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Abstract

Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine
learning and statistical inference. In this work we perform an analytic study of the performances of one of
them, the Langevin algorithm, in the context of noisy high-dimensional inference. We employ the Langevin
algorithm to sample the posterior probability measure for the spiked matrix-tensor model. The typical
behaviour of this algorithm is described by a system of integro-differential equations that we call the Langevin
state evolution, whose solution is compared with the one of the state evolution of approximate message passing
(AMP). Our results show that, remarkably, the algorithmic threshold of the Langevin algorithm is sub-optimal
with respect to the one given by AMP. We conjecture this phenomenon to be due to the residual glassiness
present in that region of parameters. Finally we show how a landscape-annealing protocol, that uses the
Langevin algorithm but violate the Bayes-optimality condition, can approach the performance of AMP.
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1 Motivation

Algorithms based on noisy variants of gradients descent [1, 2] stand at the roots of many modern applications
of data science, and are being used in a wide range of high-dimensional non-convex optimization problems.
The widespread use of stochastic gradient descent in deep learning [3] is certainly one of the most prominent
examples. For such algorithms, the existing theoretical analysis mostly concentrate on convex functions, convex
relaxations or on regimes where spurious local minima become irrelevant. For problems with complicated
landscapes where, instead, useful convex relaxations are not known and spurious local minima cannot be ruled
out, the theoretical understanding of the behaviour of gradient-descent-based algorithm remains poor and
represents a major avenue of research.

The goal of this paper is to contribute to such an understanding in the context of statistical learning, and
to transfer ideas and techniques developed for glassy dynamics [4] to the analysis of non-convex relaxations
in high-dimensional inference. In statistical learning, the minimization of a cost function is not the goal per
se, but rather a way to uncover an unknown structure in the data. One common way to model and analyze
this situation is to generate data with a hidden structure, and to see if the structure can be recovered. This
is easily set up as a teacher-student scenario [5, 6]: First a teacher generates latent variables and uses them as
input of a prescribed model to generate a synthetic dataset. Then, the student observes the dataset and tries
to infer the values of the latent variables. The analysis of this setting has been carried out rigorously in a wide
range of teacher-student models for high-dimensional inference and learning tasks as diverse as planted clique
[7], generalized linear models such as compressed sensing or phase retrieval [8], factorization of matrices and
tensors [9, 10] or simple models of neural networks [11]. In these works, the information theoretically optimal
performances —the one obtained by an ideal Bayes-optimal estimator, not limited in time and memory— have
been computed.

The main question is, of course, how practical algorithms —operating in polynomial time with respect to
the problem size— compare to these ideal performances. The last decade brought remarkable progress into
our understanding of the performances achievable computationally. In particular, many algorithms based on
message passing [12, 6], spectral methods [13], and semidefinite programs (SDP) [14] were analyzed. Depending
on the signal-to-noise ratio, these algorithms were shown to be very efficient in many of those task. Interestingly,
all these algorithm fail to reach good performance in the same region of the parameter space, and this striking
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observation has led to the identification of a well-defined hard phase. This is a regime of parameters in which the
underlying statistical problem can be information-theoretically solved, but no efficient algorithms are known,
rendering the problem essentially unsolvable for large instances. This stream of ideas is currently gaining
momentum and impacting research in statistics, probability, and computer science.

The performance of the noisy-gradient descent algorithms — that are certainly the one currently most used
in practice— remains an entirely open question. Do they allow to reach the same performances as message
passing and SDPs? Can they enter the hard phase, do they stop to be efficient at the same moment as the other
approaches, or are they worse? The ambition of the present paper is to address these questions by analyzing the
performance of the Langevin algorithm in the high-dimensional limit of a spiked matrix-tensor model, defined
in detail in the next section.

We argue that this spiked matrix-tensor problem is both generic and relevant. Similar models have played
a fundamental role in statistics and random matrix theory [15, 16]. Tensor factorization is also an important
topic in mathematics and machine learning [17, 18, 19, 20, 21], and is a widely used in data analysis [22].
At variance with the pure spiked tensor case [17], this mixed matrix-tensor model has the advantage that
algorithmic threshold appears at the same scale as the information-theoretic one, similarly to what is observed
in simple models of neural networks [8, 11].

In the present paper, we analyse the behavior of a noisy gradient descent algorithm, also called Langevin
algorithm. We explicitly compare its performance to the one of the Bayes optimal estimator and to the best
known efficient algorithm so-far – the approximate message passing algorithm [12, 6]. In particular, contrary to
what has been anticipated in [23, 24], but as surmised in [25], we observe that the performance of the Langevin
algorithm is hampered by the many spurious metastable states still present in the AMP-easy phase. We show
that the Langevin algorithm can approach AMP performances if one uses a landscape-annealing protocol in
which instead of reducing the temperature, as done in thermal annealing, one instead anneals the strength of
the contribution of the tensor. A number of intriguing conclusions can be drawn by these results and are likely
to be valid beyond the considered model.

Finally, the possibility to describe analytically the behavior of the Langevin algorithm in this model is
enabled by the existence of the Crisanti-Horner-Sommers-Cugliandolo-Kurchan (CHSCK) equations in spin
glass theory, describing the behavior of the Langevin dynamics in the so-called spherical p-spin model [26, 27],
where the method can be rigorously justified [28]. These equations were a key development in the field of
statistical physics of disordered systems that lead to detailed understanding and predictions about the slow
dynamics of glasses [4]. In this paper, we bring these powerful methods and ideas into the realm of statistical
learning.

2 The spiked matrix-tensor model

We now detail the spiked matrix-tensor problem: a teacher generates a N -dimensional vector x∗ by choosing
each of its components independently from a normal Gaussian distribution of zero mean and unit variance. In
the large N limit this is equivalent to have a flat distribution over the N -dimensional hypersphere SN−1 defined
by |x∗|2 = N . The teacher then also generates a symmetric matrix Yij and a symmetric order-p tensor Ti1,...,ip
as

Yij =
1√
N
x∗ix

∗
j + ξij ∀i < j ,

Ti1...ip =

√
(p− 1)!

N (p−1)/2
x∗i1 . . . x

∗
ip + ξi1...ip ∀i1 < . . . < ip ,

(1)

where ξij and ξi1,...,ip are iid Gaussian components of a symmetric random matrix and tensor of zero mean and
variance ∆2 and ∆p, respectively; ξij and ξi1,...,ip correspond to noises corrupting the signal of the teacher. In
the limit ∆2 → 0, and ∆p → 0, the above model reduces to the canonical spiked Wigner model [29], and spiked
tensor model [17], respectively. The goal of the student is to infer the vector x∗ from the knowledge of the
matrix Y , of the tensor T , of the values ∆2 and ∆p, and the knowledge of the spherical prior. The scaling with
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N as specified in Eq. (1) is chosen in such a way that the information-theoretically best achievable error varies
between perfectly reconstructed spike x∗ and random guess from the flat measure on SN−1. Here, and in the
rest of the paper we denote x ∈ SN−1 the N -dimensional vector, and xi with i = 1, . . . , N its components.

Analogous matrix-tensor models, where next to a order-p tensor one observes a matrix created from the
same spike are studied e.g. in [22] in the context of topic modeling, or in [17]. From the optimization-theory
point of view, this model is highly non-trivial being high-dimensional and non-convex. For the purpose of the
present paper this model is chosen because it involves three key ingredients: (a) It is in the class of models for
which the Langevin algorithm can be analyzed exactly in large N limit. (b) The different phase transitions,
both algorithmic and information theoretic, discussed hereafter, all happen at ∆2 = O(1), ∆p = O(1). (c) The
AMP algorithm is in this model conjectured to be optimal among polynomial algorithms. It is this second and
third ingredient that are not present in the pure spiked tensor model [17], making it unsuitable for our present
study. We note that the Langevin algorithm was recently analyzed for the pure spiked tensor model in [20] in a
regime where the noise variance is very small ∆ ∼ N−p/2, but we also note that in that model algorithms such
as tensor unfolding and semidefinite programming work better, roughly up to ∆ ∼ N−p/4 [17, 18],

3 Bayes-optimal estimation and message-passing

In this section we present the performance of the Bayes-optimal estimator and of the approximate message
passing algorithm. This theory is based on a straightforward adaptation of analogous results known for the
pure spiked matrix model [29, 30, 9] and for the pure spiked tensor model [17, 10].

The Bayes-optimal estimator x̂ is defined as the one that among all estimators minimizes the mean-squared
error (MSE) with the spike x∗. Starting from the posterior probability distribution

P (x|Y, T ) =
1

Z(Y, T )

 N∏
i=1

e−x
2
i /2

∏
i<j

e
− 1

2∆2

(
Yij−

xixj√
N

)2 ∏
i1<···<ip

e
− 1

2∆p

(
Ti1...ip−

√
(p−1)!

N(p−1)/2
xi1 ...xip

)2

, (2)

the Bayes-optimal estimator reads
x̂i = EP (x|Y,T )(xi) . (3)

To simplify notation, and to make contact with the energy landscape and the statistical physics notations, it is
convenient to introduce the energy cost function, or Hamiltonian, as

H(x) = H2 +Hp = − 1

∆2

√
N

∑
i<j

Yijxixj −
√

(p− 1)!

∆pN (p−1)/2

∑
i1<···<ip

Ti1...ipxi1 . . . xip (4)

so that keeping in mind that for N →∞ the spherical constraint is satisfied |x|2 = N , the posterior is written
as P (x|Y, T ) = exp[−H(x)]/Z̃(Y, T ), where Z̃ is the normalizing partition function.

With the use of the replica theory and its recent proofs from [9, 31, 10] one can establish rigorously that
the mean squared error achieved by the Bayes-optimal estimator is given as MMSE = 1−m∗ where m∗ ∈ R is
the global maximizer of the so-called free entropy of the problem

ΦRS(m) =
1

2
log(1−m) +

m

2
+

1 +m2

4∆2
+

1 +mp

2p∆p
. (5)

This expression is derived, and proven, in the appendix Sec. B.1.
We now turn to the approximate message-passing (AMP) [17, 10], that is the best known so far for this

problem. AMP is an iterative algorithm inspired from the work of Thouless-Anderson and Palmer in statistical
physics [32]. We explicit its form in the Sec. B.1. Most remarkably performance of AMP can be evaluated by
tracking its evolution with the iteration time and it is given in terms of the (possibly local) maximum of the
above free entropy that is reached as a fixed point of the following iterative process

mt+1 = 1− 1

1 +mt/∆2 + (mt)p−1/∆p
(6)
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Figure 1: Phase diagram of the spiked 2 + 3-spin model (matrix plus order 3 tensor are observed). In the easy
(green) region AMP achieves the optimal error smaller than random pick from the prior. In the impossible
region (red) the optimal error is as bad as random pick from the prior, and AMP achieves it as well. In the
hard region (orange) the optimal error is low, but AMP does not find an estimator better than random pick
from the prior. In the case of Langevin algorithm the performance is strictly worse than that for AMP in the
sense that the hard region increases up to line depicted in green dots. The blue dashed-dotted line delimits the
region of existence of stable 1RSB states.

with initial condition mt=0 = ε with 0 < ε� 1. Eq. (6) is called the State Evolution of AMP and its validity is
proven for closely related models in [33]. We denote the corresponding fixed point mAMP and the corresponding
estimation error MSEAMP = 1−mAMP.

The phase diagram presented in Fig. 1 summarizes this theory for the spiked 2+3-spin model. It is deduced
by investigating the local maxima of the scalar function (5). Notably we observe that the phase diagram in
terms of ∆2 and ∆p splits into three phases

• Easy in green for ∆2 < 1 and any ∆p: The fixed point of the state evolution (6) is the global maximizer
of the free entropy (5), and m∗ = mAMP > 0.

