natural conjecture, backed up by many results in spin glass theory,
coding theory, planted models and the planted clique problems, is:

Conjecture 9 For ∆AMP < ∆ < ∆RS, no polynomial time efficient algorithm that outper-
forms AMP exists.

2.5 Main results: coupled model

In this work, the spatially coupled construction is used for the purposes of the proof. How-
ever, one can also imagine interesting applications of the spatially coupled estimation prob-
lem, specially in view of the fact that AMP turns out to be optimal for the spatially coupled
system. In coding theory for example, the use of spatially coupled systems as a proof device
historically followed their initial construction which was for engineering purposes and led
to the construction of capacity achieving codes.

Our first crucial result states that the mutual information of the coupled and original
systems are the same in a suitable limit. The mutual information of the coupled system of
length L and with coupling window w is denoted Iw,L(S; W).

Theorem 10 (Equality of mutual informations) For any fixed w s.t. P0 satisfies As-
sumption (A1), the following limits exist and are equal

lim
L→∞

lim
n→∞

1

n(L+ 1)
Iw,L(S;W) = lim

n→∞

1

n
I(S;W). (28)

12



Proof See Section 5.

An immediate corollary is that the non-analyticity points (w.r.t ∆) of the mutual in-
formations are the same in the coupled and underlying models. In particular, defining
∆c

opt := sup{∆ | limL→∞ limn→∞ Iw,L(S; W)/(n(L+ 1)) is analytic in ]0,∆[}, we have
∆c

opt =∆opt.

The second crucial result states that the AMP threshold of the spatially coupled system
is at least as good as ∆RS (threshold saturation result of Theorem 11). The analysis of
AMP applies to the coupled system as well [Bayati and Montanari (2011); Javanmard and
Montanari (2013)] and it can be shown that the performance of AMP is assessed by SE.
Let

E(t)
µ := lim

n→∞

1

n
ES,Z[‖Sµ−Ŝ

(t)
µ ‖22] (29)

be the asymptotic average vector-MSE of the AMP estimate Ŝ
(t)
µ at time t for the µ-th

“block” of S. We associate to each position µ ∈ {0, . . . , L} an independent scalar system
with AWGN of the form y=s+Σµ(E; ∆)z, with

Σµ(E)−2 :=
v−∑L

ν=0 ΛµνEν
∆

(30)

and S ∼P0, Z ∼N (0, 1). Taking into account knowledge of the signal components in the
seed B, SE reads{

E
(t+1)
µ = mmse(Σµ(E(t); ∆)−2), E

(0)
µ = v for µ ∈ {0, . . . , L} \ B,

E
(t)
µ = 0 for µ ∈ B, t ≥ 0

(31)

where the mmse function is defined as in (9).

From the monotonicity of the mmse function we have E
(t+1)
µ ≤ E(t)

µ for all µ ∈ {0, . . . , L},
a partial order which implies that limt→∞E(t) = E(∞) exists. This allows to define an
algorithmic threshold for the coupled system on a finite chain:

∆AMP,w,L := sup{∆|E(∞)
µ ≤Egood(∆) ∀ µ}

where Egood(∆) is the trivial fixed point solution of the SE starting with the initial condition
E(0) = 0. A more formal but equivalent definition of ∆AMP,w,L is given in Section 4.

Theorem 11 (Threshold saturation) Let ∆c
AMP be the algorithmic threshold on an in-

finite chain, ∆c
AMP :=lim infw→∞ lim infL→∞∆AMP,w,L, s.t. P0 satisfies Assumptions (A1)

and (A2). We have ∆c
AMP≥∆RS.

Proof See Section 4.

Our techniques also allow to prove the equality ∆c
AMP = ∆RS, but this is not directly

needed.
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2.6 Road map of the proof of the replica symmetric formula

Here we give a road map of the proof of Theorem 4 that will occupy Sections 4–6. A
fruitful idea is to concentrate on the question whether ∆opt = ∆RS. The proof of this
equality automatically generates the proof of Theorem 4.

We first prove in Section 6.1 that ∆opt ≤ ∆RS. This proof is based on a joint use of the
I-MMSE relation (Lemma 33), the replica bound (16) and the suboptimality of the AMP
algorithm. In the process of proving ∆opt ≤ ∆RS, we in fact get as a direct bonus the proof
of Theorem 4 for ∆ < ∆opt.

The proof of ∆opt ≥ ∆RS requires the use of spatial coupling. The main strategy is to
show

∆RS ≤ ∆c
AMP ≤ ∆c

opt = ∆opt. (32)

The first inequality in (32) is proven in Section 4 using methods first invented in coding
theory: The algorithmic AMP threshold of the spatially coupled system ∆c

AMP saturates
(tends in a suitable limit) towards ∆RS, i.e. ∆RS ≤ ∆c

AMP (Theorem 11). To prove the (last)
equality we show in Section 5 that the free energies, and hence the mutual informations,
of the underlying and spatially coupled systems are equal in a suitable asymptotic limit
(Theorem 10). This implies that their non-analyticities occur at the same point and hence
∆c

opt = ∆opt. This is done through an interpolation which, although similar in spirit, is
different than the one used to prove replica bounds (e.g. (16)). In the process of showing
∆c

opt = ∆opt, we will also derive the existence of the limit for I(S; W)/n. Finally, the
second inequality is due the suboptimality of the AMP algorithm. This follows by a direct
extension of the SE analysis of [Deshpande and Montanari (2014); Deshpande et al. (2015)]
to the spatially coupled case as done in [Javanmard and Montanari (2013)].

Once ∆opt = ∆RS is established it is easy to put everything together and conclude the
proof of Theorem 4. In fact all that remains is to prove Theorem 4 for ∆ > ∆opt. This
follows by an easy argument in section 6.2 which combines ∆opt = ∆RS, the replica bound
(16) and the suboptimality of the AMP algorithm. Note that in the proof sections that
follow, we assume that Assumptions (A1)-(A3) hold.

2.7 Connection with the planted Sherrington-Kirkpatrick spin glass model

Let us briefly discuss the connection of the matrix factorization problem (1) with a statistical
mechanical spin glass model which is a variant of the classic Sherrington-Kirkpatrick (SK)
model. This is also the occasion to express the mutual information as a “free energy”
through a simple relation that will be used in various guises later on.

Replacing wij = n−1/2sisj +
√

∆zij in (20) and simplifying the fraction after expanding
the squares, the posterior distribution can be expressed in terms of s, z as follows

P (x|s, z) =
1

Z e
−H(x|s,z)

n∏
i=1

P0(xi), (33)

where

H(x|s, z) =
n∑

i≤j=1

(x2
ix

2
j

2n∆
− sisjxixj

n∆
− zijxixj√

n∆

)
(34)
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and

Z =

∫ { n∏
i=1

dxiP0(xi)
}
e−H(x|s,z). (35)

In the language of statistical mechanics, (34) is the “Hamiltonian”, (35) the “partition
function”, and (33) is the Gibbs distribution. This distribution is random since it depends
on the realizations of S, Z. Conditional expectations with respect to (33) are denoted by
the Gibbs “bracket” 〈−〉. More precisely

EX|S,Z
[
A(X)|S = s,Z = z

]
= 〈A(X)〉. (36)

The free energy is defined as

fn = − 1

n
ES,Z[lnZ]. (37)

Notice the difference between Z̃ in (20) and Z in (33). The former is the partition function
with a complete square, whereas the latter is the partition function that we obtain after
expanding the square and simplifying the posterior distribution.

In Appendix B, we show that mutual information and free energy are essentially the
same object up to a trivial term. For the present model

1

n
I(S; W) = − 1

n
ES,Z[lnZ] +

v2

4∆
+

1

4∆n
(2E[S4]− v2), (38)

where recall v = E[S2]. This relationship turns out to be very practical and will be used
several times.

For binary signals we have si and xi ∈ {−1,+1}, so the model is a binary spin glass
model. The first term in the Hamiltonian is a trivial constant, the last term corresponds
exactly to the SK model with random Gaussian interactions, and the second term can be
interpreted as an external random field that biases the spins. This is sometimes called a
“planted” SK model.

The rest of the paper is organized as follows. In Section 3 we provide two examples of the
symmetric rank-one matrix estimation problem. Threshold saturation and the invariance of
the mutual information due the spatial coupling are shown in Section 4 and 5 respectively.
The proof of Theorem 4 follows in Section 6. Section 7 is dedicated to the proof of Corollary
7 and Corollary 8.

3. Two Examples: spiked Wigner model and community detection

In order to illustrate our results, we shall present them here in the context of two exam-
ples: the spiked Wigner model, where we close a conjecture left open by [Deshpande and
Montanari (2014)], and the case of asymmetric community detection.

3.1 Spiked Wigner model

The first model is defined as follows: we are given data distributed according to the spiked
Wigner model where the vector s is assumed to be a Bernoulli 0/1 random variable with
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Figure 2: Left: close up of the phase diagram in the density ρ (where P0(s) = ρδ(s− 1) +
(1 − ρ)δ(x)) versus noise ∆ plane for the rank-one spiked Wigner model (data
from [Lesieur et al. (2015b)]). In [Deshpande and Montanari (2014)], the authors
proved that AMP achieves the information theoretic MMSE for all noise as long as
ρ > 0.041(1). We show that AMP is actually achieving the optimal reconstruction
in the whole phase diagram except in the small region between the blue and red
line. Notice the large gap with spectral methods (dotted black line). Right:
MMSE (red) at ρ = 0.02 as a function of the noise variance ∆. AMP (dashed
blue) provably achieve the MMSE except in the region ∆AMP < ∆ < ∆opt. We
conjecture that no polynomial-time algorithm will do better than AMP in this
region.

probability ρ. Data then consists of a sparse, rank-one matrix observed through a Gaussian
noise. In [Deshpande and Montanari (2014)], the authors proved that, for ρ > 0.041,
AMP is a computationally efficient algorithm that asymptotically achieves the information
theoretically optimal mean-square error for any value of the noise ∆.

For very small densities (i.e. when ρ is o(1)), there is a well known large gap between
what is information theoretically possible and what is tractable with current algorithms in
support recovery [Amini and Wainwright (2008)]. This gap is actually related to the planted
clique problem [d’Aspremont et al. (2007); Barak et al. (2016)], where it is believed that
no polynomial algorithm is able to achieve information theoretic performances. It is thus
perhaps not surprising that the situation for ρ < 0.041 becomes a bit more complicated.
This is summarized in Fig. 2 and discussed in [Lesieur et al. (2015b)] on the basis of
statistical physics consideration which we now prove.

For such values of ρ, as ∆ changes there is a region when two local minima appears
in iRS(E; ∆) (see the RS formula (14)). In particular for ∆AMP < ∆ < ∆opt, the global
minimum differs from the AMP one and a computational gap appears (see right panel in
Fig. 2). Interestingly, in this problem, the region where AMP is Bayes optimal is still quite
large.
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The region where AMP is not Bayes optimal is perhaps the most interesting one. While
this is by no means evident, statistical physics analogies with actual phase transition in
nature suggest that this region will be hard for a very large class of algorithms. A fact that
add credibility to this prediction is the following: when looking to small ρ regime, we find
that both the information theoretic threshold and the AMP one corresponds to what has
been predicted in sparse PCA for sub-extensive values of ρ [Amini and Wainwright (2008)].