• Hard in orange for ∆2 > 1 and low ∆p < ∆IT
p (∆2): The fixed point of the state evolution (6) is not the

global maximizer of the free entropy (5), and m∗ > mAMP = 0.

• Impossible in red for ∆2 > 1 and high ∆p > ∆IT
p (∆2): The fixed point of the state evolution (6) is the

global maximizer of the free entropy (5), and m∗ = mAMP = 0.

For the 2 + p-spin model with p > 3 the phase diagram is slightly richer and is presented in the appendix.

4 Langevin Algorithm and its Analysis

We now turn to the core of the paper and the analysis of the Langevin algorithm. In statistics, the most com-
monly used way to compute the Bayes-optimal estimator (3) is to attempt to sample the posterior distribution
(2) and use several independent samples to compute the expectation in (3). In order to do that one needs to set
up a stochastic dynamics on x that has a stationary measure at long times given by the posterior measure (2).
The Langevin algorithm is one of the possibilities (others include notably Monte Carlo Markov chain). The
common bottleneck is that the time needed to achieve stationarity can be in general exponential in the system
size. In which case the algorithm is practically useless. However, this is not always the case and there are
regions in parameter space where one can expect that the relaxation to the posterior measure happens on finite
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timescales. Therefore it is crucial to understand where this happens and what are the associated relaxation
timescales.

The Langevin algorithm on the hypersphere with Hamiltonian given by Eq. (4) reads

ẋi(t) = −µ(t)xi(t)−
∂H
∂xi

+ ηi(t) , (7)

where ηi(t) is a zero mean noise term, with 〈ηi(t)ηj(t′)〉 = 2δijδ(t− t′) where the average 〈·〉 is with respect to
the realizations of the noise. The Lagrange multiplier µ(t) is chosen in such a way that the dynamics remains
on the hypersphere. In the large N -limit one finds µ(t) = 1− 2H2(t)− pHp(t) where the H2(t) is the 1st term
from (4) evaluated at x(t), and Hp(t) is the value of the 2nd term from (4).

The presented spiked matrix-tensor model falls into the particular class of spherical 2+p-spin glasses [34, 35]
for which the performance of the Langevin algorithm can be tracked exactly in the large-N limit via a set of
integro-partial differential equations [26, 27], beforehand dubbed CHSCK. We call this generalised version of
the CHSCK equations Langevin State Evolution (LSE) equations in analogy with the state evolution of AMP.

In order to write the LSE equations, we defined three dynamical correlation functions

CN (t, t′) ≡ 1
N

∑N
i=1 xi(t)xi(t

′) , (8)

CN (t) ≡ 1
N

∑N
i=1 xi(t)x

∗
i , (9)

RN (t, t′) ≡ 1
N

∑N
i=1 ∂xi(t)/∂hi(t

′)|hi=0 , (10)

where hi is a pointwise external field applied at time t′ to the Hamiltonian as H +
∑

i hixi. We note that the
correlation functions defined above depend on the realization of the thermal history (i.e. of the noise η(t))
and on the disorder (here the matrix Y and tensor T ). However, in the large-N limit they all concentrate
around their averages. We thus define C(t, t′) = limN→∞ EY,T 〈CN (t, t′)〉η and analogously for C(t) and R(t, t′).
Standard field theoretical methods [36] or dynamical cavity method arguments [37] can then be used to obtain
a closed set of integro-differential equations for the averaged dynamical correlation functions, describing the
average global evolution of the system under the Langevin algorithm. The resulting LSE equations are (see the
appendix Sec. C for a complete derivation)

∂

∂t
C(t, t′) = 2R(t′, t)− µ(t)C(t, t′) +Q′(C(t))C(t′) +

∫ t

0
dt′′R(t, t′′)Q′′(C(t, t′′))C(t′, t′′)+∫ t′

0
dt′′R(t′, t′′)Q′(C(t, t′′)) ,

∂

∂t
R(t, t′) = δ(t− t′)− µ(t)R(t, t′) +

∫ t

t′
dt′′R(t, t′′)Q′′(C(t, t′′))R(t′′, t′) ,

∂

∂t
C(t) = −µ(t)C(t) +Q′(C(t)) +

∫ t

0
dt′′R(t, t′′)C(t′′)Q(C(t, t′′)) ,

(11)

where we have defined Q(x) = x2/(2∆2) + xp/(p∆p). The Lagrange multiplier, µ(t), is fixed by the spherical
constraint, through the condition C(t, t) = 1 ∀t. Furthermore causality implies that R(t, t′) = 0 if t < t′. Finally
the Ito convention on the stochastic equation (7) gives ∀t limt′→t− R(t, t′) = 1.

5 Behavior of the Langevin algorithm

In order to assess the perfomances of the Langevin algorithm and compare it with AMP, we notice that the
correlation function C(t) is directly related to accuracy of the algorithm. We solve the differential equations
(11) numerically along the lines of [38, 39], for a detailed procedure see the appendix Sec. D, codes available at
[40]. In Fig. 2 we plot the correlation with the spike C(t) as a function of the running time t for p = 3, fixed
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Figure 2: Evolution of the correlation with the signal C(t) in the Langevin algorithm at fixed noise on the matrix
(∆2 = 0.7) and different noises on the tensor (∆p). As we approach the transition, estimated to ∆∗p ' 0.58, the

time required to jump to the solution diverges. Inset: the behavior of C(t) as a function of the iteration time
for the AMP algorithm for the same values of ∆p.

∆2 = 0.7 and several values of ∆p. In the inset of the plot we compare it to the same quantity obtained from the
state evolution of the AMP algorithm. For the Langevin algorithm in Fig. 2 we see a pattern that is striking.
One would expect that as the noise ∆p decreases the inference problem is getting easier, the correlation with
the signal is larger and is reached sooner in the iteration. This is, after all, exactly what we observe for the
AMP algorithm in the inset of Fig. 2. Also for the Langevin algorithm the plateau reached for large times t
becomes higher (better accuracy) as the noise ∆p is reduced. Furthermore the height of the plateau coincides
with that reached by AMP, thus testifying the algorithm reached equilibrium. However, contrary to AMP, the
relaxation time for the Langevin algorithm increases dramatically when diminishing ∆p (notice the log scale
on x-axes of Fig. 2, as compared to the linear scale of the inset). We will define τ as the time it takes for the
correlation to reach a value Cplateau/2. We then plot the value of this equilibration time in the insets of Fig. 3 as
a function of the noise ∆p or ∆2 having fixed ∆2 (upper panel) or ∆p (lower panel) respectively. The data are
clearly consistent with a divergence of τ at a certain finite value of ∆∗p and ∆∗2. We fit the data by a power law

fit τ(∆) =
∣∣∣ 1

∆ −
1

∆∗

∣∣∣−γ and obtain in the particular case of fixed ∆2 = 0.7 a fit with γ = 1.75 and ∆∗p = 0.58,

whereas for fixed ∆p = 1.0 we obtain γ = 1.42 and ∆∗2 = 0.86. However, we are not able to strictly prove that
the divergence of the relaxation time truly occurs, but at least our results imply that for ∆p < ∆∗p and ∆2 > ∆∗2
the Langevin algorithm (7) is not a practical solver for the spiked mixed matrix-tensor problem. We will call
the region ∆p < ∆∗p and ∆2 < 1 where the AMP algorithm works optimally without problems yet Langevin
algorithm does not, the Langevin-hard region. Both ∆∗p and ∆∗2 are then plotted in Fig. 1 with green points
(circles and stars) and consistently delimit the Langevin-hard region that extends considerably into the region
where the AMP algorithm works optimally in a small number or iterations. Our main conclusion is thus that
the Langevin algorithm designed to sample the posterior measure works efficiently in a considerably smaller
region of parameters than the AMP as quantified in Fig. 1.

Fig. 4 presents another way to depict the observed data, the correlation C(t) reached after time t is plotted
as a function of the tensor noise variance ∆p. The results of AMP are depicted with dotted lines and, as one
would expect, decrease monotonically as the noise ∆p increases. The equilibrium value (black dashed) is reached
within few dozens of iterations. On the contrary, the correlation reached by the Langevin algorithm after time
t is non-monotonic and close to zero for small values of noise ∆p signalling again a diverging relaxation time
when ∆p is decreased.
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Figure 3: Fit using a power law of the relaxation times of the Langevin algorithm, the point of divergence
marks the limit of the Langevin easy region. These fits have been performed both, for fixed ∆2 = 0.7 (blue
circles and yellow crosses) and for fixed ∆p = 1 (pink circles). The circles are obtained with numerical solution
of LSE that uses the dynamical grid while crosses are obtained using a fixed-grid (details in Sec. D.1).

6 Glassy nature of the Langevin-hard phase

We notice that for ∆p → 0 and any finite ∆2, and after a suitable rescaling of time and temperature, the
LSE equations coincide with the ones of the pure spiked-tensor (p = 3) at very low temperature and slightly
perturbed by additional terms. The glassy nature of the landscape of such model [21, 20] qualitatively justifies
why the Langevin algorithm remains trapped in one of the spurious minima, hence leading to a hard-Langevin
phase for ∆p → 0 and any finite ∆2 (in particular ∆2 < 1).

In order to obtain a quantitative estimate of the extent of the glassy region, we repeated the analysis of
[25] in the present model (details in the appendix Sec. E). In particular, we compute the entropy of metastable
states (finite temperature extensions of spurious minima), a.k.a. the complexity, using the one-step replica
symmetry breaking (1RSB) assumption for the structure of these states. We then analyze the stability of the
1RSB solution with respect to further levels of RSB and draw the region of paramaters ∆2,∆p for which states
of positive complexity exist and are stable. This happens to be below the blue dashed-dotted line depicted in
Fig. 1.

We observe that indeed in the regime where the 1RSB solution indicates the existence of an exponential
number of spurious metastable states, the Langevin algorithm does not work. Moreover, the curve delimiting
existence of the 1RSB stable states has the same trend as the boundary of the Langevin-hard regime. Yet the
Langevin-hard phase extends to larger values of ∆p, see Fig. 1. This quantitative discrepancy can be due to
either the fact that we did not take into account effects of full-step replica symmetry breaking [41] or rather
because the relation between the static replica calculation and the behavior of the Langevin algorithm is more
complex than anticipated in the literature [41]. We let this point for investigation in future work.

7 Better performance by annealing the landscape

A generic strategy to avoid metastable states is by simulated annealing [42] where the thermal noise is given
by 〈ηi(t)ηj(t′)〉 = 2δijT (t)δ(t − t′) and the temperature T (t) is time dependent and slowly decreased during
the dynamics starting from very large values towards the target temperature, T = 1 in our case. We tried this
algorithm and found that it does not succeed to recover the signal.

As discussed above, it is the tensor part of the Hamiltonian that induces glassiness. Therefore, we consider a
protocol in which contribution of the tensor is weak at initial stages of the dynamics and increases gradually into
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Figure 4: Correlation with the signal of AMP and Langevin at the kth iteration (at time t) for fixed ∆2 = 0.7.

its Bayes-optimal strength. Specifically, we focus on a time-dependent Hamiltonian, H2(Y ) + 1
Tp(t)Hp(T ), and

change dynamically Tp(t) according to Tp(t) = 1 + C
∆p

e−t/τann , C being a constant. The target value of Tp(t→
∞) = 1 is the Bayes-optimal one and τann is the characteristic timescale of the annealing procedure. In Fig. 5
we show that if τann is sufficiently large, the Langevin hard phase is destroyed and this procedure approaches
the performances as AMP. More specifically, before the Hp(T ) component becomes relevant, i.e. for times that
are τann / log C

∆p
, the modified Langevin algorithm tends to the equilibrium solution of the pure spiked matrix

model. The optimal AMP reconstruction is subsequently allowed when the tensor component gains its full
weight, which occurs later for slower annealing. Conversely if τann is too small, the Langevin algorithm does
not have the time for escaping the glassy region of the tensor component before its own contribution to the
dynamics becomes relevant and irremediably hampers the final reconstruction of the signal.