Finally, another interesting line of work for such probabilistic models has appeared in
the context of random matrix theory (see for instance [Baik et al. (2005)] and references
therein). The focus is to analyze the limiting distribution of the eigenvalues of the observed
matrix. The typical picture that emerges from this line of work is that a sharp phase
transition occurs at a well-defined critical value of the noise. Above the threshold an outlier
eigenvalue (and the principal eigenvector corresponding to it) has a positive correlation
with the hidden signal. Below the threshold, however, the spectral distribution of the
observation is indistinguishable from that of the pure random noise. In this model, this
happens at ∆spectral = ρ2. Note that for ∆ > ∆spectral spectral methods are not able to
distinguish data coming from the model from random ones, while AMP is able to sort
(partly) data from noise for any values of ∆ and ρ.

3.2 Asymmetric community detection

The second model is a problem of detecting two communities (groups) with different sizes
ρn and (1−ρ)n, that generalizes the one considered in [Deshpande et al. (2015)]. One is
given a graph where the probability to have a link between nodes in the first group is p+µ(1−
ρ)/(ρ

√
n), between those in the second group is p+µρ/(

√
n(1−ρ)), while interconnections

appear with probability p−µ/√n. With this peculiar “balanced” setting, the nodes in each
group have the same degree distribution with mean pn, making them harder to distinguish.

According to the universality property described in Section 2, this is equivalent to the
AWGN model (1) with variance ∆=p(1−p)/µ2 where each variable si is chosen according
to

P0(s) = ρδ(s−
√

(1− ρ)/ρ) + (1− ρ)δ(s+
√
ρ/(1− ρ)). (39)

Our results for this problem3 are summarized in Fig. 3. For ρ> ρc=1/2−
√

1/12 (black
point), it is asymptotically information theoretically possible to get an estimation better
than chance if and only if ∆<1. When ρ<ρc, however, it becomes possible for much larger
values of the noise. Interestingly, AMP and spectral methods have the same transition and
can find a positive correlation with the hidden communities for ∆ < 1, regardless of the
value of ρ.

4. Threshold saturation

The main goal of this section is to prove that for a proper spatially coupled (SC) system,
threshold saturation occurs (Theorem 11 ), that is ∆RS ≤ ∆c

AMP. We begin with some

3. Note that here since E = v = 1 is an extremum of iRS(E; ∆), one must introduce a small bias in P0 and
let it then tend to zero at the end of the proofs.
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Figure 3: Left: Phase diagram in the density ρ (where P0(s) = ρδ(s −
√

1− ρ/ρ) + (1 −
ρ)δ(s+

√
ρ/1− ρ)) corresponding to an asymmetric community detection problem

with two communities. For ρ > 1−
√

1/12 (black point), it is information theoret-
ically impossible when ∆ > 1 to find any overlap with the true communities and
the optimal MMSE is equal 1, while it is possible for ∆ < 1. AMP is again always
achieving the MMSE, and spectral method can find a non-trivial overlap with the
truth starting from ∆ < 1. For ρ < 1−

√
1/12, however, it is information theoret-

ically possible to find information on the hidden assignment (below the blue line),
but both AMP and spectral methods misses this information: Right:MMSE (red)
at ρ = 0.05 as a function of the noise variance ∆. AMP (dashed blue) provably
achieve the MMSE except in the region ∆spectral = ∆AMP < ∆ < ∆opt.

preliminary formalism in Sec. 4.1, 4.2 on state evolution for the underlying and coupled
systems.

4.1 State evolution of the underlying system

First, define the following posterior average

〈A〉 :=

∫
dxA(x)P0(x)e

− x2

2Σ(E,∆)2
+x
(

s
Σ(E,∆)2

+ z
Σ(E,∆)

)
∫
dxP0(x)e

− x2

2Σ(E,∆)2
+x
(

s
Σ(E,∆)2

+ z
Σ(E,∆)

) , (40)

where S ∼ P0, Z ∼ N (0, 1). The dependence on these variables, as well as on ∆ and E is
implicit and dropped from the notation of 〈A〉. Let us define the following operator.

Definition 12 (SE operator) The state evolution operator associated with the underlying
system is

Tu(E) := mmse(Σ(E)−2) = ES,Z [(S − 〈X〉)2], (41)

where S ∼ P0, Z ∼ N (0, 1).
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The fixed points of this operator play an important role. They can be viewed as the
stationary points of the replica symmetric potential function E ∈ [0, v] 7→ iRS(E; ∆) ∈ R or
equivalently of fu

RS : E ∈ [0, v] 7→ fu
RS(E) ∈ R where

fu
RS(E) := iRS(E; ∆)− v2

4∆
. (42)

It turns out to be more convenient to work with fu
RS instead of iRS. We have

Lemma 13 Any fixed point of the SE corresponds to a stationary point of fu
RS:

E = Tu(E)⇔ ∂fu
RS(E; ∆)

∂E

∣∣
E

= 0. (43)

Proof See Appendix D.

The asymptotic performance of the AMP algorithm can be tracked by iterating the SE
recursion as follows (this is the same as equation (10) expressed here with the help of Tu)

E(t+1) = Tu(E(t)), t ≥ 0, E(0) = v, (44)

where the iteration is initialized without any knowledge about the signal other than its
prior distribution (in fact, both the asymptotic vector and matrix MSE of the AMP are

tracked by the previous recursion as reviewed in Section 2.2). Let Egood(∆) = T
(∞)
u (0), the

fixed point reached by initializing iterations at E = 0. With our hypothesis on P0 it is not
difficult to see that definition 2 is equivalent to

∆AMP := sup {∆ > 0 |T (∞)
u (v) = Egood(∆)} . (45)

The following definition is handy

Definition 14 (Bassin of attraction) The basin of attraction of the good solution Egood(∆)

is Vgood := {E | T (∞)
u (E) = Egood(∆)}.

Finally, we introduce the notion of potential gap. This is a function δfu
RS : ∆ ∈ R+ 7→

δfu
RS(∆) ∈ R defined as follows:

Definition 15 (Potential gap) Define

δfu
RS(∆) := infE/∈Vgood

(fu
RS(E)− fu

RS(Egood)) (46)

as the potential gap, with the convention that the infimum over the empty set is ∞ (this
happens for ∆ < ∆AMP where the complement of Vgood is the empty set).

Our hypothesis on P0 imply that

∆RS := sup {∆ > 0 | δfu
RS(∆) > 0} (47)
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4.2 State evolution of the coupled system

For the SC system, the performance of the AMP decoder is tracked by an MSE profile (or
just profile) E(t), defined componentwise by

E(t)
µ = lim

n→+∞

1

n
ES,W‖Sµ − Ŝ

(t)
µ (W)‖22. (48)

It has L + 1 components and describes the scalar MSE in each block µ. Let us introduce
the SE associated with the AMP algorithm for the inference over this SC system. First,
denote the following posterior average at fixed s, z and ∆.

〈A〉µ :=

∫
dxA(x)P0(x)e

− x2

2Σµ(E,∆)2
+x
(

s
Σµ(E,∆)2

+ z
Σµ(E,∆)

)
∫
dxP0(x)e

− x2

2Σµ(E,∆)2
+x
(

s
Σµ(E,∆)2

+ z
Σµ(E,∆)

) . (49)

where the effective noise variance of the SC system is defined as

Σµ(E)−2 :=
v −∑ν∈Sµ ΛµνEν

∆
, (50)

where we recall Sµ := {ν |Λµν 6= 0} is the set of 2w + 1 blocks coupled to block µ.

Definition 16 (SE operator of the coupled system) The state evolution operator as-
sociated with the coupled system (12) is defined component-wise as

[Tc(E)]µ := ES,Z [(S − 〈X〉µ)2]. (51)

Tc(E) is vector valued and here we have written its µ-th component.

We assume perfect knowledge of the variables {siµ} inside the blocks µ ∈ B := {0 : w −
1} ∪ {L − w : L} as mentioned in Section 2.3, that is xiµ = siµ for all iµ such that µ ∈ B.
This implies Eµ = 0 ∀ µ ∈ B. We refer to this as the pinning condition. The SE iteration
tracking the scalar MSE profile of the SC system reads for µ /∈ B

E(t+1)
µ = [Tc(E

(t))]µ ∀ t ≥ 0, (52)

with the initialization E
(0)
µ = v. For µ ∈ B, the pinning condition forces E

(t)
µ = 0 ∀ t. This

equation is the same as (31) but is expressed here in terms of the operator T c.
Let us introduce a suitable notion of degradation that will be very useful for the analysis.

Definition 17 (Degradation) A profile E is degraded (resp. strictly degraded) w.r.t an-
other one G, denoted as E � G (resp. E � G), if Eµ ≥ Gµ ∀ µ (resp. if E � G and there
exists some µ such that Eµ > Gµ).

Define an error profile Egood(∆) as the vector with all L+1 components equal to Egood(∆).

Definition 18 (AMP threshold of coupled ensemble) The AMP threshold of the cou-
pled system is defined as

∆c
AMP := lim infw,L→∞ sup {∆ > 0 | T (∞)

c (v) ≺ Egood(∆)} (53)

where v is the all v vector. The lim infw,L→∞ is taken along sequences where first L → ∞
and then w → ∞. We also set for a finite system ∆AMP,w,L := sup {∆ > 0 | T (∞)

c (v) ≺
Egood(∆)}.
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The proof presented in the next subsection uses extensively the following monotonicity
properties of the SE operators.

Lemma 19 The SE operator of the SC system maintains degradation in space, i.e. E �
G⇒ Tc(E) � Tc(G). This property is verified by Tu(E) for a scalar error as well.

Proof From (50) one can immediately see that E � G ⇒ Σµ(E) ≥ Σµ(G) ∀ µ. Now,
the SE operator (51) can be interpreted as the mmse function associated to the Gaussian
channel y = s + Σµ(E,∆)z. This is an increasing function of the noise intensity Σ2

µ:
this is intuitively clear but we provide an explicit formula for the derivative below. Thus
[Tc(E)]µ ≥ [Tc(G)]µ ∀ µ, which means Tc(E) � Tc(G).

The derivative of the mmse function of the Gaussian channel can be computed as

dmmse(Σ−2)

dΣ−2
= −2EX,Y

[
‖X − E[X|Y ]‖22 Var[X|Y ]

]
. (54)

This formula explicitly confirms that Tu(E) (resp. [Tc(E)]µ) is an increasing function of Σ2

(resp. Σ2
µ).

Corollary 20 The SE operator of the coupled system maintains degradation in time, i.e.,
Tc(E

(t)) � E(t) ⇒ Tc(E
(t+1)) � E(t+1). Similarly Tc(E

(t)) � E(t) ⇒ Tc(E
(t+1)) � E(t+1).

Furthermore, the limiting error profile E(∞) := T
(∞)
c (E(0)) exists. These properties are

verified by Tu(E) as well.

Proof The degradation statements are a consequence of Lemma 19. The existence of the
limits follows from the monotonicity of the operator and boundedness of the scalar MSE.