It is interesting to underline that the above finding is somewhat paradoxical from the point of view of
Bayesian inference. In the present setting we know perfectly the model that generated the data and all its
parameters, yet we see that for the Langevin algorithm it is computationally advantageous to mismatch the
parameter Tp in order to reach faster convergence to equilibrium. This is particularly striking given that for
AMP it has been proven in [7] that mismatching the parameters can never improve the performance.

8 Perspectives

In this work we have investigated the performances of the Langevin algorithm considered as a tool to sample
the posterior measure in the spiked matrix-tensor model. We have shown that the Langevin algorithm fails to
find the signal in part of the AMP-easy region. Our analysis is based on the Langevin State Evolution equations
that describe the evolution of the algorithm in the large size limit.

In this work we managed to find the landscape-annealing protocol under which the Langevin algorithm
is able to match the performance of AMP by relying on knowledge about generative model. It would be an
interesting direction for future work to investigate whether the performance of the Langevin algorithm can be
improved with some model-blind manner.

While we studied here the spiked matrix-tensor model, we expect that our findings are universal because
they are due to the glassiness of the hard phase and therefore should apply to any local sampling dynamics,
e.g. to Monte Carlo Markov chains. An interesting extension of this work would investigate algorithms closer
to stochastic gradient descent and models closer to current neural network architectures.
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Figure 5: Behaviour of the correlation with the signal in Langevin algorithm where the tensor-related temper-
ature Tp is annealed as Tp(t) = 1 + C

∆p
e−t/τann with C = 100 in the Langevin-hard regime with ∆2 = 0.70,

∆p = 0.10. We show the behavior for several rates τ (solid lines) and compare to the quenched Langevin
algorithm (dashed line close to zero), and to the value reached by AMP for the full model (upper dotted line)
and for the pure matrix model (lower dotted line). We see that unless the annealing is very fast, it reaches the
AMP value. When the annealing is very slow it takes time to reach the AMP value.
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optimal errors and optimality of message-passing in generalized linear models. in COLT’18, arXiv preprint
arXiv:1708.03395, 2017.

10

http://arxiv.org/abs/1708.03395


[9] Jean Barbier, Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, and Lenka Zdeborová.
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[10] Thibault Lesieur, Léo Miolane, Marc Lelarge, Florent Krzakala, and Lenka Zdeborová. Statistical and
computational phase transitions in spiked tensor estimation. In Information Theory (ISIT), 2017 IEEE
International Symposium on, pages 511–515. IEEE, 2017.

[11] Benjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krzakala, Nicolas Macris, and Lenka Zdeborová.
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Appendix

A Definition of the spiked matrix-tensor model

We consider a teacher-student setting in which the teacher constructs a matrix and a tensor from a randomly
sampled signal and the student is asked to recover the signal from the observation of the matrix and tensor
provided by the teacher [6].

The signal, x∗ is an N -dimensional vector whose entries are real i.i.d. random variables sampled from the
normal distribution (i.e. the prior is PX ∼ N (0, 1)). The teacher generates from the signal a symmetric matrix
and a symmetric tensor of order p. Those two objects are then transmitted through two noisy channels with
variances ∆2 and ∆p, so that at the end one has two noisy observations given by

Yij =
x∗ix

∗
j√
N

+ ξij , (12)

Ti1,...,ip =

√
(p− 1)!

N (p−1)/2
x∗i1 . . . x

∗
ip + ξi1,...,ip , (13)

where, for i < j and i1 < · · · < ip, ξij and ξi1,...,ip are i.i.d. random variables distributed according to ξij ∼
N (0,∆2) and ξi1,...,ip ∼ N (0,∆p). The ξij and ξi1,...,ip are symmetric random matrix and tensor, respectively.
Given Yij and Ti1,...,ip the inference task is to reconstruct the signal x∗.

In order to solve this problem we consider the Bayesian approach. This starts from the assumption that both
the matrix and tensor have been produced from a process of the same kind of the one described by Eq. (12-13).
Furthermore we assume to know the statistical properties of the channel, namely the two variances ∆2 and ∆p,
and the prior on x. Given this, the posterior probability distribution over the signal is obtained through the
Bayes formula

P (X|Y, T ) =
P (Y, T |X)P (X)

P (Y, T )
, (14)

where

P (Y, T |X) =
∏
i<j

PY

(
Yij

∣∣∣∣∣xixj√
N

) ∏
i1<···<ip

PT

(
Ti1...ip

∣∣∣∣∣
√

(p− 1)!

N (p−1)/2
xi1 . . . xip

)
=

∝
∏
i<j

e
− 1

2∆2

(
Yij−

xixj√
N

)2 ∏
i1<···<ip

e
− 1

2∆p

(
Ti1...ip−

√
(p−1)!

N(p−1)/2
xi1 ...xip

)2

.

(15)

Therefore we have

P (X|Y, T ) =
1

Z(Y, T )

∏
i

e−
1
2
x2
i

∏
i<j

e
− 1

2∆2

(
Yij−

xixj√
N

)2 ∏
i1<···<ip

e
− 1

2∆p

(
Ti1...ip−

√
(p−1)!

N(p−1)/2
xi1 ...xip

)2

, (16)

where Z(Y, T ) is a normalization constant.
Plugging Eqs. (12-13) into Eq. (16) allows to rewrite the posterior measure in the form of a Boltzmann

distribution of the mixed 2 + p-spin Hamiltonian [34, 35, 43]

H = − 1

∆2

√
N

∑
i<j

ξijxixj −
√

(p− 1)!

∆pN
p−1

2

∑
i1<···<ip

ξi1...ipxi1 . . . xip −
N

2∆2

 1

N

∑
i

xix
∗
i

2

+

− N

p∆p

 1

N

∑
i

xix
∗
i

p

− 1

2

N∑
i=1

x2
i + const.

(17)
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so that

P (X|Y, T ) =
1

Z̃(Y, T )
e−H . (18)

In the following we will refer to Z̃(Y, T ) as the partition function. We note here that in the large N limit, using
a Gaussian prior on the variables xi is equivalent to consider a flat measure over the N -dimensional hypersphere∑N

i=1 x
2
i = N . This choice will be used when we will describe the Langevin algorithm and in this case the last

term in the Hamiltonian will become an irrelevant constant.

B Approximate Message Passing, state evolution and phase diagrams

Approximate Message Passing (AMP) is a powerful iterative algorithms to compute the local magnetizations
〈xi〉 given the observed matrix and tensor. It is rooted in the cavity method of statistical physics of disordered
systems [32, 37] and it has been recently developed in the context of statistical inference [12], where in the Bayes
optimal case it has been conjectured to be optimal among all local iterative algorithms. Among the properties
that make AMP extremely useful is the fact that its performances can be analyzed in the thermodynamic limit.
Indeed in such limit, its dynamical evolution is described by the so called State Evolution (SE) equations [12].
In this section we derive the AMP equations and their SE description for the spiked matrix-tensor model and
solve them to obtain the phase diagram of the model as a function of the variances ∆2 and ∆p of the two noisy
channels.

B.1 Approximate Message Passing and Bethe free entropy

AMP can be obtained as a relaxed Gaussian closure of the Belief Propagation (BP) algorithm. The derivation
that we present follows the same lines of [10, 30]. The posterior probability can be represented as a factor graph
where all the variables are represented by circles and are linked to squares representing the interactions [44].

x1x2xN PXPXPX

PYPYPY

PT

. . .

m̃
1
2
→

1
(x

2
)m

2→
12 (x

2 )
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t 2
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(x
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Figure 6: The factor graph representation of the posterior measure of the matrix-tensor factorization model.
The variable nodes represented with white circles are the components of the signal while black squares are
factor nodes that denote interactions between the variable nodes that appear in the interaction terms of the
Boltzmann distribution in Eqs. (17-18). There are three types of factor nodes: PX is the prior that depends on
a single variable, PY that is the probability of observing a matrix element Yij given the values of the variables
xi and xj , and finally PT that is the probability of observing a tensor element Ti1,...,ip . The posterior, apart
from the normalization factor, is simply given by the product of all the factor nodes.

This representation is very convenient to write down the BP equations. In the BP algorithm we iteratively
update until convergence a set of variables, which are beliefs of the (cavity) magnetization of the nodes. The
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intuitive underlying reasoning behind how BP works is the following. Given the current state of the variable
nodes, take a factor node and exclude one node among its neighbors. The remaining neighbors through the
factor node express a belief on the state of the excluded node. This belief is mathematically described by a
probability distribution called message, m̃t

ij→i(xi) and t̃tii2...ip→i(xi) depending on which factor node is selected.
At the same time, another belief on the state of the excluded node is given by the rest of the network but the
factor node previously taken into account, mi→ij(xi) and ti→ii2...ip(xi) respectively. All these messages travel
in the factor graph carrying partial information on the real magnetization of the single nodes, and they are
iterated until convergence1. The iterative scheme is described by the following equations

m̃t
ij→i(xi) ∝

∫
dxjm

t
j→ij(xj)PY

(
Yij

∣∣∣∣∣xixj√
N

)
, (19)

mt+1
i→ij(xi) ∝ PX(xi)

∏
l 6=j

m̃t
il→i(xi)

∏
i2<···<ip

t̃tii2...ip→i(xi), (20)

t̃tii2...ip→i(xi) ∝
∫ ∏

l=2...p

(
dxlt

t
il→ii2...ip(xl)

)
PT

(
Tii2...ip

∣∣∣∣∣
√

(p− 1)!

N (p−1)/2
xixi2 . . . xip

)
, (21)

tt+1
i→ii2...ip(xi) ∝ PX(xi)

∏
l

m̃t
il→i(xi)

∏
k2<···<kp 6=i2...ip

t̃tik2...kp→i(xi) (22)

and we have omitted the normalization constants that guarantee that the messages are probability distributions.
When the messages have converged to a fixed point, the estimation of the local magnetizations can be obtained
through the computation of the real marginal probability distribution of the variables given by

µi(xi) =

∫ ∏
j( 6=i)

dxj

P (X|Y, T ) = PX(xi)
∏
l

m̃t
il→i(xi)

∏
i2<···<ip

t̃tii2...ip→i(xi) . (23)

We note that the computational cost to produce an iteration of BP scales as O(Np). Furthermore Eqs. (19
-22) are iterative equations for continuous functions and therefore are extremely hard to solve when dealing
with continuous variables. The advantage of AMP is to reduce drastically the computational complexity of
the algorithm by closing the equations on a Gaussian ansatz for the messages. This is justified in the present
context since the factor graph is fully connected and therefore each iteration step of the algorithm involves sums
of a large number of independent random variables that give rise to Gaussian distributions. Gaussian random
variables are characterized by their mean and covariance that are readily obtained for N � 1 expanding the

factor nodes for small ωij = xixj/
√
N and ωi1...ip =

√
(p− 1)!x1 . . . xp/N

p−1
2 .

Once the BP equations are relaxed on Gaussian messages, the final step to obtain the AMP algorithm is
the so-called TAPyfication procedure [30, 32], which exploits the fact that the procedure of removing one node
or one factor produces only a weak perturbation to the real marginals and therefore can be described in terms
of the real marginals of the variable nodes themselves. By applying this scheme we obtain the AMP equations,

which are described by a set of auxiliary variables A(k) and B
(k)
i and by the mean 〈xi〉 and variance σi = 〈x2

i 〉
of the marginals of variable nodes. The AMP iterative equations are

B
(2),t
i =

1

∆2

√
N

∑
k

Ykix̂
t
k −

1

∆2

 1

N

∑
k

σtk

 x̂t−1
i ; (24)

A(2),t =
1

∆2N

∑
k

(
x̂tk

)2
; (25)

B
(p),t
i =

√
(p− 1)!

∆pN (p−1)/2

∑
k2...kp

Tik2...kp

(
x̂tk2

. . . x̂tkp

)
− p− 1

∆p


 1

N

∑
k

σtk

  1

N

∑
k

(
x̂tk

)2

p−2
 x̂t−1

i ; (26)

1Note that the pointwise convergence of the algorithm depends on the situations.
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A(p),t =
1

∆p

 1

N

∑
k

(
x̂tk

)2

p−1

; (27)

x̂t+1
i = f(A(2) +A(p), B

(2)
i +B

(p)
i ) ; (28)

σt+1
i =

∂

∂B
f(A,B)

∣∣∣∣
A=A(2)+A(p),B=B

(2)
i +B

(p)
i

, (29)

f(A,B) ≡
∫
dx

1

Z(A,B)
xPX(x)eBx−

1
2
Ax2

=
B

1 +A
. (30)

It can be shown that these equations can be obtained as saddle point equations from the so called Bethe
free entropy defined as ΦBethe = logZBethe(Y, T )/N where ZBethe is the Bethe approximation to the partition
function which is defined as the normalization of the posterior measure. The expression of the Bethe free
entropy per variable can be computed in a standard way (see [44]) and it is given by

ΦBethe =
1

N

∑
i

logZi +
∑
i≤j

logZij +
∑

i1≤···≤ip
logZi1...ip −

∑
i(ij)

logZi,ij −
∑

i(ii2...ip)

logZi(ii2...ip)

 , (31)

where

Zi =

∫
dxiPX(xi)

∏
j

m̃ij→i(xi)
∏

(i2...ip)

t̃ii2...ip→i(xi),

Zij =

∫ ∏
j(6=i)

[
dxjmj→ij(xj)

]∏
i<j

e
− 1

2∆2

(
Yij−

xixj√
N

)2

,

Zi1...ip =

∫ p∏
l=1

[
dxiltil→i1...ip(xil)

] ∏
i1<···<ip

e
− 1

2∆p

(
Ti1...ip−

√
(p−1)!

N(p−1)/2
xi1 ...xip

)2

,

Zi(ij) =

∫
dximi→ij(x)m̃ij→i(xi),

Zi(ii2...ip) =

∫
dxiti→ii2...ip(x)t̃ii2...ip→i(xi)

are a set of normalization factors. Using the Gaussian approximation for the messages and employing the same
TAPyification procedure used to get the AMP equations we obtain the Bethe free entropy density as

ΦBethe =
1

N

∑
i

logZ(A(p) +A(2), B
(p)
i +B

(2)
i ) +

p− 1

p

1

N

∑
i

[
−B(p)

i x̂i +A
(p)
i

x̂2
i + σi

2

]
+

+
p− 1

2p∆p

(∑
i x̂

2
i

N

)p−1(∑
i σi
N

)
+

1

2N

∑
i

[
−B(2)

i x̂i +A
(2)
i

x̂2
i + σi

2

]
+

1

4∆2

(∑
i x̂

2
i

N

)(∑
i σi
N

)
,

(32)

where we used the variables defined in eqs. (24-27) for sake of compactness and Z(A,B) is defined as

Z(A,B) =

∫
dxPX(x)eBx−

Ax2

2 =
1√
A+ 1

e
B2

2(A+1) . (33)

B.2 Averaged free entropy and its proof

Eq. (32) represents the Bethe free entropy for a single realization of the factor nodes in the large size limit.
Here we wish to discuss the actual, exact, value of this free entropy, that is:

fN (Y, T ) =
logZ(Y, T )

N
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This is a random variable, since it depends a priori on the planted signal and the noise in the tensor and
matrices. However one expects that, since free entropy is an intensive quantity, we expect from the statistical
physics intuition that it should be self averaging and concentrate around its mean value in the large N limit
[37]. In fact, this is easily proven. First, since the spherical model has a rotational symmetry, one may assume
the planted assignment could be any vector on the hyper-sphere, and we might as well suppose it is the uniform
one x∗i = 1∀ i: the true source of fluctuation comes from the noise Y and T . These can be controlled by noticing
that the free entropy is a Lipshitz function of the Gaussian random variable Y and T . Indeed:

∂YijfN (Y, T ) =
1

∆2N
√
N
〈xixj〉

so that the free energy fN is Lipschitz with respect to Y with constant

L =
1

∆2N
√
N

√∑
i<j

〈xixj〉2 ≤
1

∆2N
√
N

√
1

2

∑
i,j

〈xixj〉2 =
1

∆2N
√
N

√
1

2

∑
i,j

〈xix̃ixj x̃j〉

where x̃ represent a copy (or replica) of the system. In this case

L ≤ 1

∆2N
√
N

√
N2〈

(∑
i xix̃i
N

)2

〉 =

√
〈q2〉

∆2

√
N

where q is the overlap between the two replica x and x̃, that is bounded by one on the sphere, so L ≤ 1
∆2

√
N

.

Therefore, by Gaussian concentration of Lipschitz functions (the Tsirelson-Ibragimov-Sudakov inequality [45]),
we have for some constant K:

Pr
[
|fn − EY fn| ≥ t

]
≤ 2e−Nt

2/K (34)

and it particular any fluctuation larger than O(1/
√
N) is (exponentially) rare. A similar computaton shows

that fN also concentrates with respect to the tensor T . This shows that in the large size limit, we can consider
the averaged free entropy:

FN ≡
1

N
E [logZN ]

With our (non-rigorous) statistical physics tools, this can be obtained by averaging Eq. (32) over the disorder,
see for instance [30], and this yields an expression for the free energy called the replica symmetric (RS) formula:

ΦRS = lim
N→∞

EY,T
logZ(Y, T )

N
. (35)

We now state precisely the form of ΦRS and prove the validity of Eq. (35). The RS free entropy for any prior
distribution PX reads as

ΦRS ≡ maxmΦ̃RS(m) where

Φ̃RS(m) = EW,x∗

log

Z
 m

∆2
+
mp−1

∆p
,

(
m

∆2
+
mp−1

∆p

)
x∗ +

√
m

∆2
+
mp−1

∆p
W



− 1

4∆2
m2 − p− 1

2p∆p
mp ,

(36)

where W is a Gaussian random variable of zero mean and unit variance and x∗ is a random variables taken
from the prior PX . We remind that the function Z(A,B) is defined via Eq. (33).

For Gaussian prior PX , which is the one of interest here, we obtain

Φ̃RS(m) = −1

2
log

(
m

∆2
+
mp−1

∆p
+ 1

)
+

1

2

(
m

∆2
+
mp−1

∆p

)
− 1

4∆2
m2 − p− 1

2p∆p
mp . (37)

19



The expression given in the main text is slightly different but can be obtained as follow. First notice that the
extremization condition for Φ̃RS(m) reads

m = 1− 1

1 + m
∆2

+ mp−1

∆p

(38)

and by plugging this expression in Eq. (37) we recover the more compact expression ΦRS(m) showed in the
main text:

ΦRS(m) =
1

2
log (1−m) +

m

2
+

m2

4∆2
+

mp

2p∆p
. (39)

The two expressions ΦRS(m) and Φ̃RS(m) are thus equal for each value of m that satisfy Eq. (38). The parameter
m can be interpreted as the average correlation between the true and the estimated signal

m =
1

N

N∑
i=1

x∗i x̂i . (40)

The average minimal mean squared error (MMSE) can be obtained from the maximizer m of the average Bethe
free entropy as

MMSE ≡ 1

N

N∑
i=1

(x∗i − x̂i)2 = 1−m∗ , where m∗ = argmaxΦ̃RS(m) . (41)

where the overbar stands for the average over the signal x∗ and the noise of the two Gaussian channels.
The validity of Eq. (36) can be proven rigorously for every prior having a bounded second moment. The

proof we shall present is a straightforward generalization of the one presented in [10] for the pure tensor case, and
in [31] for the matrix case, and it is based on two main ingredients. The first one is the Guerra interpolation
method applied on the Nishimori line [46, 47, 31], in which we construct an interpolating Hamiltonian that
depends on a parameter t ∈ [0; 1] that is used to move from the original Hamiltonian of Eq. (17), to the one
corresponding to a scalar denoising problem whose free entropy is given by the first term in Eq. (36). The
second ingredient is the Aizenman-Sims-Starr method [48] which is the mathematical version of the cavity
method (note that other techniques could also be employed to obtain the same results, see [9, 49, 50, 51]). The
theorem we want to prove is:

Theorem 1 (Replica-Symmetric formula for the free energy). Let PX be a probability distribution over R, with
finite second moment ΣX . Then, for all ∆2 > 0 and ∆p > 0

FN ≡
1

N
E [logZN ] −−−−→

N→∞
sup
m≥0

Φ̃RS(m) ≡ ΦRS(∆2,∆p) . (42)

For almost every ∆2 > 0 and ∆p > 0, Φ̃RS admits a unique maximizer m over R+ × R+ and

T−MMSEN −−−−→
N→∞

Σp
X − (m∗)p ,

M−MMSEN −−−−→
N→∞

Σ2
X − (m∗)2 .

Here, we have defined the tensor-MMSE T-MMSEN by the error in reconstructing the tensor:

T-MMSEN (∆2,∆p) = inf
θ̂

 p!

Np

∑
i1<···<ip

(
x0
i1 . . . x

0
ip − θ̂(Y )i1...ip

)2

 ,

and the matrix-MMSE M-MMSEN by the error in reconstructing the matrix:

M-MMSEN (∆2,∆p) = inf
θ̂

 2

N2

∑
i<j

(
x0
ix

0
j − θ̂(Y )i,j

)2

 ,
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where in both cases the infimum is taken over all measurable functions θ̂ of the observations Y .
The result concerning the MMSE is a simple application of the I-MMSE theorem [52], that relates the

derivative of the free energy with respect to the noise variances and the MMSE. The details of the arguments
are the same than in the matrix (p = 2) case ([31], corollary 17) and the tensor one ([10], theorem 2). Indeed,
as discussed in [31, 10], these M-MMSE and T-MMSE results implies the vector MMSE result of Eq. (41) when
p is odd, and thus in particular for the p = 3 case discussed in the main text.

Sketch of proof In this section we give a detailed sketch of the proof theorem 1. Following the techniques
used in many recent works [46, 47, 9, 31, 10, 49, 50, 8], we shall make few technical remarks:

• We will consider only priors with bounded support, supp(PX) = S ⊂ [−K;K]. This allows to switch
integrals and derivatives without worries. This condition can then be relaxed to unbounded distributions
with bounded second moment using the same techniques as the ones that we are going to present, and
the proof is therefore valid in this case. This is detailed for instance in [31] sec. 6.2.2.