Finally we will also need the following generalization of the (replica symmetric) potential
function to a spatially coupled system:

f c
RS(E) =

L∑
µ=0

∑
ν∈Sµ

Λµν
4∆

(v − Eµ)(v − Eν)

−
L∑
µ=0

ES,Z
[

ln
(∫

dxP0(x)e
− 1

2Σµ(E)2

(
x2−2xS+xZΣµ(E,∆)

))]
, (55)

where Z ∼ N (z|0, 1) and S ∼ P0(s). As for the underlying system, the following Lemma
links the SE and RS formulations.

Lemma 21 If E is a fixed point of (52), i.e. Eµ = [Tc(E)]µ ⇒ ∂fc
RS(E)
∂Eµ

∣∣
E

= 0 ∀ µ ∈ Bc =

{w : L− w − 1}.
Proof The proof is similar to the proof of Lemma 13 in Appendix D. We skip the details
for brevity.

Now that we have settled the required definitions and properties, we can prove threshold
saturation.
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L � w
µ

µ⇤ µmax

Emax

Egood(�) E⇤

L�ww�1L+1=0

Figure 4: A fixed point profile E∗ of the coupled SE iteration (solid line) is necessarily null
∀ µ ∈ {0 : w − 1} because of the pinning condition, and then it increases to
reach Emax ∈ [0, v] at some µmax ∈ {w : L − w − 1} (for a symmetric coupling
matrix µmax = L/2). Then, it starts decreasing and it is again null ∀ µ ∈
{L−w : L}. By definition, the associated saturated profile E (dashed line) starts
at Egood(∆) ∀ µ ≤ µ∗, where µ∗ is such that: E∗µ ≤ Egood(∆) ∀ µ ∈ {0 : µ∗} and
E∗µ′ > Egood(∆) ∀ µ′ ∈ {µ∗ + 1 : L}. Then, E matches E∗ ∀ µ ∈ {µ∗ : µmax}
and saturates at Emax ∀ µ ≥ µmax. The saturated profile is extended for µ < 0
and µ > L indices. The green (resp. red) branch shows that when the block
indices of E are µ < 0 (resp. µ > L), then Eµ equals to Egood(∆) (resp. Emax).
By construction, E is non decreasing in µ and is degraded w.r.t the fixed point
profile E � E∗.

4.3 Proof of Theorem 11

The proof will proceed by contradiction. Let E∗ a fixed point profile of the SE iteration
(52). We suppose that E∗ does not satisfy E∗ ≺ Egood(∆), and exhibit a contradiction for
∆ < ∆RS and w large enough (but independent of L). Thus we must have E∗ ≺ Egood(∆).
This is the statement of Theorem 28 in Sec. 4.3.3 and directly implies Theorem 11.

The pinning condition together with the monotonicity properties of the coupled SE
operator (Lemma 19 and Corollary 20) ensure that any fixed point profile E∗ which does
not satisfy E∗ ≺ Egood(∆) necessarily has a shape as described in Fig. 4. We construct an
associated saturated profile E as described in Fig. 4. From now on we work with a saturated
profile E which verifies E � E∗ and E � Egood(∆). In the following we will need the
following operator.

Definition 22 (Shift operator) The shift operator S is defined componentwise as [S(E)]µ :=
Eµ−1.

4.3.1 Upper bound on the potential variation under a shift

The first step in the proof of threshold saturation is based on the Taylor expansion of the
RS free energy of the SC system.

Lemma 23 Let E be a saturated profile. Set Eλ := (1 − λ)E + λS(E) for λ ∈ [0, 1] and
δEµ := Eµ − Eµ−1. There exists some λ ∈ [0, 1] such that

f c
RS(S(E))− f c

RS(E) =
1

2

L∑
µ,µ′=0

δEµδEµ′
∂2f c

RS(E)

∂Eµ∂Eµ′

∣∣∣
Eλ
. (56)
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Proof Using the remainder Theorem, the free energy difference can be expressed as

f c
RS(S(E))− f c

RS(E) = −
L∑
µ=0

δEµ
∂f c

RS(E)

∂Eµ

∣∣∣
E

+
1

2

L∑
µ,µ′=0

δEµδEµ′
∂2f c

RS(E)

∂Eµ∂Eµ′

∣∣∣
Eλ
. (57)

for some λ ∈ [0, 1]. By definition of the saturated profile E, we have δEµ = 0 ∀ µ ∈ A :=
{0 : µ∗} ∪ {µmax + 1 : L} and Eµ = [Tc(E)]µ for r /∈ A. Recalling Lemma 21 we see that
the derivative in the first sum cancels for r /∈ A. Hence the first sum in (57) vanishes.

Lemma 24 The saturated profile E is smooth, i.e. δE∗ := max
µ
|δEµ| = O(1/w) uniformly

in L.

Proof By definition of the saturated profile E we have δEµ = 0 ∀ µ ∈ A := {0 : µ∗} ∪
{µmax + 1 : L}. For µ /∈ A, we can replace the fixed point profile component Eµ by
[Tc(E)]µ so that δEµ = [Tc(E)]µ − [Tc(E)]µ−1. We will Taylor expand the SE operator. To
this end, we define δΣ−2

µ := Σµ(E)−2 − Σµ−1(E)−2 for µ ∈ {µ∗ + 1 : µmax}. Recall that
Λµ−1,ν−1 = Λµν , Λµν ≥ 0 and Λ∗ := supµ,ν Λµν = O(1/w). Thus from (50) we get

|δΣ−2
µ | =

1

∆

∣∣∣ ∑
ν∈Sµ

Λµν(Eν − Eν−1)
∣∣∣

≤ Λ∗

∆

∑
ν∈Sµ

(Eν − Eν−1)

≤ 2vΛ∗

∆
= O(

1

w
) (58)

where we have used Eν −Eν−1 ≥ 0 to get rid of the absolute value. Note that the first and
second derivatives of the SE operator (51) w.r.t Σ−2

µ are bounded as long as the five first
moments of the posterior (49) exist and are bounded (which is true under our assumptions).
Then by Taylor expansion at first order in δΣ−2

µ and using the remainder theorem, we obtain

|δEµ| = |[Tc(E)]µ − [Tc(E)]µ−1| ≤ |δΣ−2
µ |
∣∣∣∂[Tc(E)]µ

∂Σ−2
µ

∣∣∣+O(δΣ−4
µ ) ≤ O(

1

w
), (59)

where the last inequality follows from (58).

Proposition 25 Let E be a saturated profile. Then for all ∆ > 0 there exists a constant
0 < C(∆) < +∞ independent of L such that

|f c
RS(S(E))− f c

RS(E)| ≤ C(∆)

w
. (60)

Proof From Lemma 23, in order to compute the free energy difference between the shifted
and non-shifted profiles, we need to compute the Hessian associated with this free energy.
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We have

∂f c
RS(E)

∂Eµ
=
∑
ν∈Sµ

Λµ,νEν
2∆

− 1

2

∑
ν

∂Σν(E)−2

∂Eµ
[Tc(E)]ν −

v

2∆

=
1

2∆

( ∑
ν∈Sµ

Λµ,νEν +
∑
ν∈Sµ

Λµ,ν [Tc(E)]ν − v
)

(61)

and

∂2f c
RS(E)

∂Eµ∂Eµ′
=

1

2∆

(
Λµ,µ′I(µ′ ∈ Sµ)− 1

∆

∑
ν∈Sµ∩Sµ′

Λµ,νΛµ′,ν
∂[Tc(E)]ν

∂ Σ−2
ν

)
. (62)

We can now estimate the sum in the Lemma 23. The contribution of the first term on the
r.h.s of (62) can be bounded as

1

2∆

∣∣∣ L∑
µ=0

∑
µ′∈Sµ

Λµ,µ′δEµδEµ′
∣∣∣ ≤ δE∗Λ∗(2w + 1)

2∆

∣∣∣ L∑
µ=0

δEµ

∣∣∣ ≤ O(
1

w
), (63)

where we used the facts: δEµ ≥ 0, the sum over µ = 0, · · · , L is telescopic, Eµ ∈ [0, v],
Λ∗ = O(1/w) and δE∗ = (w−1) (Lemma 24). We now bound the contribution of the second
term on the r.h.s of (62). Recall the first derivative w.r.t Σ−2

ν of the SE operator is bounded
uniformly in L. Call this bound K = O(1). We obtain

1

2∆2

∣∣∣ L∑
µ,µ′=1

δEµδEµ′
∑

ν∈Sµ∩Sµ′

Λµ,νΛµ′,ν
∂[Tc(E)]ν

∂Σ−2
ν

∣∣∣
≤ KΛ∗2δE∗

2∆2

∣∣∣ L∑
µ=1

δEµ
∑

µ′∈{µ−2w:µ+2w}

card(Sµ ∩ Sµ′)
∣∣∣ ≤ O(

1

w
). (64)

The last inequality follows from the following facts: the sum over µ = 1, · · · , L is telescopic,
Λ∗ = O(1/w), Lemma 24, and for any fixed µ the following holds∑

µ′∈{µ−2w:µ+2w}

card(Sµ ∩ Sµ′) = (2w + 1)2. (65)

Finally, from (63), (64) and the triangle inequality we obtain

1

2

∣∣∣ L∑
µ,µ′=1

δEµδEµ′
∂2f c

RS(E)

∂Eµ∂Eµ′

∣∣∣
Eλ

∣∣∣ = O(
1

w
) (66)

uniformly in L. Combining this result with Lemma 23 ends the proof.
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4.3.2 Lower bound on the potential variation under a shift

The second step in the proof is based on a direct evaluation of f c
RS(S(E)) − f c

RS(E). We
first need the Lemma:

Lemma 26 Let E be a saturated profile such that E � Egood(∆). Then Emax /∈ Vgood.

Proof The fact that the error profile is non decreasing and the assumption that E �
Egood(∆) imply that Emax > E0 = Egood(∆). Moreover, Emax ≤ [Tc(E)]µmax ≤ Tu(Emax)
where the first inequality follows from E � E∗ and the monotonicity of Tc, while the second
comes from the fact that E is non decreasing. Combining these with the monotonicity of

Tu gives Tu(Emax) ≥ Emax which implies T
(∞)
u (Emax) ≥ Emax > Egood(∆) which means

Emax /∈ Vgood.

Proposition 27 Fix ∆ < ∆RS and let E be a saturated profile such that E � Egood(∆).
Then

|f c
RS(S(E))− f c

RS(E)| ≥ δfu
RS(∆) (67)

where δfu
RS(∆) is the potential gap (Definition 15).

Proof Set

I(Σ) := ES,Z
[

ln
(∫

dxP0(x)e−
1

2Σ2

(
x2−2Sx−2ΣZx

))]
.