• Another key ingredient is the introduction of a small perturbation in the model that takes the form of
a small amount of side information. This kind of techniques are frequently used in statistical physics,
where a small “magnetic field” forces the Gibbs measure to be in a single pure state [53]. It has also
been used in the context of coding theory [54] for the same reason. In the context of Bayesian inference,
we follow the generic scheme proposed by Montanari in [55] (see also [56]) and add a small additional
source of information that allows the system to be in a single pure state so that the overlap concentrates

on a single value. This source depends on Bernoulli random variables Li
i.i.d.∼ Bern(ε), i ∈ [N ]; if Li = 1,

the channel, call it A, transmits the correct information. We can then consider the posterior of this new
problem, P (X|A, Y, T ), and focus on the associated free energy density FN,ε defined as the expected value
of the average of the logarithm of normalization constant divided by the number of spins. Then we can

immediately prove that for all N ≥ 1 and ε, ε′ ∈ [0; 1] it follows:
∣∣FN,ε − FN,ε′∣∣ ≤ (K2p

∆p
+ K4

∆2

)
|ε−ε′|. This

allows (see for instance [10]) to obtain the concentration of the posterior distribution around the replica
parameter (q = 1

N 〈x
(1) · x(2)〉)

E

〈(
x(1) · x(2)

N
− q

)2〉
N→∞
−→ 0 ; (43)

E

〈(
x∗ · x
N
− q
)2
〉

N→∞
−→ 0 , (44)

where x, x(1), x(2) are sampled from the posterior distribution and the averages 〈·〉 and E[·] are respectively
the average over the posterior measure and the remaining random variables.

• Finally, a fundamental property of inference problems which is a direct consequence of the Bayes theorem2,
is the so-called Nishimori symmetry [57, 6]: Let (X,Y ) be a couple of random variables on a polish space.
Let k ≥ 1 and let X(1), . . . , X(k) be k i.i.d. samples (given Y ) from the distribution P (X = · |Y ),
independently of every other random variables. Let us denote 〈·〉 the expectation with respect to P (X =
· |Y ) and E the expectation with respect to (X,Y ). Then, for all continuous bounded function f

E〈f(Y,X(1), . . . , X(k))〉 = E〈f(Y,X(1), . . . , X(k−1), X)〉 .

While the consequences of this identity are important, the proof is rather simple: It is equivalent to
sample the couple (X,Y ) according to its joint distribution or to sample first Y according to its marginal
distribution and then to sample X conditionally to Y from its conditional distribution P (X = · |Y ). Thus
the (k + 1)-tuple (Y,X(1), . . . , X(k)) is equal in law to (Y,X(1), . . . , X(k−1), X).

2And the fact that we are in the Bayes optimal setting where we know the statistical properties of the signal, namely the prior,
and the statistical properties of the channels, namely ∆2 and ∆p.
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The proof of Theorem 1 is obtained by using the Guerra interpolation technique to prove a lower bound for the
free entropy and then by applying the Aizenman-Sims-Star scheme to get a matching upper bound.

Lower bound: Guerra interpolation We now move to the core of the proof. The first part combines the
Guerra interpolation method [58] developed for matrices in [47] and tensors in [10].

Consider the interpolating Hamiltonian depending of t ∈ [0, 1]

HN,t = −
∑
i<j

[ √
t

∆2

√
N
Yijxixj +

t

2∆2N
(xixj)

2

]
+

−
∑

i1<···<ip

√t(p− 1)!

∆pN
p−1

2

Ti1...ipxi1 . . . xip +
t(p− 1)!

2∆pNp−1
(xi1 . . . xip)

2

+

−
∑
j

√1− t

√
mp−1

∆p
+

m

∆2
Wjxj + (1− t)

(
mp−1

∆p
+

m

∆2

)
x∗jxj +

1− t
2

(
mp−1

∆p
+

m

∆2

)
x2
j

 ,
(45)

where we have for t = 1 the regular Hamiltonian and for t = 0 the first term of Eq. (36) where Wj are i.i.d.
canonical Gaussian variables. More importantly, for all t ∈ [0, 1] we can show that the Hamiltonian above can
be seen as the one emerging for an appropriate inference problem, so that the Nishimori property is kept valid
for generic t ∈ [0, 1] [47].

Given the interpolating Hamiltonian we can write the corresponding Gibbs measure,

P (x|W,Y, T ) =
1

ZN,t
PX(x)eHN,t(x) , (46)

and the interpolating free entropy

ψN (t)
.
=

1

N
E
[
logZN,t

]
, (47)

whose boundaries are ψN (1) = 1
NFN (our target) and ψN (0) = 1

N Φ̃RS + 1
4∆2

m2 + p−1
2p∆p

mp. We then use the
fundamental theorem of calculus to write

FN = ψN (1) = ψN (0) +
1

N
E
∫ 1

0

(
−
∂ logZN,t

∂t

)
dt︸ ︷︷ ︸

.
=R

. (48)

We work with the second term and use Stein’s lemma which, given a well behaving function g, provides the
useful relation for a canonical Gaussian variable Z: EZ [Zg(Z)] = EZ [g′(Z)]. This yields

R = −E
∫ 1

0

[
1

ZN,t

∫
dxN

∂HN,t(x)

∂t
PX(x)eHN,t(x)

]
dt = −E

∫ 1

0

〈
∂HN,t(x)

∂t

〉
dt

= −E
∫ 1

0

〈∑
i<j

1

∆2N
(x∗ixix

∗
jxj) +

∑
i1<···<ip

(p− 1)!

∆2Np−1
(x∗i1xi1 . . . x

∗
ipxip)−

∑
i

(
m

2∆2
+
mp−1

2∆p

)
x∗ixi

〉
dt

= E
∫ 1

0

 1

4∆2

〈(
x · x∗

N

)2

− 2m

(
x · x∗

N

)〉
+

1

2p∆p

〈(
x · x∗

N

)p
− pmp−1

(
x · x∗

N

)〉 dt .
where we have used the Nishimori property to replace terms such as 〈x〉2 by 〈xx∗〉. At this point, we can write

R = E
∫ 1

0

 1

4∆2

〈(
x · x∗

N

)2

− 2m

(
x · x∗

N

)〉 dt+ E
∫ 1

0

 1

2p∆p

〈(
x · x∗

N

)p
− pmp−1

(
x · x∗

N

)〉 dt
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= − m2

4∆2
+

1

4∆2
E
∫ 1

0

1

4∆2

〈(
x · x∗

N
−m

)2
〉
dt+

1

2p∆p
E
∫ 1

0

〈(
x · x∗

N

)p
− pmp−1

(
x · x∗

N

)〉
dt .

(49)

The first integral is clearly positive. The second one, however, seems harder to estimate. We may, however,
use a simple convexity argument on the function f(x) = xk. Indeed observe that ∀ a, b ≥ 0 and p ≥ 1:
ap − pbp−1a ≥ (1− p)bp. We would like to use this property but there is the subtlety that we need x · x∗ to be
non-negative. To bypass this problem we can add again a small perturbation that forces x · x∗ to concentrate
around a non-negative value, without affecting the “interpolating free entropy” ψN (t) in the N → ∞ limit.
This is, again, the argument used in [10] and originally in [46]. In this way we can write

R ≥ − m2

4∆2
+ E

∫ 1

0

 1

4∆2

〈(
x · x∗

N

)2

− 2m

(
x · x∗

N

)〉 dt+
(1− p)mp

4∆2

≥ − m2

4∆2
− (p− 1)mp

4∆2
. (50)

This concludes the proof and yields the lower bound:

FN ≥ ψN (0)− 1

4∆2
m2 − p− 1

2p∆p
mp =

1

N
Φ̃RS(m) , (51)

so that for all m ≥ 0

lim inf
N→∞

FN = lim inf
N→∞

ψN (1) = lim inf
N→∞

[
ψN (0) +

∫ 1

0
ψ′N (t)dt

]
≥ Φ̃RS(m) .

Upper bound: Aizenman-Sims-Starr scheme. The matching upper bound is obtained using the Aizenman-
Sims-Starr scheme [48] . This is a particularly effective tool that has been already used for these problems, see
for example [31, 56, 10]. The method goes as follows. Consider the original system with N variables, HN and
add an new variable x0 so that we get an Hamiltonian HN+1. Define the Gibbs measures of the two systems,
the first with N variables and the second with N + 1 variables, and consider the two relative free entropies.
Call AN = E [logZN+1]− E [logZN ] their difference. First, we notice that we have lim supN FN ≤ lim supN AN
because

FN = E
1

N
logZN =

1

N
E log

(
ZN
ZN−1

ZN−1

ZN−2
. . .

Z1

Z0

)
=

1

N

∑
i

Ai ≤ sup
i
Ai .

Moreover, we can separate the contribution of the additional variable in the Hamiltonian HN+1 so that HN+1 =
H̃N + x0z(x) + x2

0s(x), with x = (x1, . . . , xN ), and

z(x) =
1√

∆2(N + 1)

N∑
i=1

Z0ixi +

√
(p− 1)!√

∆p(N + 1)(p−1)/2

∑
1≤i1<···<ip−1≤N

Z0i1...ip−1xi1 . . . xip−1+

+
1

∆2(N + 1)

N∑
i=1

x∗0x
∗
ixi +

(p− 1)!

∆p(N + 1)p−1

∑
1≤i1<···<ip−1≤N

x∗0x
∗
i1xi1 . . . x

∗
ip−1

xip−1

s(x) = − 1

2∆2(N + 1)

N∑
i=1

x2
i −

(p− 1)!

2∆p(N + 1)p−1

∑
1≤i1<···<ip−1≤N

(xi1 . . . xip−1)2

and HN+1 is the same expression as Eq. (17) where the N in the denominators are replaced by N + 1. We
rewrite also HN (x) as a perturbation of H̃N : HN (x) = H̃N (x) + y(x) +O(1) with
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y(x) =
1√

∆2N

∑
i<j

Vijxixj +
√
p− 1

√
(p− 1)!√
∆pNp/2

∑
i1<···<ip

Vi1...ipxi1 . . . xip+

+
1

N2

∑
i<j

[
x∗ixix

∗
jxj −

1

2
(xixj)

2

]
+ (p− 1)!

p− 1

Np

∑
i1<···<ip

[
x∗i1xi1 . . . x

∗
ipxip −

1

2
(xi1 . . . xip)

2

]
,

where the Zs and the V s are standard Gaussian random variables.
Finally we can observe the partition functions ZN can be interpreted as ensemble averages with respect to

H̃N . Thus AN = E log
〈∫

PX(x0)ex0z(x)+x2
0s(x)dx0

〉
H̃N
− E log

〈
ey(x)

〉
H̃N

. Now, using the Nishimori property

and the concentration of the overlap around a non-negative value —that we denote m(Y, T ) since it depends
explicitly on the disorder— it yields (see [31], see section 4.3 for details) eq. (36) in the thermodynamic limit,
with m(Y, T ) instead of m. From this, we can now obtain the upper bound that concludes the proof:

lim sup
N

FN ≤ lim sup
N

AN ≤ lim sup
N

EY,T Φ̃RS[m(Y, T )] ≤ lim sup
N

sup
m

ΦRS(m) ≤ Φ̃RS . (52)

B.3 State evolution of AMP and its analysis
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Figure 7: On the left : Phase diagram of the spiked matrix-tensor model for p = 3. The phase diagram
identifies four regions: easy (green), impossible (red), and hard (orange). The lines correspond to different
phase transitions namely the stability threshold (dashed black), the information theoretic threshold (solid red),
the algorithmic threshold (solid cyan), and the dynamical threshold (dotted orange). The vertical cuts represent
the section along which the magnetization is plotted in Fig. 9. On the right : Phase diagram of the spiked matrix-
tensor model for p = 4. The main difference with respect to case p = 3, is that the algorithmic spinodal (solid
cyan) is strictly above the stability threshold (dashed black). The hybrid-hard phase appears between these two
lines (combined green and orange color). The vertical cuts represent the section along which the magnetization
is plotted in Fig. 10.