By (55)

f c
RS(S(E))− f c

RS(E) =
L−1∑
µ=−1

∑
ν∈Sµ

Λµ+1ν+1

4∆
(v−Eµ)(v−Eν)−

L∑
µ=0

∑
ν∈Sµ

Λµν
4∆

(v−Eµ)(v−Eν)

−
L∑
µ=0

I(Σµ(S(E))) +
L∑
µ=0

I(Σµ(E))

=
∑
ν∈S−1

Λµν
4∆

(v−Eµ)(v−Eν)−
∑
ν∈SL

Λµν
4∆

(v−Eµ)(v−Eν)

− I(Σ−1(E)) + I(ΣL(E)), (68)

where we used Λµ+1ν+1 = Λµν implying also Σµ(S(E)) = Σµ−1(E) as seen from (50).
Recall Σ(E)−2 = (v−E)/∆. Now looking at (50), one notices that thanks to the saturation
of E, Σ−1(E) = Σ(E0) where E0 = Egood(∆) (see the green branch in Fig. 4), while
ΣL(E) = Σ(EL) where EL = Emax (see the red branch Fig. 4). Finally from (68), using
that the coupling matrix is (doubly) stochastic and the saturation of E

f c
RS(S(E))− f c

RS(E) =
[(v−E0)2

4∆
− I(Σ(Egood(∆)))

]
−
[(v−EL)2

4∆
− I(Σ(EL))

]
= fu

RS(Egood)− fu
RS(Emax) ≤ −δfu

RS(∆), (69)
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where we recognized the potential function of the underlying system fu
RS(E; ∆) = iRS(E; ∆)−

v2

4∆ and the last inequality is a direct application of Lemma 26 and Definition 15. Finally,
using the positivity of δfu

RS(∆) for ∆ < ∆RS, we obtain the desired result.

4.3.3 End of proof of threshold saturation

We now have the necessary ingredients in order to prove threshold saturation.

Theorem 28 (Asymptotic performance of AMP for the coupled system) Fix ∆ <
∆RS. Take a spatially coupled system with w > C(∆)/δfu

RS(∆) where C(∆) is the constant
in Proposition 25. Then any fixed point profile E∗ of the coupled state evolution iteration
(52) must satisfy E∗ ≺ Egood(∆).

Proof The proof is by contradiction. Fix ∆ < ∆RS and w ≥ C(∆)/δfu
RS(∆). We assume

there exists a fixed point profile which does not satisfy E∗ ≺ Egood(∆). Then we construct
the associated saturated profile E. This profile satisfies both statements of Propositions
25 and 27. Therefore we must have δfu

RS(∆) ≤ C(∆)/w which contradicts the choice
w > C(∆)/δfu

RS(∆). We conclude that E∗ ≺ Egood(∆) must be true.

Theorem 11 is a direct corollary of Theorem 28 and Definition 18. Take some ∆∗ < ∆RS

and choose w > C(∆∗)/δf
u
RS(∆∗). Then we have ∆AMP,w,L ≥ ∆∗. Note that δfu

RS(∆∗) →
0+ for ∆∗ → ∆RS. Thus Taking L → +∞ first and w → +∞ second we can make ∆∗ as
close to ∆RS as we wish. Therefore we obtain ∆c

AMP := lim infL,w→+∞∆AMP,w,L ≥ ∆RS

where the limit is taken in the specified order.

5. Invariance of the mutual information under spatial coupling

In this section we prove that the mutual information remains unchanged under spatial
coupling in a suitable asymptotic limit (Theorem 10). We will compare the mutual infor-
mations of the four following variants of (12). In each case, the signal s has n(L + 1) i.i.d
components.

• The fully connected: If we choose w = L/2 and a homogeneous coupling matrix
with elements Λµ,ν = (L + 1)−1 in (12). This yields a homogeneous fully connected
system equivalent to (1) with n(L+ 1) instead of n variables. The associated mutual
information per variable for fixed L and n is denoted by icon

n,L.

• The SC pinned system: This is the system studied in Section 4 to prove threshold
saturation, with the pinning condition. In this case we choose 0 < w < L/2. The
coupling matrix Λ is any matrix that fulfills the requirements in Section 2.3 (the
concrete example given there will do). The associated mutual information per variable
is here denoted icou

n,w,L. Note that icou
n,w,L = (n(L+ 1))−1Iw,L(S; W)

• The periodic SC system: This is the same SC system (with same coupling window
and coupling matrix) but without the pinning condition. The associated mutual
information per variable at fixed L,w, n is denoted iper

n,w,L.
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• The decoupled system: This corresponds simply to L + 1 identical and independent
systems of the form (1) with n variables each. This is equivalent to periodic SC system
with w = 0. The associated mutual information per variable is denoted idec

n,L. Note

that idec
n,L = n−1I(S; W).

Let us outline the proof strategy. In a first step, we use an interpolation method twice: first
interpolating between the fully connected and periodic SC systems, and then between the
decoupled and periodic SC systems. This will allow to sandwich the mutual information of
the periodic SC system by those of the fully connected and decoupled systems respectively
(see Lemma 31). In the second step, using again a similar interpolation and Fekete’s theorem
for superadditive sequences, we prove that the decoupled and fully connected systems have
asymptotically the same mutual information (see Lemma 32 for the existence of the limit).
From these results we deduce the proposition:

Proposition 29 For any 0 ≤ w ≤ L/2

lim
n→+∞

iper
n,w,L = lim

n→+∞

1

n
I(S;W) (70)

Proof Lemma 32 implies that limn→+∞ i
con
n,L = limn→+∞ i

dec
n,L. One also notes that idec

n,L =
1
nI(S; W). Thus the result follows from Lemma 31.

In a third step an easy argument shows

Proposition 30 Assume P0 has finite first four moments. For any 0 ≤ w ≤ L/2

|iper
n,w,L − icou

n,w,L| = O(
w

L
) (71)

Proof See Appendix G.

Since icou
n,w,L = (n(L+ 1))−1Iw,L(S; W), Theorem 10 is an immediate consequence of Propo-

sitions 29 and 30.

5.1 A generic interpolation

Let us consider two systems of same total size n(L + 1) with coupling matrices Λ(1) and
Λ(0) supported on coupling windows w1 and w0 respectively. Moreover, we assume that the
observations associated with the first system are corrupted by an AWGN equals to

√
∆/tz

while the AWGN corrupting the second system is
√

∆/(1− t)z′, where Zij and Z ′ij are two
i.i.d. standard Gaussians and t ∈ [0, 1] is the interpolation parameter. The interpolating
inference problem has the formwiµjν = siµsjν

√
Λ

(1)
µν

n + ziµjν

√
∆
t ,

wiµjν = siµsjν

√
Λ

(0)
µν

n + z′iµjν

√
∆

1−t

(72)

In this setting, at t = 1 the interpolated system corresponds to the first system as the noise
is infinitely large in the second one and no information is available about it, while at t = 0
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the opposite happens. The associated interpolating posterior distribution can be expressed
as

Pt(x|s, z, z′) =
1

Zint(t)
e−H(t,Λ(1),Λ(0)))

L∏
µ=0

n∏
iµ=1

P0(xiµ) (73)

where the “Hamiltonian” is Hint(t,Λ
(1),Λ(0)) := H(t,Λ(1)) +H(1− t,Λ(0)) with4

H(t,Λ) :=
t

∆

L∑
µ=0

Λµ,µ
∑
iµ≤jµ

(
x2
iµ
x2
jµ

2n
− siµsjµxiµxjµ

n
− xiµxjµziµjµ

√
∆√

ntΛµ,µ

)

+
t

∆

L∑
µ=0

µ+w∑
ν=µ+1

Λµ,ν

n∑
iµ,jν=1

(
x2
iµ
x2
jν

2n
− siµsjνxiµxjν

n
− xiµxjνziµjν

√
∆√

ntΛµ,ν

)
. (74)

and Zint(t) is the obvious normalizing factor, the “partition function”. The posterior average
with respect to (73) is denoted by the bracket notation 〈−〉t. It is easy to see that the mutual
information per variable (for the interpolating inference problem) can be expressed as

iint(t) := − 1

n(L+ 1)
ES,Z,Z′ [lnZint(t)] +

v2

4∆
+

1

4∆n(L+ 1)
(2E[S4]− v2) (75)

The aim of the interpolation method in the present context is to compare the mutual
informations of the systems at t = 1 and t = 0. To do so, one uses the fundamental theorem
of calculus

iint(1)− iint(0) =

∫ 1

0
dt
diint(t)

dt
. (76)

and tries to determine the sign of the integral term.
We first prove that

diint(t)

dt
=

1

4∆(L+ 1)
ES,Z,Z′

[〈
− 1

n2

( L∑
µ=0

µ+w1∑
ν=µ−w1

Λ(1)
µν

n∑
iµ,jν=1

XiµXjνSiµSjν +

L∑
µ=0

Λ(1)
µµ

n∑
iµ=1

X2
iµS

2
iµ

)

+
1

n2

( L∑
µ=0

µ+w0∑
ν=µ−w0

Λ(0)
µν

n∑
iµ,jν=1

XiµXjνSiµSjν +
L∑
µ=0

Λ(0)
µµ

n∑
iµ=1

X2
iµS

2
iµ

)〉
t

]
, (77)

where 〈−〉t denotes the expectation over the posterior distribution associated with the
interpolated Hamiltonian Hint(t,Λ

(1),Λ(0)). We start with a simple differentiation of the
Hamiltonian w.r.t. t which yields

d

dt
Hint(t,Λ

(1),Λ(0)) =
1

∆

(
A(t,Λ(1))− B(t,Λ(0))

)
,

4. Note that since the SC system is defined on a ring, we can express the Hamiltonian in terms of forward
coupling only.
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where

A(t,Λ(1)) =
L∑
µ=0

Λ(1)
µµ

∑
iµ≤jµ

(
x2
iµ
x2
jµ

2n
− siµsjµxiµxjµ

n
− xiµxjµziµjµ

√
∆

2

√
ntΛ

(1)
µµ

)

+
L∑
µ=0

µ+w1∑
ν=µ+1

Λ(1)
µν

n∑
iµ,jν=1

(
x2
iµ
x2
jν

2n
− siµsjνxiµxjν

n
− xiµxjνziµjν

√
∆

2

√
ntΛ

(1)
µν

)

B(t,Λ(0)) =
L∑
µ=0

Λ(0)
µµ

∑
iµ≤jµ

(
x2
iµ
x2
jµ

2n
− siµsjµxiµxjµ

n
−
xiµxjµz

′
iµjµ

√
∆

2

√
n(1− t)Λ(0)

µµ

)
L∑
µ=0

µ+w0∑
ν=µ+1

Λ(0)
µν

n∑
iµ,jν=1

(
x2
iµ
x2
jν

2n
− siµsjνxiµxjν

n
−
xiµxjνz

′
iµjν

√
∆

2

√
n(1− t)Λ(0)

µν

)
.

Using integration by parts with respect to the Gaussian variables Zij , Z
′
ij , one gets

ES,Z,Z′ [Ziµjν 〈XiµXjν 〉t] =

√
tΛµ,ν
n∆

ES,Z,Z′

[
〈X2

iµX
2
jν 〉t − 〈XiµXjν 〉2t

]
(78)

ES,Z,Z′ [Z
′
iµjν 〈XiµXjν 〉t] =

√
(1− t)Λ0

µ,ν

n∆
ES,Z,Z′

[
〈X2

iµX
2
jν 〉t − 〈XiµXjν 〉2t

]
. (79)

Moreover an application of the Nishimori identity (164) shows

ES,Z,Z′ [〈XiµXjν 〉2t ] = ES,Z,Z′ [〈XiµXjνSiµSjν 〉t]. (80)

Combining (77)-(80) and using the fact that the SC system defined on a ring satisfies

L∑
µ=0

Λµµ
∑
iµ≤jµ

xiµxjµsiµsjµ +
L∑
µ=0

µ+w∑
ν=µ+1

Λµν

n∑
iµ,jν=1

xiµxjνsiµsjν =

1

2

L∑
µ=0

µ+w∑
ν=µ−w

Λµν

n∑
iµ,jν=1

xiµxjνsiµsjν +
1

2

L∑
µ=0

Λµµx
2
iµs

2
iµ ,

we obtain (77).
Now, define the overlaps associated to each block µ as

qµ :=
1

n

n∑
iµ=1

XiµSiµ , q̃µ :=
1

n

n∑
iµ=1

X2
iµS

2
iµ . (81)

Hence, (77) can be rewritten as

diint(t)

dt
=

1

4∆(L+ 1)
ES,Z,Z′

[〈
qᵀΛ(0) q− qᵀΛ(1) q +

1

n

(
q̃ᵀdiag(Λ(0))− q̃ᵀdiag(Λ(1))

)〉
t

]
,

(82)

29



where qᵀ = [q0 · · · qL], q̃ᵀ = [q̃0 · · · q̃L] are row vectors and diag(Λ) represents the column
vector with entries {Λµµ}Lµ=0. The coupling matrices Λ(1),Λ(0) are real, symmetric, circu-
lant (due to the periodicity of the ring) and thus can be diagonalized in the same Fourier
basis. We have

diint(t)

dt
=

1

4∆(L+ 1)
ES,Z,Z′

[〈
q̂ᵀ(D(0) −D(1)

)
q̂ +

1

n

(
q̃ᵀdiag(Λ(0))− q̃ᵀdiag(Λ(1))

)〉
t

]
,

(83)

where q̂ is the discrete Fourier transfrom of q and D(1),D(0) are the diagonal matrices with
the eigenvalues of Λ(1),Λ(0). Since the coupling matrices are stochastic with non-negative
Fourier transform, their largest eigenvalue equals 1 (and is associated to the 0-th Fourier
mode) while the remaining eigenvalues are non-negative. These properties will be essential
in the following paragraphs.

5.2 Applications

Our first application is

Lemma 31 Let the coupling matrix Λ verify the requirements (i)-(v) in Sec. 2.3. The
mutual informations of the decoupled, periodic SC and fully connected systems verify

idec
n,L ≤ iper

n,w,L ≤ icon
n,L. (84)

Proof We start with the second inequality. We choose Λ
(1)
µν = (L + 1)−1 for the fully

connected system at t = 1. This matrix has a unique eigenvalue equal to 1 and L degenerate
eigenvalues equal to 0. Therefore it is clear that D(0) −D(1) is positive semi-definite and

q̂ᵀ
(
D(0) −D(1)

)
q̂ ≥ 0. Moreover notice that Λ

(0)
µµ = Λ00 is independent of L. Therefore for

L large enough

q̃ᵀdiag(Λ(0))− q̃ᵀdiag(Λ(1)) =
(

Λ00 −
1

L+ 1

) L∑
µ=0

q̃µ ≥ 0. (85)

Therefore we conclude that (83) is positive and from (76) icon
n,L − i

per
n,w,L ≥ 0. For the first

inequality we proceed similarly, but this time we choose Λ
(1)
µν = δµν for the decoupled

system which has all eigenvalues equal to 1. Therefore D(0) −D(1) is negative semidefinite
so q̂ᵀ

(
D(0) −D(1)

)
q̂ ≤ 0. Moreover this time

q̃ᵀdiag(Λ(0))− q̃ᵀdiag(Λ(1)) =
(

Λ00 − 1
) L∑
µ=0

q̃µ ≤ 0 (86)

because we necessarily have 0 ≤ Λ
(0)
00 ≤ 1. We conclude that (83) is negative and from (76)

idec
n,L − i

per
n,w,L ≤ 0.

The second application is
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Lemma 32 Consider the mutual information of system (1) and set in = n−1I(S;W).
Consider also in1 and in2 the mutual informations of two systems of size n1 and n2 with
n = n1 + n2. The sequence nin is superadditive in the sense that

n1in1 + n2in2 ≤ nin. (87)

Fekete’s lemma then implies that limn→+∞ in exists.

Proof The proof is easily obtained by following the generic interpolation method of Sec.

5.1 for a coupled system with two spatial positions (i.e. L+ 1 = 2). We choose Λ
(0)
µν = δµν ,

µ, ν ∈ 0, 1 for the ”decoupled“ system and Λ
(1)
µν = 1/2 for µ, ν ∈ 0, 1 for the ”fully con-

nected“ system. This analysis is essentially identical to [Guerra and Toninelli (2002)] were
the existence of the thermodynamic limit of the free energy for the Sherrington-Kirkpatrick
mean field spin glass is proven.

6. Proof of the replica symmetric formula (Theorem 4)

In this section we provide the proof of the RS formula for the mutual information of the
underlying model (Theorem 4) for 0 < ∆ ≤ ∆opt (Proposition 39) and then for ∆ ≥ ∆opt

(Proposition 41). For 0 < ∆ ≤ ∆opt the proof directly follows form the I-MMSE relation
Lemma 33, the replica bound (16) and the suboptimality of the AMP algorithm. In this
interval the proof doesn’t require spatial coupling. For ∆ ≥ ∆opt the proof uses the results
of Sections 4 and 5 on the spatially coupled model.

Let us start with two preliminary lemmas. The first is an I-MMSE relation [Guo et al.
(2005)] adapted to the current matrix estimation problem.

Lemma 33 Let P0 has finite first four moments. The mutual information and the matrix-
MMSE are related by

1

n

dI(S;W)

d∆−1
=

1

4
Mmmsen(∆−1) +O(1/n). (88)

Proof

1

n

dI(S; W)

d∆−1
=

1

2n2
ES,W

[∑
i≤j

(
SiSj − E[XiXj |W]

)2]
=

1

4n2
ES,W

[∥∥SSᵀ − E[XXᵀ|W]
∥∥2

F

]
+

1

4n2

n∑
i=1

ES,W[(S2
i − E[X2

i |W])2]

=
1

4
Mmmsen(∆−1) +O(1/n), (89)

The proof details for first equality are in Appendix C. The second equality is obatined by
completing the sum and accounting for the diagonal terms. The last equality is obtained
from

ES,W[(S2
i − E[X2

i |W])2] = E[S4
i ]− 2ESi,W[S2

i E[X2
i |W]] + EW[E[X2

i |W]2]

= E[S4
i ]− EW[E[X2

i |W]2]

≤ E[S4
i ]. (90)
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where we have used the Nishimori identity ESi,W[S2
i E[X2

i |W]] = EW[E[X2
i |W]2] in the

second equality (Appendix D).

Lemma 34 The limit limn→+∞ n
−1I(S;W) exists and is a concave, continuous, function

of ∆.

Proof The existence of the limit is the statement of Lemma 32 in Sec. 5. The continuity
follows from the concavity of the mutual information with respect to ∆−1: because the limit
of a sequence of concave functions remains concave, and thus it is continuous. To see the
concavity notice that the first derivative of the mutual information w.r.t ∆−1 equals the
matrix-MMSE (Lemma 33) and that the later cannot increase as a function of ∆−1.

6.1 Proof of Theorem 4 for 0 < ∆ ≤ ∆opt

Lemma 35 Assume P0 is a discrete distribution. Fix ∆ < ∆AMP. The mutual information
per variable is asymptotically given by the RS formula (15).

Proof By the suboptimality of the AMP algorithm we have

Mmse
(t)
n,AMP(∆−1) ≥ Mmmsen(∆−1). (91)

Taking limits in the order limt→+∞ lim supn→+∞ and using (11) we find

v2 − (v − E(∞))2 ≥ lim sup
n→+∞

Mmmsen(∆−1). (92)

Furthermore, by applying Lemma 33 we obtain

v2 − (v − E(∞))2

4
≥ lim sup

n→+∞

1

n

dI(S; W)

d∆−1
. (93)

Now, for ∆ < ∆AMP we have E(∞) = Egood(∆) which is the unique and hence global
minimum of iRS(E; ∆) over E ∈ [0, v]. Moreover, for ∆ < ∆AMP we have that E(∞)(∆) is
continuously differentiable ∆−1 with locally bounded derivative. Thus

d

d∆−1

(
min
E∈[0,v]

iRS(E; ∆)
)

=
diRS

d∆−1
(E(∞); ∆)

=
∂iRS

∂E
(E(∞); ∆)

dE(∞)

d∆−1
+

∂iRS

∂∆−1
(E(∞); ∆)

=
∂iRS

∂∆−1
(E(∞); ∆)

=
(v − E(∞))2 + v2

4
− ∂ES,Z [· · · ]

∂Σ−2

∣∣∣∣
E(∞)

∂Σ−2

∂∆−1

∣∣∣∣
E(∞)

=
v2 − (v − E(∞))2

4
, (94)
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where ES,Z [· · · ] is the expectation that appears in the RS potential (14). The third equality
is obtained from

∂Σ−2

∂∆−1

∣∣∣∣
E(∞)

= v − E(∞) (95)

and

∂ES,Z [· · · ]
∂Σ−2

∣∣∣
E(∞)

=
1

2
(v − E(∞)). (96)

This last identity immediately follows from ∂iRS
∂E

∣∣∣
E(∞)

= 0. From (93) and (94)

d

d∆−1
( min
E∈[0,v]

iRS(E; ∆)) ≥ lim sup
n→+∞

1

n

dI(S; W)

d∆−1
,

(97)

which is equivalent to

d

d∆
( min
E∈[0,v]

iRS(E; ∆)) ≤ lim inf
n→+∞

1

n

dI(S; W)

d∆
. (98)

We now integrate inequality (98) over an interval [0,∆] ⊂ [0,∆AMP[

min
E∈[0,v]

iRS(E; ∆)− min
E∈[0,v]

iRS(E; 0) ≤
∫ ∆

0
d∆̃ lim inf

n→+∞

1

n

dI(S; W)

d∆̃

≤ lim inf
n→+∞

∫ ∆

0
d∆̃

1

n

dI(S; W)

d∆̃

= lim inf
n→+∞

1

n
I(S; W)−H(S). (99)

The second inequality uses Fatou’s Lemma and the last equality uses that for a discrete
prior

lim
∆→0+

I(S; W) = H(S)− lim
∆→0+

H(S|W) = nH(S). (100)

In Appendix F an explicit calculation shows that minE iRS(E; 0) = H(S). Therefore

min
E∈[0,v]

iRS(E; ∆) ≤ lim inf
n→+∞

1

n
I(S; W). (101)

The final step combines inequality (101) with the replica bound (16) to obtain

min
E∈[0,v]

iRS(E; ∆) ≤ lim inf
n→+∞

1

n
I(S; W) ≤ lim sup

n→+∞

1

n
I(S; W) ≤ min

E∈[0,v]
iRS(E; ∆). (102)

This shows that the limit of the mutual information exists and is equal to the RS formula
for ∆ < ∆AMP. Note that in this proof we did not need the a-priori existence of the limit.
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Remark 36 One can try to apply the same proof idea to the regime ∆ > ∆RS. Equations
(91)-(98) work out exactly in the same way because the AMP fixed point E(∞) is a global
minimum of iRS(E; ∆). Then when integrating on ]∆,+∞[⊂ [∆RS,+∞[, one finds

lim sup
n→+∞

1

n
I(S;W) ≤ min

E∈[0,v]
iRS(E; ∆). (103)

This essentially gives an alternative proof of (16) for ∆ > ∆RS.