The dynamical evolution of the AMP algorithm in the large N limit is described by the so-called State
Evolution (SE) equations. The derivation of these equations can be straightforwardly done using the same
techniques developed in [30]. They can be written in terms of two dynamical order parameters namely mt =∑

i x̂
t
ix
∗
i /N , which encodes for the alignment of the current estimation x̂ti of the components of the signal with

the signal itself at time t and qt =
∑

i x̂
t
ix̂
t
i/N . Finally, using the Nishimori symmetry it can be shown that

mt = qt at all times3, see e.g. [6], and therefore the evolution of the algorithm is characterized by a single order

3Note that AMP satisfies the Nishimori property at all times while this condition is violated on the run by the Langevin dynamics.
In that case the Nishimori symmetry is recovered only when equilibrium is reached and therefore it is violated when the Langevin
algorithm gets trapped in the glass phase, see below.
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Figure 8: On the left : Phase diagram of the spiked matrix-tensor model for p = 5. On the right : Phase diagram
of the spiked matrix-tensor model for p = 10. In both cases we observe qualitatively the same scenario found
in the right panel of Fig. 7.

parameter mt whose dynamical evolution is given by

mt+1 = 1− 1

1 + mt

∆2
+ (mt)p−1

∆p

. (53)

If we initialize the configuration of the estimator x̂ at random, the initial value of m will be equal to zero on
average. However finite size fluctuations will produce by chance a small bias towards the signal and therefore it
is more meaningful to consider the initialization to be mt=0 = ε being ε an arbitrarily small positive number. We
will call mAMP the fixed point of Eq. (53) reached from this infinitesimal initialization. The mean-square-error
(MSE) reached by AMP after convergence is then given by MSEAMP = 1−mAMP.

We underline that Eq. (53) can be proven rigorously following [33, 17]. Finally we note that the fixed point
of the SE satisfies the very same Eq. (38) that gives the replica free entropy. In the rest of this section we will
study the fixed points of Eq. (53). This will allow too determine the phase diagram of the spiked matrix-tensor
model.

We start by observing that m = 0 is a fixed point of Eq. (53). However in order to understand wether it
is a possible attractor of the AMP dynamics we need to understand its local stability. This can be obtained
perturbatively by expanding Eq. (53) around m = 0

mt+1 =
mt

∆2
+

(
mt

∆2

)2

− (mt)p−1

∆p
+O

(
(mt)3

)
. (54)

It is clear that the non-informative fixed point m = 0 is stable as long as ∆2 > 1. We will call ∆2 = 1 the
stability threshold.

When p = 3 the SE equations are particularly simple and the fixed points are written explicitly as

m0 = 0 ; m± =
1

2

1− ∆3

∆2
±

√(
1 +

∆3

∆2

)2

− 4∆3

 . (55)

In the regime where ∆2 > 1, m0 and m+ are stable while m− in unstable. When ∆2 becomes smaller than
one, m+ becomes the only non-negative stable solution and therefore ∆2 = 1 is also known as the algorithmic
spinodal since it corresponds to the point where the AMP algorithm converges to the informative fixed point.
The informative solution m+ exists as long as ∆2 ≤ ∆dyn

2 , where we have defined the dynamical spinodal by

∆dyn
2 =

∆3

2
√

∆3 − 1
. (56)
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For a generic p we cannot determine the values of the informative fixed points explicitly but we can easily
study Eq. (53) numerically to get the full phase diagram.

Furthermore we can obtain the spinodal transition lines as follows. The key observation is that the two
spinodals are critical points of the equation ∆p(m; ∆2) where ∆2 is fixed, or analogously ∆2(m; ∆p) where ∆p

is fixed (to have a pictorial representation of the idea you can see Fig. 10). We call x = m/∆2 +mp−1/∆p, and
fSE(x) ≡ 1− 1

1+x , then

∆p ≡ ∆p(x; ∆2) =

(
fSE(x)

)p−1

x− fSE(x)
∆2

. (57)

Then the stationary points are implicitly defined by

0 =
d log ∆p

dm
=
∂ log ∆p

∂x
(1 + x)2 ∝ (p− 1)

f ′SE(x)

fSE(x)
−

1− f ′SE(x)
∆2

x− f ′SE(x)
∆2

=

2−p
∆2

+ (1 + x)(p− x− 2)

x(1 + x)
[
x+ 1− 1

∆p

] ,

giving

x±(∆2) =
1

2

[
p− 3±

√
(p− 1)2 − 4

∆2
(p− 2)

]
. (58)

Finally ∆p

(
x±(∆2); ∆2

)
describes the two spinodals. We can also derive the tri-critical point, when the two

spinodals meet, which is given by the zero discriminant condition on eq. (58)

(
∆tri
p ; 1/∆tri

2

)
=

4(p− 2)
(
p−3
p−1

)p−1

(p− 3)2
;

(p− 1)2

4(p− 2)

 . (59)

B.4 Phase diagrams of spiked matrix-tensor model

In this section we present the phase diagrams for the spiked matrix-tensor model as a function of the two noise
levels ∆2 and ∆p and for several values of p. These phase diagrams are plotted in Figs. 7 and 8.
Generically we can have four regions:

• Easy phase (green), where the MSE obtained through AMP coincides with the MMSE which is better
than random sampling of the prior.

• Impossible phase (red), where the MMSE and MSE of AMP coincide and are equal to 1 (meaning that
m∗ = mAMP=0).

• Hard phase (orange), where the MMSE is smaller than the MSE obtained from AMP and m∗ > mAMP ≥
0.

• Hybrid-hard phase [59] (mix of green and orange), is a part of the hard phase where the AMP perfor-
mance is strictly better than random sampling from the prior, but still the MSE obtained this way does
not match the MMSE, i.e. m∗ > mAMP > 0. The hybrid-hard phase can be found for p ≥ 4.

All these phases are separated by the following transition lines:

• The stability threshold (dashed black line) at ∆2 = 1 for all p. This corresponds to the point where
the uninformative fixed point m = 0 looses its local stability.

• The information theoretic threshold (solid red line). Here m∗ > 0 and the MMSE jumps to a value
strictly smaller than one.
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• The algorithmic threshold (solid cyan line). This is where the fixed point of AMP jumps to the
MMSE< 1. For p = 3 this line coincides with a segment of the stability threshold while for p ≥ 4 it is
strictly above.

• The dynamic threshold (dotted orange line). Here the most informative fixed point (the one with
largest mAMP) disappears.

In Figs. 9, and 10 we plot the evolution of the magnetization m, as found through the fixed points of the
SE equation, for several fixed values of ∆p and p = 3 and p = 4, respectively. The values of ∆p are identified
by the vertical cuts in the phase diagrams of Fig. 7.
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(a) Section S1: p = 3, ∆p = 0.2
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(b) Section S2:p = 3, ∆p = 0.24
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(c) Section S3: p = 3, ∆p = 0.4

0.0 0.5 1.0 1.5 2.0
1/ 2

0.00

0.25

0.50

0.75

1.00
m

(d) Section S4: p = 3, ∆p = 1.1

Figure 9: Fixed points of Eq. (53) as a function of ∆2 for p = 3 and several fixed values of ∆p. The values of
∆p correspond to the vertical cuts in the left panel of Fig. 7. Solid lines are stable fixed point, dashed lines
are unstable fixed points. The blue line represent informative fixed points with positive overlap with the signal
while the orange line represent a uninformative fixed points with no overlap with the signal. Starting from high
∆2 an informative fixed point appears at the dynamical threshold (vertical dashed line) but is energetically
disfavored until the information theoretic threshold (vertical dotted line) and finally it becomes the only stable
solution crossing the algorithmic threshold (vertical dotted-dashed line). When the transition is continuous the
three vertical threshold lines merge and we have a single second order phase transition, which here occurs at
∆p ≥ 1.
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(a) Section S1: p = 4, ∆p = 0.1
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(b) Section S2: p = 4, ∆p = 0.14
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(c) Section S3: p = 4, ∆p = 0.18
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(d) Section S4: p = 4, ∆p = 0.24

0.0 0.5 1.0 1.5 2.0
1/ 2

0.00

0.25

0.50

0.75

1.00

m

(e) Section S5: p = 4, ∆p = 0.27
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(f) Section S6: p = 4, ∆p = 0.3

Figure 10: Fixed points Eq. (53) as a function of ∆2 for p = 4 and several fixed values of ∆p. The values of
∆p correspond to the vertical cuts of the right panel of Fig. 7. The situation is qualitatively similar to Fig. 9,
the difference being only the presence of the hybrid-hard phase. We can observe that when the transition
is discontinuous, figure from (a) to (e), for 1/∆2 > 1.0 the uninformative solution becomes unstable and
continuously goes to a stable-informative solution which is not the optimal one.

C Langevin Algorithm and its state evolution

The main goal of our analysis is to compare AMP with the performance of the Langevin dynamics. The advan-
tage of the spiked matrix-tensor model is that in this case the Langevin dynamics can be studied in the large N
limit through integro-differential equations for the correlation function, C(t, t′) = limN→∞

∑
i〈xi(t)xi(t′)〉/N ,

the response function R(t, t′) = limN→∞ 1
N

∑
i
d〈xi(t)〉
dηi(t′)

and the magnetization C(t) = limN→∞
∑

i〈xi(t)x∗i 〉/N .
To obtain these equations we use the techniques developed in the context of mean-field spin glass systems

[37, 60]. We call ηi(t) a time dependent noise and we indicate with 〈·〉 the average with respect to it. The noise
is Gaussian and characterized by 〈ηi(t)〉 = 0 for all t and i = 1, . . . N and 〈ηi(t)ηj(t′)〉 = 2δijδ(t− t′). As before
we will denote by E[. . . ] the average with respect to the realization of disorder that in this case goes back to
the specific realization of the signal.

Before proceeding, it is useful to introduce a set of auxiliary variables that will help in the following. For
k ∈ {2, p} we define rk ≡ rk(t) = 2/

(
kTk(t)∆k

)
, fk(x) = xk/2 and m(t)

.
= 1

N

∑
i xi(t)x

∗
i , and the random

variable ξ̃i1...ik ≡ 1
∆k
ξi1...ik ∼ N (0, 1/∆k). The time dependence in Tk, will be used in the smart annealing

protocol that will be used to avoid part of the Langevin hard phase. We introduce a time dependent Hamiltonian

H(t) = − 1

T2(t)
√
N

∑
i<j

ξ̃ijxi(t)xj(t)−
√

(p− 1)!

Tp(t)N
p−1

2

∑
i1<···<ip

ξ̃i1...ipxi1(t) . . . xip(t)

−Nr2(t)f2(m(t))−Nrp(t)fp(m(t)) ,

and the associated Langevin dynamics

ẋi(t) = −µ(t)xi(t)−
∂H
∂xi

(t)− ηi(t) = −µ(t)xi(t)−
1

T2(t)
√
N

∑
j(6=i)

ξ̃ijxj(t)+

+ r2(t)f ′2(m(t))−
√

(p− 1)!

Tp(t)N
p−1

2

∑
(i,i1,...,ip−1)\i

ξ̃ii1...ip−1xi1(t) · · ·xip−1(t) + rp(t)f
′
p(m(t))− ηi(t) ,

(60)
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with µ a Langrange multiplier that enforces the spherical constraint
∑N

i=1 x
2
i (t) = N . If Tk(t) = 1 for all

k = 2, p, the stationary equilibrium distribution for the Langevin dynamics is given by the posterior measure.
Using Ito’s lemma one finds

1

N

d

dt

∑
i

x2
i (t) =

2

N

∑
i

xi(t)ẋi(t) + 2 .