Lemma 37 We necessarily have ∆AMP ≤ ∆opt.

Proof Notice first that it not possible to have ∆RS < ∆AMP because in the range
]0,∆AMP[, as a function of E, the function iRS(E; ∆) has a unique stationary point. Since
minE∈[0,v] iRS(E; ∆) is analytic for ∆ < ∆RS, it is analytic for ∆ < ∆AMP. Now we
proceed by contradiction: suppose we would have ∆AMP ≥ ∆opt. Lemma 35 asserts
that limn→+∞ n

−1I(S; W) = minE∈[0,v] iRS(E; ∆) for ∆ < ∆AMP thus we would have
limn→+∞ n

−1I(S; W) analytic at ∆opt. This is a contradiction by definition of ∆opt.

Lemma 38 We necessarily have ∆RS ≥ ∆opt.

Proof If ∆RS = +∞ then we are done, so we suppose it is finite. The proof pro-
ceeds by contradiction: suppose ∆RS < ∆opt. So we assume ∆RS ∈ [∆AMP,∆opt[ (in
the previous lemma we showed that this must be the case). For ∆ ∈ ]0,∆RS[ we have
minE∈[0,v] iRS(E; ∆) = iRS(Egood(∆); ∆) which is an analytic function in this interval.

By definition of ∆opt, the function limn→+∞
1
nI(S; W) is analytic in ]0,∆opt[. There-

fore both functions are analytic on ]0,∆RS[ and since by Lemma 35 they are equal for
]0,∆AMP[⊂]0,∆RS[, they must be equal on the whole range ]0,∆RS[. This implies that the
two functions are equal at ∆RS because they are continuous. Explicitly,

min
E

iRS(E; ∆) = lim
n→+∞

1

n
I(S; W)|∆ ∀ ∆ ∈ ]0,∆RS]. (104)

Now, fix some ∆ ∈ ]∆RS,∆opt[. Since this ∆ is greater than ∆RS the fixed point of state
evolution E(∞) is also the global minimum of iRS(E; ∆). Hence exactly as in (91)-(98)
we can show that for ∆ ∈ ]∆RS,∆opt[, (98) is verified. This time, combining (16), (98)
and the assumption ∆RS ∈ [∆AMP,∆opt[, leads to a contradiction, and hence we must
have ∆RS ≥ ∆opt. To see explicitly how the contradiction appears, integrate (98) on
]∆RS,∆[⊂]∆RS,∆opt[, and use Fatou’s Lemma, to obtain

min
E

iRS(E; ∆)−min
E

iRS(E; ∆RS) ≤ lim inf
n→+∞

( 1

n
I(S; W)|∆ −

1

n
I(S; W)|∆RS

)
= lim
n→+∞

1

n
I(S; W)|∆ − lim

n→+∞

1

n
I(S; W)|∆RS

. (105)

From (104) and (16) we obtain minE iRS(E; ∆) = limn→+∞
1
nI(S; W) when ∆AMP ≤ ∆RS <

∆ < ∆opt. But from (104), this equality is also true for 0 < ∆ ≤ ∆RS. So the equality is
valid in the whole interval ]0,∆opt[ and therefore minE iRS(E; ∆) is analytic at ∆RS. But
this is impossible by the definition of ∆RS.
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Proposition 39 Assume P0 is a discrete distribution. Fix ∆ ≤ ∆opt. The mutual infor-
mation per variable is asymptotically given by the RS formula (15).

Proof Lemma 35 says that the two functions, limn→+∞ n
−1I(S; W) and minE∈[0,v] iRS(E; ∆),

are equal for ∆ < ∆AMP and Lemma 38 implies that both functions are analytic for
∆ < ∆opt. Thus they must be equal on the whole range ∆ < ∆opt. Since we also know
they are continuous, then they are equal also at ∆ = ∆opt.

6.2 Proof of Theorem 4 for ∆ ≥ ∆opt

We first need the following lemma where spatial coupling comes into the play.

Lemma 40 The optimal threshold is given by the potential threshold: ∆opt = ∆RS.

Proof It suffices to see that

∆RS ≤ ∆c
AMP ≤ ∆c

opt = ∆opt ≤ ∆RS. (106)

The first inequality is the threshold saturation result of Theorem 11 in Section 4. The
second inequality is due the suboptimality of the AMP algorithm.5 The equality is a con-
sequence of Theorem 10 in Section 5. Indeed, equality of asymptotic mutual informations
of the coupled and underlying system implies that they must be non-analytic at the same
value of ∆. Finally, the last inequality is the statement of Lemma 38 in Section 6.1.

Proposition 41 Assume P0 is a discrete distribution. Fix ∆ ≥ ∆opt. The mutual infor-
mation per variable is asymptotically given by the RS formula (15).

Proof We already remarked in section 6.1 that for ∆ > ∆RS,

d

d∆
(min
E

iRS(E; ∆)) ≤ lim inf
n→+∞

1

n

dI(S; W)

d∆
. (107)

Now we integrate on an interval ]∆RS,∆] both sides of the inequality. Since from Lemma
40 we have that ∆RS = ∆opt, it is equivalent to integrate from ∆opt upwards6∫ ∆

∆opt

d∆̃
d

d∆̃
(min
E

iRS(E; ∆̃)) ≤
∫ ∆

∆opt

d∆̃ lim inf
n→+∞

1

n

dI(S; W)

d∆̃
. (108)

By Fatou’s lemma the inequality is preserved if we bring the lim inf outside of the integral,
thus

min
E

iRS(E; ∆)−min
E

iRS(E; ∆RS) ≤ lim inf
n→+∞

{
1

n
I(S; W)

∣∣∣
∆
− 1

n
I(S; W)

∣∣∣
∆opt

}
= lim

n→+∞

1

n
I(S; W)

∣∣∣
∆
− lim
n→+∞

1

n
I(S; W)

∣∣∣
∆opt

. (109)

5. More precisely one shows by the same methods Lemmas 35 and 37 for the spatially coupled system.
6. This is the point we did not yet know in section 6.1.
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To get the last line we have used the existence of the thermodynamic limit (see Lemma 34).

But we already know from Proposition 39 that minE iRS(E; ∆opt) = limn→+∞
1
nI(S; W)

∣∣∣
∆opt

.

Therefore

min
E

iRS(E; ∆) ≤ lim
n→+∞

1

n
I(S; W), (110)

which together with (16) ends the proof.

7. Proof of corollaries 7 and 8

In this section, we provide the proofs of Corollary 7 and Corollary 8 concerning the MMSE
formulae and the optimality of the AMP algorithm. We first show the following result about
the matrix and vector MMSE’s in Definition 6.

Lemma 42 Assume the prior P0 has finite first four moments and recall the second moment
is called v. The matrix and vector MMSE verify

Mmmsen ≤
(
v2 − (v −Vmmsen)2

)
+O(

1

n
). (111)

Proof For this proof we denote 〈·〉 the expectation w.r.t the posterior distribution (20).
The matrix and vector MMSE then read

Mmmsen :=
1

n2
ES,W

[∥∥SSᵀ − 〈XXᵀ〉
∥∥2

F

]
, (112)

Vmmsen :=
1

n
ES,W

[∥∥S− 〈X〉∥∥2

2

]
. (113)

Expanding the Frobenius norm in (112) yields

Mmmsen =
1

n2
ES,W

[ n∑
i,j=1

(SiSj − 〈XiXj〉)2
]

=
1

n2
ES,W

[ n∑
i,j=1

S2
i S

2
j − 〈XiXj〉2

]
= ES

[( 1

n

n∑
i=1

S2
i

)2]
− 1

n2

n∑
i,j=1

ES,W[〈XiXj〉2], (114)

where the second equality follows from ES,W[〈XiXj〉2] = ES,W[SiSj〈XiXj〉], implied by
the Nishimori identity (164). Similarly, using ES,W[〈Xi〉2] = ES,W[Si〈Xi〉] implied by the
Nishimori identity, (113) simplifies to

Vmmsen = v − 1

n

n∑
i=1

ES,W[〈Xi〉2]. (115)

Hence,

Mmmsen −
(
v2 − (v −Vmmsen)2

)
= An − Bn, (116)
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with

An := ES

[( 1

n

n∑
i=1

S2
i

)2]
− v2, (117)

Bn :=
1

n2

n∑
i,j=1

(
ES,W[〈XiXj〉2]− ES,W[〈Xi〉2]ES,W[〈Xj〉2]

)
. (118)

Since the signal components {Si} are i.i.d and P0 has finite first four moments, An = O(1/n).
It remains to show that Bn ≥ 0. This is most easily seen as follows. By defining the overlap

q(X,S) :=
1

n

n∑
i=1

SiXi (119)

and using the Nishimori identities ES,W[〈Xi〉2] = ES,W[Si〈Xi〉] and ES,W[〈XiXj〉2] =
ES,W[SiSj〈XiXj〉], we observe that

Bn = ES,W[〈q2〉]− ES,W[〈q〉]2

= ES,W[(q − ES,W[〈q〉])2] (120)

which is non-negative.

Remark 43 Using ideas similar to [Korada and Macris (2009)] to prove concentration of
overlaps in inference problems suggest that Lemma 42 holds with an equality when suitable
“side observations” are added.

7.1 Proof of Corollary 7

We first show how to prove the expression (22) for the asymptotic Mmmsen by taking the
limit n → +∞ on both sides of (88). First notice that since n−1I(S; W) is a sequence
of concave functions with respect to ∆−1, the limit when n → +∞ is also concave and
differentiable for almost all ∆−1 and at all differentiability points we have (by a standard
theorem of real analysis on convex functions)

lim
n→+∞

1

n

d

d∆−1
I(S; W) =

1

n

d

d∆−1
lim

n→+∞
I(S; W) . (121)

Thus from Lemma 33 and Theorem 4 we have for all ∆ 6= ∆RS

lim
n→+∞

Mmmsen(∆−1) = 4
d

d∆−1
min
E∈[0,v]

iRS(E; ∆). (122)

It remains to compute the right hand side. Let E0(∆) denote the (global) minimum of
iRS(E; ∆). For ∆ 6= ∆RS this is a differentiable function of ∆ with locally bounded deriva-
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tive. Hence using a similar calculation to the one done in (94), we obtain

d

d∆−1

(
min
E∈[0,v]

iRS(E; ∆)
)

=
diRS

d∆−1
(E0; ∆)

=
∂iRS

∂E
(E0; ∆)

dE0

d∆−1
+

∂iRS

∂∆−1
(E0; ∆)

=
∂iRS

∂∆−1
(E0; ∆). (123)

To compute the partial derivative with respect to ∆ we first note that ∂iRS
∂E

∣∣∣
E0

= 0 implies

0 = −v − E0

2∆
− ∂ES,Z [· · · ]

∂Σ−2

∣∣∣∣
E0

∂Σ−2

∂E

∣∣∣∣
E0

, (124)

where ES,Z [· · · ] is the expectation that appears in the RS potential (14). This immediately
gives

∂ES,Z [· · · ]
∂Σ−2

∣∣∣
E0

=
1

2
(v − E0) (125)

Thus

∂iRS

∂∆−1
(E0; ∆) =

(v − E0)2 + v2

4
− ∂ES,Z [· · · ]

∂Σ−2

∣∣∣∣
E0

∂Σ−2

∂∆−1

∣∣∣∣
E0

=
v2 − (v − E0)2

4
. (126)

From (122), (123), (126) we obtain the desired result, formula (22).
We now turn to the proof of (23) for the expression of the asymptotic vector-MMSE.

From Lemma 42 and the suboptimality of the AMP algorithm (here E0(∆) is the global
minimum of iRS(E; ∆) and E(∞) the fixed point of state evolution)

v2 − (v − E0)2 = lim
n→∞

Mmmsen

≤ lim inf
n→∞

(
v2 − (v −Vmmsen)2

)
≤ lim sup

n→∞

(
v2 − (v −Vmmsen)2

)
≤ v2 − (v − E(∞))2, (127)

For ∆ /∈ [∆AMP,∆RS], we have that E0 = E(∞) which ends the proof.

7.2 Proof of Corollary 8

In view of (11) we have

lim
t→+∞

lim
n→+∞

Vmse
(t)
n,AMP(∆−1) = E(∞), (128)

lim
t→+∞

lim
n→+∞

Mmse
(t)
n,AMP(∆−1) = v2 − (v − E(∞))2. (129)
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For ∆ /∈ [∆AMP,∆RS] we have E(∞) = argminE∈[0,v]iRS(E; ∆) and also the two formulas of
Corrolary 7 hold. This directly implies the formulas (24) and (25).

On the other hand for ∆ ∈ [∆AMP,∆RS] we have E(∞) > argminE∈[0,v]iRS(E; ∆), so

using the monotonicity of E(t) leads to strict inequalities in (128) and (129) and thus to
(26) and (27).

Appendix A. Upper bound on the mutual information

For the completeness of this work we revisit the proof of the upper bound (16) on mutual
information. This result was already obtained by [Krzakala et al. (2016)] using a Toninelli-
Guerra type interpolation and is used in this paper so we only sketch the main steps.

We consider the following interpolating inference problemwij =
sisj√
n

+
√

∆
t zij ,

yi = si +
√

∆
m(1−t)z

′
i,

(130)

with m := v − E ∈ [0, v], and Z ′i ∼ N (0, 1). For t = 1 we find back the original problem
(1) since the yi observations become useless and for t = 0 we have a set of decoupled
observations from a Gaussian channel. The interpolating posterior distribution associated
to this set of observations is

Pt(x|s, z, z′) :=
e−H(t)

∏n
i=1 P0(xi)∫ {∏n

i=1 dxiP0(xi)
}
e−H(t)

:=
1

Z(t)
e−H(t)

n∏
i=1

P0(xi) (131)

where

H(t) =
n∑

i≤j=1

( t

2∆n
x2
ix

2
j −

t

∆n
xixjsisj −

√
t

n∆
xixjzij

)
+

n∑
i=1

(m(1− t)
2∆

x2
i −

m(1− t)
∆

xisi +

√
m(1− t)

∆
xiz
′
i

)
.

can be interpreted as a “Hamiltonian” and the normalizing factor Z(t) is interpreted as a
“partition function”. We adopt the Gibbs “bracket” notation 〈−〉t for the expectation with
respect to the posterior (131). The mutual information associated to interpolating inference
problem is

i(t) = − 1

n
ES,Z,Z′ [lnZ(t)] +

v2

4∆
+

1

4∆n
(2E[S4]− v2) (132)

Note that on one hand i(1) = 1
nI(S; W) the mutual information of the original matrix

factorization problem and on the other hand

i0 = − 1

n
ES,Z′

[
ln
(∫ { n∏

i=1

dxiP0(xi)
}
e−

m‖x‖22
2∆

+xᵀ
(
mS
∆

+
√

m
∆

Z′
))]

+
v2

4∆
+

1

4∆n
(2E[S4]− v2)

= −ES,Z′
[

ln
(∫

dxP0(x)e−
mx2

2∆
+x
(
mS
∆

+
√

m
∆
Z′
))]

+
v2

4∆
+

1

4∆n
(2E[S4]− v2)

= iRS(E; ∆)− m2

4∆
+

1

4∆n
(2E[S4]− v2), (133)
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From the fundamental theorem of calculus

i(1)− i(0) = − 1

n

∫ 1

0
dt
d

dt
ES,Z,Z′ [lnZ(t)] (134)

so we get

1

n
I(S; W) = iRS(E; ∆)− m2

4∆
+

1

4∆n
(2E[S4]− v2)− 1

n

∫ 1

0
dt
d

dt
ES,Z,Z′ [lnZ(t)]. (135)

We proceed to the computation of the derivative under the integral over t. Denoting by
〈−〉t the expectation with respect to the posterior (131), we have

d

dt
ES,Z,Z′ [ln

(
Z(t)

)
] = ES,Z,Z′

[
−
〈dH(t)

dt

〉
t

]
. (136)

Hence, a simple differentiation of the Hamiltonian w.r.t. t yields

d

dt
ES,Z,Z′ [ln

(
Z(t)

)
] = ES,Z,Z′

[ n∑
i≤j=1

(
−
〈X2

iX
2
j 〉t

2∆n
+
〈XiXj〉tSiSj

∆n
+
Zij〈XiXj〉t

2
√
n∆t

)
+

n∑
i=1

(
m
〈X2

i 〉t
2∆

−m〈Xi〉tSi
∆

− Z ′i〈Xi〉t
2

√
m

∆(1− t)
)]
.

(137)

We now simplify this expression using integration by parts with respect to the Gaussian
noises and the Nishimori identity (164) in Appendix D. Integration by parts with respect
to Zij and Z ′i yields

ES,Z,Z′ [Zij〈XiXj〉t] = ES,Z,Z′ [∂Zij 〈XiXj〉t] =

√
t

n∆
ES,Z,Z′

[
〈X2

iX
2
j 〉t − 〈XiXj〉2t

]
(138)

and

ES,Z,Z′ [Z
′
i〈Xi〉t] = ES,Z,Z′ [∂Z′i〈Xi〉t] =

√
m(1− t)

∆
ES,Z,Z′

[
〈X2

i 〉t − 〈Xi〉2t
]
. (139)

An application of the Nishimori identity yields

ES,Z,Z′ [〈XiXj〉tSiSj ] = ES,Z,Z′ [〈XiXj〉2t ] (140)

and

ES,Z,Z′ [〈Xi〉tSi] = ES,Z,Z′ [〈Xi〉2t ] (141)

Combining (137) - (141) we get

1

n

d

dt
ES,Z,Z′ [ln

(
Z(t)

)
] =

1

2∆n2

n∑
i≤j=1

ES,Z,Z′ [〈XiXjSiSj〉t]−
m

2∆n

n∑
i=1

ES,Z,Z′ [〈XiSi〉t]

=
1

4∆
ES,Z,Z′

[
〈q(S,X)2〉t − 2〈q(S,X)〉tm

]
+

1

4∆n2

n∑
i=1

ES,Z,Z′ [〈X2
i 〉tS2

i ]
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where we have introduced the “overlap” q(S,X) := n−1
∑n

i=1 SiXi. Replacing this result
in (135) we obtain the remarkable sum rule (recall m := v − E)

1

n
I(S; W) = iRS(E; ∆)− 1

4∆

∫ 1

0
dtES,Z,Z′

[
〈(q(S,X)−m)2〉t

]
− 1

4∆n2

n∑
i=1

ES,Z,Z′ [〈X2
i 〉tS2

i ] +
1

4∆n
(2E[S4]− v2). (142)

Thus for any E ∈ [0, v] we have

lim sup
n→+∞

1

n
I(S; W) ≤ iRS(E; ∆) (143)

and (16) follows by optimizing the right hand side over E.

Appendix B. Relating the mutual information to the free energy

The mutual information between S and W is defined as I(S; W) = H(S)−H(S|W) with

H(S|W) = −ES,W

[
lnP (S|W)

]
= −ES,Z

[
〈lnP (X|S,Z)〉

]
. (144)

By substituting the posterior distribution in (33), one obtains

H(S|W) = ES,Z[lnZ] + ES,Z

[
〈H(X|S,Z)〉

]
+H(S). (145)

Furthermore, using the Gaussian integration by part as in (138) and the Nishimori identity
(140) yield

ES,Z

[
〈H(X|S,Z)〉

]
= − 1

2∆n
ES

[ n∑
i≤j=1

(S2
i S

2
j )
]

= − 1

4∆

(
v2(n− 1) + 2E[S4]

)
. (146)

Hence, the normalized mutual information is given by (38), which we repeat here for better
referencing

1

n
I(S; W) = − 1

n
ES,Z[lnZ] +

v2

4∆
+

1

4∆n
(2E[S4]− v2). (147)

Alternatively, one can define the mutual information as I(S; W) = H(W) −H(W|S).
For the AWGN, it is easy to show that

H(W|S) =
n(n+ 1)

4
ln(2π∆e). (148)

Furthermore, H(W) = −EW

[
lnP (W)

]
with

P (w) =

∫ { n∏
i=1

dxiP0(xi)
}
P (w|x) =

1

(2π∆)
n(n+1)

4

∫ { n∏
i=1

dxiP0(xi)
}
e
− 1

2∆

∑
i≤j

(
xixj√
n
−wij

)2

=
Z̃

(2π∆)
n(n+1)

4

, (149)
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where Z̃ is the partition function with complete square (20). Hence, H(W) reads

H(W) =
n(n+ 1)

4
ln(2π∆)− EW

[
ln Z̃

]
=
n(n+ 1)

4
ln(2π∆)− ES,Z

[
lnZ

]
+

1

2∆
ES,Z

[∑
i≤j

(
SiSj√
n

+
√

∆Zij)
2
]
, (150)

with Z the simplified partition function obtained after expanding the square (33). A
straightforward calculation yields

1

2∆
ES,Z

[∑
i≤j

(
SiSj√
n

+
√

∆Zij)
2
]

=
n(n+ 1)

4
+

1

2∆n
ES

[∑
i≤j

(S2
i S

2
j )
]

=
n(n+ 1)

4
ln(e) +

1

4∆

(
v2(n− 1) + 2E[S4]

)
. (151)

Finally, combining (148), (150) and (151) yields the same identity (147).

Appendix C. Proof of the I-MMSE relation

For completeness, we give a detailed proof for the I-MMSE relation of Lemma 33 following
the lines of [Guo et al. (2005)]. In the calculations below differentiations, expectations and
integrations commute (see Lemma 8 in [Guo et al. (2005)]). All the matrices are symmetric
and Zij ∼ N (0, 1) for i ≤ j.