Since the spherical constraint imposes the left-hand-side to be zero, one obtains a condition on the right-hand-
side. By plugging the expression (60) in it, one gets that in the large N limit

µ(t) = 1− 2H2(t)− pHp(t) (61)

where

Hk = −
√

(k − 1)!

Tk(t)N
k−1

2

∑
i1<···<ik

ξ̃i1...ikxi1(t) . . . xik(t)−Nrk(t)fk(m(t)) k = 2, p (62)

are the parts of the Hamiltonian defined in Eq. (C) relative to the matrix (k = 2) and to the tensor (k = p).
Note that we have not specified any initial condition for the variables xi(t = 0). Therefore, since we

always employ the spherical constraint, the initial condition for the dynamics is a point on the N dimensional
hypersphere |x|2 = N extracted with the flat measure.

In order to analyze the Langevin dynamics in the large N limit, we will use the dynamical cavity method
[37, 61, 62]. We will consider a system of N variables, with N � 1, and add a new one. This new variable
will be considered as a small perturbation to the original system but at the same time will be treated self
consistently.

C.1 Dynamical Mean-Field Equations

In the following we will drop the time dependence for simplicity restoring it only when it is needed. Given the
system with N variables i = 1 . . . N , we add a new one, say i = 0, and define m̃ = 1

N+1

∑N
i=0 xix

∗
i ' 1

N

∑N
i=0 xix

∗
i

(henceforth we use the symbol ' to denote two quantities that are equal up to terms that vanish in the large-N
limit). The Langevin equation associated to the new variable is

ẋ0 = −µx0 −
1

T2(t)
√
N

∑
j(6=0)

ξ̃0jxj + r2f
′
2(m̃)−

√
(p− 1)!

Tp(t)N
p−1

2

∑
(0,i1,...,ip−1)\0

ξ̃0i1...ip−1xi1 · · ·xip−1 + rpf
′
p(m̃)− η0 ,

(63)

where we used that N ' N + 1 for N � 1. We will consider the contribution of the new variable on the others
in perturbation theory. In the dynamical equations for the variables i = 1, . . . , N we can isolate the variable
i = 0 and write

ẋi = −µxi −
1

T2(t)
√
N

∑
j( 6=i,0)

ξ̃ijxj + r2f
′
2(m)−

√
(p− 1)!

Tp(t)N
p−1

2

∑
(i,i1,...,ip−1)\i,0

ξ̃ii1...ip−1xi1 · · ·xip−1

+ rpf
′
p(m)− ηi +Hi ,

(64)

with

Hi(t) =
(
r2f
′′
2 (m) + rpf

′′
p (m)

) 1

N
x0−

1

T2(t)
√
N
ξ̃0ix0−

√
(p− 1)!

Tp(t)N
p−1

2

∑
(i,0,i1,...,ip−2)\i,0

ξ̃i0i1...ip−2x0xi1 · · ·xip−2 . (65)

Consider the unperturbed variables x0
i = xi

∣∣
Hi=0

. At leading order in N we can write

xi ' x0
i +

∫ t

to

dt′
δxi(t)

δHi(t′)

∣∣∣∣
Hi=0

Hi(t
′) . (66)
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In the dynamical equation for the variable 0 we can identify a piece associated to the unperturbed variables x0
i .

This term can be thought of collectively as a stochastic term Ξ(t)

ẋ0 = −µx0

.
= Ξ(t)︷ ︸︸ ︷

− 1

T2(t)
√
N

∑
j(6=0)

ξ̃0jx
0
j −

√
(p− 1)!

Tp(t)N
p−1

2

∑
(0,i1,...,ip−1)\0

ξ̃0i1...ip−1x
0
i1 · · ·x

0
ip−1
− η0 +

+ r2f
′
2(m) + rpf

′
p(m) +

(
r2f
′′
2 (m) + rpf

′′
p (m)

) 1

N
x0 −

1

T2(t)
√
N

∑
j( 6=0)

ξ̃0j

∫ t

to

dt′
δxj(t)

δHj(t′)

∣∣∣∣
Hj=0

Hj(t
′)+

−

[ √
(p− 1)!

Tp(t)N
p−1

2

∑
(0,i1,...,ip−1)\0

ξ̃0i1...ip−1

∫ t

to

dt′
δxi1(t)

δHi1(t′)

∣∣∣∣
Hi1=0

Hi1(t′)x0
i2 · · ·x

0
ip−1

+ permutations

]
.

(67)

Indeed Ξ(t) encodes the effect of a kind of bath made by of the unperturbed variables i = 1, . . . , N to the new
one. We can show that at leading order in N , Ξ(t) is a Gaussian noise with zero mean and variance given by

E〈Ξ(t)Ξ(t′)〉 = 2δ(t− t′)− E

 1

T2(t)T2(t′)N

∑
j(6=0)

∑
l(6=0)

ξ̃0j ξ̃0lx
0
j (t)x

0
l (t
′)

+

− E

 (p− 1)!

Tp(t)Tp(t′)Np−1

∑
(0,i1,...,ip−1)\0

∑
(0,j1,...,jp−1)\0

ξ̃0i1...ip−1 ξ̃0j1...jp−1x
0
i1 · · ·x

0
ip−1

x0
j1 · · ·x

0
jp−1


and the second term can be simplified as

E

[
(p− 1)!

Tp(t)Tp(t′)Np−1

∑
(0,i1,...,ip−1)\0

∑
(0,j1,...,jp−1)\0

ξ̃0i1...ip−1 ξ̃0j1...jp−1x
0
i1 · · ·x

0
ip−1

x0
j1 · · ·x

0
jp−1

]
=

' (p− 1)!

Np−1

1

Tp(t)Tp(t′)∆p

∑
(0,i1,...,ip−1)\0

〈x0
i1(t)x0

i1(t′) · · ·x0
ip−1

(t)x0
ip−1

(t′)〉 =
1

Tp(t)Tp(t′)∆p
Cp−1(t, t′) ,

where we used
∑

(i1,...,ik) = 1
k!

∑
1≤i1,...,ik≤N , we neglected terms sub-leading in N , and we used the definition

of the dynamical correlation function

C(t, t′) =
1

N

N∑
i=1

〈xi(t)xi(t′)〉 .

Therefore we have

E〈Ξ(t)〉 = 0 ; (68)

E〈Ξ(t)Ξ(t′)〉 = 2δ(t− t′) +
1

T2(t)T2(t′)
C(t, t′) +

1

Tp(t)Tp(t′)∆p
Cp−1(t, t′) . (69)

Now we can focus of the deterministic term coming from the first order perturbation in eq. (67). Consider just
the integral for the p-body term, the other will be given by setting p = 2√

(p− 1)!

Tp(t)N
p−1

2

∑
(0,i1,...,ip−1)\0

ξ̃0i1...ip−1

∫ t

to

dt′
δxi1(t)

δHi1(t′)

∣∣∣∣
Hi1=0

Hi1(t′)x0
i2 · · ·x

0
ip−1

+ permutations =

' (p− 1)!

Tp(t)Np−1

∑
(0,i1,...,ip−1)\0

ξ̃2
0i1...ip−1

∫ t

to

dt′
1

Tp(t′)
δxi1(t)

δHi1(t′)

∣∣∣∣
Hi1=0

x0
i1(t)x0

i1(t′) · · ·x0
ip−2

(t)x0
ip−2

(t′)x0(t′)+

+ permutations ' −p(p− 1)
1

2Tp(t)∆p

∫ t

to

dt′
1

Tp(t′)
R(t, t′)Cp−2(t, t′)x0(t′)

(70)
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where we have used the definition of the response function

R(t, t′) =
1

N

N∑
i=1

〈
δxi(t)

δHi(t′)

〉
.

Plugging eq. (70) into eq. (67) we obtain an effective dynamical equation for the new variable in terms of the
correlation and response function of the system with N variables

ẋ0(t) = −µ(t)x0(t) + Ξ(t) + rpf
′
p(C(t)) + r2f

′
2(C(t))+

+ (p− 1)
1

Tp(t)∆p

∫ t

to

dt′′
1

Tp(t′′)
R(t, t′′)Cp−2(t, t′′)x0(t′′) +

1

T2(t)∆2

∫ t

to

dt′′
1

Tp(t′′)
R(t, t′′)x0(t′′) .

(71)

In order to close Eq. (71) we need to give the recipe to compute the correlation and response function.

C.2 Integro-differential equations

In order to obtain the final equations for dynamical order parameters we will assume that the new variable x0

is a typical one, namely it has the same statistical nature of all the others. Therefore we can assume that

C(t, t′) .
= E〈x0(t)x0(t′)〉

R(t, t′) .
= E

〈
δx0(t)

δΞ(t′)

〉
C(t)

.
= E〈x0(t)x∗0〉 .

(72)

Eqs. (72) give a way to obtain the equation for all the correlation functions. Indeed we can consider Eq. (71),
multiply it by x0(t′), or differentiate it with respect to an external field h0(t′), or multiply it it by x∗0 and we
can average the results over the disorder and thermal noise. Using the following identity

E〈Ξ(t)x0(t′)〉 =

∫
DΞ(t) Ξ(t)x0(t′)e−

∫
dt̄dt̃Ξ(t̄)K−1(t̄,t̃)Ξ(t̃) =

= −
∫
dt′′
∫
DΞ(t) x0(t′)

δ

δΞ(t′′)
e−
∫
dt̄dt̃Ξ(t̄)K−1(t̄,t̃)Ξ(t̃)K(t, t′′) =

=

∫
dt′′E

〈
δx0(t′)
δΞ(t′′)

K(t, t′′)
〉

=

∫
dt′′R(t′, t′′)K(t, t′′) =

= 2R(t′, t) +
1

Tp(t)∆p

∫ t′

to

dt′′
1

Tp(t′′)
R(t′, t′′)Cp−1(t, t′′) +

1

T2(t)∆2

∫ t′

to

dt′′
1

Tp(t′′)
R(t′, t′′)C(t, t′′)

(73)

we get the following Langevin State Evolution (LSE) equations

∂

∂t
C(t, t′) = E〈ẋ0(t)x0(t′)〉 = 2R(t′, t)− µ(t)C(t, t′) + rp(t)f

′
p(C(t))C(t′) + r2(t)f ′2(C(t))C(t′)+

+ (p− 1)
1

Tp(t)∆p

∫ t

to

dt′′
1

Tp(t′′)
R(t, t′′)Cp−2(t, t′′)C(t′, t′′)+

+
1

Tp(t)∆p

∫ t′

to

dt′′
1

Tp(t′′)
R(t′, t′′)Cp−1(t, t′′)+

+
1

T2(t)∆2

∫ t

to

dt′′
1

T2(t′′)
R(t, t′′)C(t′, t′′) +

1

T2(t)∆2

∫ t′

to

dt′′
1

Tp(t′′)
R(t′, t′′)C(t, t′′) ;

(74)

∂

∂t
R(t, t′) = E

〈
δẋ0(t)

δΞ(t′)

〉
=

= δ(t− t′)− µ(t)R(t, t′) + (p− 1)
1

Tp(t)∆p

∫ t

t′
dt′′

1

Tp(t′′)
R(t, t′′)R(t′′, t′)Cp−2(t, t′′)+

+
1

T2(t)∆2

∫ t

t′
dt′′

1

T2(t′′)
R(t, t′′)R(t′′, t′) ;

(75)
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∂

∂t
C(t) = E〈ẋ0(t)x∗0〉 =

= −µ(t)C(t) + rp(t)f
′
p(C(t)) + r2(t)f ′2(C(t))+

+ (p− 1)
1

Tp(t)∆p

∫ t

to

dt′′
1

Tp(t′′)
R(t, t′′)Cp−2(t, t′′)C(t′′) +

1

T2(t)∆2

∫ t

to

dt′′
1

T2(t′′)
R(t, t′′)C(t′′) ;

(76)

µ(t) = 1 + rp(t)f
′
p(C(t))C(t) + r2(t)f ′2(C(t))C(t)+

+ p
1

Tp(t)∆p

∫ t

to

dt′′
1

Tp(t′′)
R(t, t′′)Cp−1(t, t′′) + 2

1

T2(t)∆2

∫ t

to

dt′′
1

T2(t′′)
R(t, t′′)C(t, t′′) .