Instead of (1) it is convenient to work with the equivalent model wij =
sisj√
n∆

+zij and set

sisj = uij . In fact, all subsequent calculations do not depend on the rank of the matrix u
and are valid for any finite rank matrix estimation problem as long as the noise is Gaussian.
The mutual information is I(S; W) = H(W)−H(W|S) and H(W|S) = n(n+1)

2 ln(
√

2πe).
Thus

1

n

dI(S; W)

d∆−1
=

1

n

dH(W)

d∆−1
. (152)

We have H(W) = −EW[lnP (W)] where

P (w) = EU[P (w|U)] = EU

[
(2π)−

n(n+1)
4 e

− 1
2

∑
i≤j

(
Uij√
n∆
−wij

)2]
. (153)

Differentiating w.r.t ∆−1

dH(W)

d∆−1
= −EU

[ ∫
dw(1 + lnP (w))

dP (w|U)

d∆−1

]
(154)

and

dP (w|U)

d∆−1
=

√
∆

4n

∑
k≤l

Ukl

(
wkl −

Ukl√
∆n

)
e
− 1

2

∑
i≤j

(
Uij√
n∆
−wij

)2

(2π)−
n(n+1)

2 (155)

= −
√

∆

4n

∑
k≤l

Ukl
d

dwkl
e
− 1

2

∑
i≤j

(
Uij√
n∆
−wij

)2

(2π)−
n(n+1)

2 . (156)
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Replacing this last expression in (154), using an integration by part w.r.t wkl (the boundary
terms can be shown to vanish), then Bayes formula, and finally (153), one obtains√

4n

∆

dH(W)

d∆−1
=
∑
k≤l

EU

[
Ukl

∫
dw(1 + lnP (w))

d

dwkl
e
− 1

2

∑
i≤j

(
Uij√
n∆
−wij

)2

(2π)−
n(n+1)

2

]
= −

∑
k≤l

∫
dwEU

[
Ukl

P (w|U)

P (w)

]dP (w)

dwkl

= −
∑
k≤l

∫
dwEU|w

[
Ukl
]
EU

[dP (w|U)

dwkl

]
=
∑
k≤l

∫
dwEU|w

[
Ukl
]
EU

[(
wkl −

Ukl√
n∆

)
P (w|U)

]
= EW

[∑
k≤l

EU|W
[
Ukl
](
Wkl −

1√
n∆

EU|W
[
Ukl
])]

. (157)

Now we replace w = u0
√
n∆

+ z, where u0 is an independent copy of u. We denote EW[·] =

EU0,Z[·] the joint expectation. The last result then reads

dH(W)

d∆−1
=

1

2n
EW

[∑
k≤l

EU|W
[
Ukl
](
U0
kl − EU|W

[
Ukl
]

+ Zkl
√
n∆
)]
. (158)

Now note the two Nishimori identities (see Appendix D)

EW

[
EU|W

[
Ukl
]
U0
kl

]
= EW

[
EU|W

[
Ukl
]2]

, (159)

EW

[
(U0

kl)
2
]

= EW

[
EU|W

[
U2
kl

]]
, (160)

and the following one obtained by a Gaussian integration by parts

√
n∆EW

[
EU|W

[
Ukl
]
Zkl

]
= EW

[
EU|W

[
U2
kl

]
− EU|W

[
Ukl
]2]

. (161)

Using the last three identities, equation (158) becomes

1

n

dH(W)

d∆−1
=

1

2n2
EW

[∑
k≤l

EU|W
[
U2
kl

]
− EU|W

[
Ukl
]2]

=
1

2n2
EW

[∑
k≤l

(
U0
kl − EU|W

[
Ukl
])2]

, (162)

which, in view of (152), ends the proof.

Appendix D. Nishimori identity

Take a random vector S distributed according to some known prior P⊗n0 and an observation
W is drawn from some known conditional distribution PW|S(w|s). Take X drawn from a
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posterior distribution (for example this may be (20))

P (x|w) =
P⊗n0 (x)PW|S(w|x)

P (w)
.

Then for any (integrable) function g(s,x) the Bayes formula implies

ESEW|SEX|W[g(S,X)] = EWEX′|WEX|W[g(X′,X)] (163)

where X,X′ are independent random vectors distributed according to the posterior distri-
bution. Therefore

ES,WEX|W[g(S,X)] = EWEX′|WEX|W[g(X′,X)]. (164)

In the statistical mechanics literature this identity is sometimes called the Nishimori
identity and we adopt this language here. For model (1) for example we can express W in
the posterior in terms of S and Z which are independent and EX|W[−] = 〈−〉. Then the
Nishimori identity reads

ES,Z[〈g(S,X)〉] = ES,Z[〈g(X′,X)〉]. (165)

An important case for g depending only on the first argument is ES[g(S)] = ES,Z[〈g(X)〉].
Special cases that are often used in this paper are

ES,Z[Si〈Xi〉] = ES,Z[〈Xi〉2]

ES,Z[SiSj〈XiXj〉] = ES,Z[〈XiXj〉2]

E[S2] = ES,Z[〈X2
i 〉].

(166)

A mild generalization of (165) which is also used is

ES,Z[SiSj〈Xi〉〈Xj〉] = ES,Z[〈XiXj〉〈Xi〉〈Xj〉]. (167)

We remark that these identities are used with brackets 〈−〉 corresponding to various “in-
terpolating” posteriors.

Appendix E. Proof of Lemmas 13 and 21

We show the details for Lemma 13. The proof of Lemma 21 follows the same lines. A
straightforward differentiation of fu

RS w.r.t. E gives

dfu
RS(E; ∆)

dE
=
E − v

2∆
+

1

2∆
EZ,S

[〈
−X2 + 2XS + ZX

√
∆

v − E
〉]
. (168)

Recall that here the posterior expectation 〈·〉 is defined by (40). A direct application of the
Nishimori condition gives

v := ES [S2] = ES,Z [〈X2〉], (169)

ES,Z [S〈X〉] = ES,Z [〈X〉2], (170)
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which implies

ES,Z [(S − 〈X〉E)2] = ES,Z [〈X2〉]− ES,Z [〈X〉2]. (171)

Thus from (168) we see that stationary points of fu
RS satisfy

E = 2v − 2ES,Z [〈X〉2]−
√

∆

v − EES,Z [Z〈X〉]. (172)

Now using an integration by part w.r.t Z, one gets√
∆

v − EES,Z [Z〈X〉] = v − ES,Z [〈X〉2], (173)

which allows to rewrite (172) as

E = v − ES,Z [〈X〉2] = ES,Z [(S − 〈X〉)2] (174)

where the second equality follows from (169) and (171). Recalling the expression (41) of
the state evolution operator we recognize the equation E = Tu(E).

Appendix F. Analysis of iRS(E; ∆) for ∆→ 0

In this appendix, we prove that lim∆→0 minE iRS(E; ∆) = H(S). First, a simple calcula-
tion leads to the following relation between iRS and the mutual information of the scalar
denoising problem for E∈ [0, v]

iRS(E; ∆) = I
(
S;S + Σ(E)Z

)
+
E2

4∆
, (175)

where Z ∼ N (0, 1) and Σ(E)2 := ∆/(v − E). Note that as ∆ → 0, Σ(E) → 0 (for
E 6= v). Therefore, lim∆→0 I

(
S;S + Σ(E)Z

)
= H(S). Now let E0 be the global minimum

of iRS(E; ∆). By evaluating both sides of (175) at E0 and taking the limit ∆ → 0, it
remains to show that E2

0/(4∆) → 0 as ∆ → 0 (i.e. E2
0 → 0 faster than ∆). Since E0 is

the global minimum of the RS potential, then E0 = Tu(E0) = mmse(Σ(E0)−2) by Lemma
13. Moreover, one can show, under our assumptions on P0, that the scalar MMSE function
scales as

mmse(Σ−2) = O(e−cΣ
−2

), (176)

with c a non-negative constant that depends on P0 [Barbier et al. (2017b)]. Hence, E2
0/(4∆)→

0 as ∆→ 0, which ends the proof.

Appendix G. Proof of Proposition 30

Call Hper and 〈−〉per the Hamiltonian and posterior average associated to the periodic SC
system with mutual information iper

n,w,L. Similarly call H ˜cou and 〈−〉cou the Hamiltonian and
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posterior average associated to the pinned SC system with mutual information icou
n,w,L. The

Hamiltonians satisfy the identity Hcou −Hper = δH with

δH =
∑
µ∈B

Λµ,µ
∑
iµ≤jµ

[
x2
iµ
x2
jµ

+ s2
iµ
s2
jµ

2n∆
− siµsjµxiµxjµ

n∆
− (xiµxjµ − siµsjµ)ziµjµ√

n∆Λµ,µ

]

+
∑
µ∈B

∑
ν∈{µ+1:µ+w}∩B

Λµ,ν
∑
iµ≤jν

[
x2
iµ
x2
jν

+ s2
iµ
s2
jν

2n∆
− siµsjνxiµxjν

n∆
− (xiµxjν − siµsjν )ziµjν√

n∆Λµ,ν

]

+
∑
µ∈B

∑
ν∈{µ−w:µ−1}∩B

Λµ,ν
∑
iµ>jν

[
x2
iµ
x2
jν

+ s2
iµ
s2
jν

2n∆
− siµsjνxiµxjν

n∆
− (xiµxjν − siµsjµ)ziµjν√

n∆Λµ,ν

]
.

It is easy to see that

iper
n,w,L − icou

n,w,L =
1

n(L+ 1)
ES,Z[ln〈e−δH〉cou], (177)

icou
n,w,L − iper

n,w,L =
1

n(L+ 1)
ES,Z[ln〈eδH〉per]. (178)

and using the convexity of the exponential, we get

icou
n,w,L +

ES,Z

[
〈δH〉per

]
n(L+ 1)

≤ iper
n,w,L ≤ icou

n,w,L +
ES,Z

[
〈δH〉cou

]
n(L+ 1)

. (179)

Due to the pinning condition we have ES,Z[〈δH(X)〉cou] = 0, and thus we get the upper
bound iper

n,w,L ≤ icou
n,w,L. Let us now look at the lower bound. We note that by the Nishimori

identity in Appendix D, as long as P0 has finite first four moments, we can find constants
K1,K2 independent of n,w,L such that ES,Z[〈X2

iµ
X2
jν
〉per] ≤ K1 and ES,Z[〈X4

iµ
〉per] ≤ K2.

First we use Gaussian integration by parts to eliminate ziµjν from the brackets, the Cauchy-
Schwartz inequality, and the Nishimori identity of Appendix D, to get an upper bound where
only fourth order moments of signal are involved. Thus as long as P0 has finite first four
moments we find

|ES,Z[〈δH(X)〉c̃]|
n(L+ 1)

≤ CΛ∗(2w + 1)2

L+ 1
= O(

w

L
). (180)

for some constant C > 0 independent of n,w,L and we recall Λ∗ := sup Λµν = O(w−1).
Thus we get the lower bound icou

n,w,L−O(wL ) ≤ iper
n,w,L. This completes the proof of Proposition

30.
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analysis of the stochastic block model for modular networks and its algorithmic applica-
tions. Physical Review E, 84(6):066106, 2011.

Yash Deshpande and Andrea Montanari. Information-theoretically optimal sparse pca. In
Information Theory (ISIT), 2014 IEEE International Symposium on, pages 2197–2201,
June 2014. doi: 10.1109/ISIT.2014.6875223.

Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. Asymptotic mutual information
for the two-groups stochastic block model. arXiv:1507.08685, 2015.

Mohamad Dia. High-Dimensional Inference on Dense Graphs with Applications to Coding
Theory and Machine Learning. PhD thesis, EPFL IC School, Lausanne, 2018.

Silvio Franz and Fabio Lucio Toninelli. Finite-range spin glasses in the kac limit: free
energy and local observables. Journal of Physics A: Mathematical and General, 37(30):
7433, 2004.
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