(77)

Note that the last equation for µ(t) is obtained by imposing the spherical constraint C(t, t) = 1 ∀t using the

fact that 0 = dC(t,t)
dt = ∂C(t,t′)

∂t

∣∣∣
t′=t

+ ∂C(t′,t)
∂t

∣∣∣
t′=t

. The boundary conditions of this equations are: C(t, t) = 1

the spherical constrain, R(t, t) = 0 which comes from causality in the Itô approach and R(t, t′ → t−) = 1. The
initial condition for C(0) = C0 is the overlap with the initial configuration with the true signal. If the initial
configuration is random, C0 = 0 but will have finite size fluctuations, as in the case of AMP. Therefore we can
think that C0 = ε being ε an arbitrary small positive number.

D Numerical solution of the LSE equations

The dynamical equations (74-75-76-77) were integrated numerically using two schemes:

• fixed time-grid: the derivatives were discretized and integrated according to their causal structure. This
method is suited only for short times (up to 500 time units);

• dynamic time-grid: the step size is doubled after a given number of steps and the equations are solved
self-consistently for every waiting-time. This is the approach proposed in [38] and described in Appendix
C of [63]. It allows integration up to very large times (up to 106 time units).

The results of these algorithms are concisely reported in the phase diagram shown in the main paper. In
what follows we will present the algorithms and a series of investigations that we carried out to check their
stability, we will explain the procedure followed to delimit the Langevin hard region, and we will discuss how
we can enter into part of that region by choosing a proper annealing protocol. The codes are available online
[40].

D.1 Fixed time-grid (2 + p)-spin

In this approach time-derivatives and integrals were discretized using ∂
∂tf(t, t′) ' 1

∆t

[
f(t+ ∆t, t′)− f(t, t′)

]
,

and the trapezoidal rule for integration
∫ t

0 f(t)dt ' ∆t
2

∑t/∆t−1
l=0

[
f(l∆t) + f((l + 1)∆t)

]
. For instance we defined

a function for computing the update in the the response function, eq. (75) as follows

R(t+ ∆t, t′) = R(t, t′)−∆t µ(t)R(t, t′) +
1

2

∆t2

∆2

t/∆t−1∑
l=t′/∆t

[
R(t, l∆t)R(l∆t, t′) +R(t, (l + 1)∆t)R((l + 1)∆t, t′)

]
+

+ (p− 1)
∆t2

∆p

t/∆t−1∑
l=t′/∆t

[
Cp−2(t, l∆t)R(t, l∆t)R(l∆t, t′) + Cp−2(t, (l + 1)∆t)R(t, (l + 1)∆t)R((l + 1)∆t, t′)

]
.

Analogously we defined the other integrators. A simple causal integration scheme, being careful with the Itô
prescription, gives the pseudo-code below.

C(0, 0)← 1; R(0, 0)← 0; C(0)← C0;
for t ≤ tmax do
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C(t+ ∆t, t+ ∆t)← 1; R(t+ ∆t, t+ ∆t)← 0;
µ(t)← compute mu(C, R, C, t);
C(t+ ∆t)← compute mag(µ, C, R, C, t);
for t′ ≤ t do
C(t+ ∆t, t′)← compute C(µ, C, R, C, t);
R(t+ ∆t, t′)← compute R(µ, C, R, C, t);

end for
R(t+ ∆t, t)← 1;

end for

D.2 Dynamical time-grid (2 + p)-spin

0 Nt/2 t Nt t Nt 2 t
t

0

Nt t

Nt 2 t

t′

(a) Memory allocation;

0 Nt/2 t Nt t Nt 2 t
t

0

Nt t

Nt 2 t

t′

(b) step 1;

0 Nt/2 t Nt t Nt 2 t
t

0

Nt t

Nt 2 t

t′

(c) step 2;

0 Nt/2 t Nt t Nt 2 t
t

0

Nt t

Nt 2 t

t′

(d) step 3;

0 Nt t Nt 2 t
t

0

Nt t

Nt 2 t

t′

(e) step 4.1;

0 Nt t Nt 2 t
t

0

Nt t

Nt 2 t

t′

(f) step 4.2;

0 Nt t Nt 2 t
t

0

Nt t

Nt 2 t

t′

(g) step 2;

0 Nt t Nt 2 t
t

0

Nt t

Nt 2 t

t′

(h) step 3.

Figure 11: Representation of the initialization and the first two iterations for the evaluation of a two-times
observable using the dynamic-grid algorithm. The empty circles represent slots allocated in memory but not
associated to any specific value, while the full circles are memory slots already associated. For any two time
function, it first allocates the memory (a), than it fills half of the grid by linear propagation (b). Still using
linear propagation it fills the slots with t− t′ � 1 (c), and it sets the other values by imposing self-consistency
(d). Finally it halves the grid (e), doubles time step and it allocates the memory (f). Then the algorithm loops
following the same scheme as in (b-c-d-e).

The numerical scheme we are going to discuss is presented in the Bayes-Optimal case where T2(t) ≡ Tp(t) ≡ 1.
However the derivation that we propose can be easily generalized to the case where the T s assume different
values, but are constants4. It is convenient to manipulate the equations to obtain an equivalent set of equations
for the functions C(t, t′), Q(t, t′) .

= 1 − C(t, t′) −
∫ t
t′ R(t, t′′)dt′′, C(t), where Q(t, t′) represents the deviation

from Fluctuation Dissipation Theorem (FDT) at time t starting from time t′. Indeed when the FDT theorem
holds, it states that R(t, t′) = −∂tC(t, t′).

4Therefore we do not employ this algorithm to solve the LSE equations in the smart annealing protocol for which instead we use
the fixed time-grid algorithm.
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We briefly anticipate the strategy that the algorithm uses to solve the equations. The algorithm discretizes
the times into Nt intervals, first starting from the boundary conditions, C(t, t) = 1, Q(t, t) = 0 and C =
C0 ∈ [0; 1], it fills the grid for small times (or small time differences τ = t − t′ � 1) using linear propagation.
Given a time t and the initial guess for the Lagrange multiplier obtained by the linear propagator, the integrals
are discretized and evaluated, then the results is used to update the value of the Lagrange multiplier. This
procedure is repeated iteratively until convergence. Once that the first grid is filled, it follows a coarse-graining
procedure where the sizes of the time intervals is doubled and only half of the information is retained. This
procedure is repeated a fixed number of doubling of the original grid. The doubling scheme allows to explore
exponentially long times at the cost of loosing part of the information, the direct consequence of this is the loss
of stability for very large times (especially when the functions C(t, t′), R(t, t′), C(t) undergo fast changes at
large times).

Dynamical equations in the algorithm. We recall the function fk(x) = xk

2 and its derivatives, f ′k(x) =
kxk−1

2 and f ′′k (x) = k(k−1)xk−2

2 . For simplicity in the notation, we introduce also fk(t, t
′) .

= fk
(
C(t, t′)

)
(∂t + µ(t))C(t, t′) = 2R(t′, t) + r2C(t′)f ′2(C(t)) + rpC(t′)f ′p(C(t))+

+
1

∆2

∫ t′

0
dt′′f ′2(t, t′′)R(t′, t′′) +

1

∆2

∫ t

0
dt′′f ′′2 (t, t′′)R(t, t′′)C(t′, t′′)+

+
2

p∆p

∫ t′

0
dt′′f ′p(t, t

′′)R(t′, t′′) +
2

p∆p

∫ t

0
dt′′f ′′p (t, t′′)R(t, t′′)C(t′, t′′) ,

(∂t + µ(t))R(t, t′) = δ(t− t′) +
1

∆2

∫ t

t′
dt′′f ′′2 (t, t′′)R(t, t′′)R(t′′, t′)+

+
2

p∆p

∫ t

t′
dt′′f ′′p (t, t′′)R(t, t′′)R(t′′, t′) ,

(∂t + µ(t))C(t) = r2f
′
2(C(t)) + rpf

′
p(C(t))+

+
1

∆2

∫ t

0
dt′′f ′′2 (t, t′′)R(t, t′′)C(t′′) +

2

p∆p

∫ t

0
dt′′f ′′p (t, t′′)R(t, t′′)C(t′′) ,

µ(t) = 1 + r2C(t)f ′2(C(t)) + rpC(t)f ′p(C(t))+

+
2

∆2

∫ t

0
dt′′f ′2(t, t′′)R(t, t′′) +

2

∆p

∫ t

0
dt′′f ′p(t, t

′′)R(t, t′′) .

Following the lines of [63], we introduce the FDT violation function, Q(t, t′), and after some manipulation the
systems becomes

(∂t+µ(t))C(t, t′) = C(t′)
[
r2f
′
2(C(t)) + rpf

′
p(C(t))

]
+

+
1

∆2

{∫ t′

0
dt′′
[
f ′2(t, t′′)

∂Q(t′, t′′)
∂t′′

+ f ′′2 (t, t′′)
∂Q(t, t′′)
∂t′′

C(t′, t′′)
]

+

−
∫ t

t′
dt′′
[
f ′2(t, t′′)

∂C(t′′, t′)
∂t′′

− f ′′2 (t, t′′)
∂Q(t, t′′)
∂t′′

C(t′′, t′)
]

+ f ′2(1)C(t, t′)− f ′2(t, 0)C(t′, 0)
}

+

+
2

p∆p

{∫ t′

0
dt′′
[
f ′p(t, t

′′)
∂Q(t′, t′′)

∂t′′
+ f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′, t′′)
]

+

−
∫ t

t′
dt′′
[
f ′p(t, t

′′)
∂C(t′′, t′)

∂t′′
− f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′′, t′)
]

+ f ′p(1)C(t, t′)− f ′p(t, 0)C(t′, 0)
}
,

(78)
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(∂t+µ(t))Q(t, t′) = µ(t)− 1 +
1

∆2

{
−
∫ t

t′
dt′′f ′2(t, t′′)

∂Q(t′′, t′)
∂t′′

+

∫ t

t′
dt′′f ′′2 (t, t′′)

∂Q(t, t′′)
∂t′′

[Q(t′′, t′)− 1]+

+ f ′2(1)[Q(t, t′)− 1] + f ′2(t, 0)C(t′, 0)−
∫ t′

0
dt′′
[
f ′2(t, t′′)

∂Q(t′, t′′)
∂t′′

+ f ′′2 (t, t′′)
∂Q(t, t′′)
∂t′′

C(t′, t′′)
]}

+

+
2

p∆p

{
−
∫ t

t′
dt′′f ′p(t, t

′′)
∂Q(t′′, t′)

∂t′′
+

∫ t

t′
dt′′f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

[Q(t′′, t′)− 1]+

+ f ′p(1)[Q(t, t′)− 1] + f ′p(t, 0)C(t′, 0)−
∫ t′

0
dt′′
[
f ′p(t, t

′′)
∂Q(t′, t′′)

∂t′′
+ f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′, t′′)
]}

+

− C(t′)
[
r2f
′
2(C(t)) + rpf

′
p(C(t))

]
,

(79)

(∂t+µ(t))C(t) = r2f
′
2(C(t)) + rpf

′
p(C(t)) +

1

∆2

{
f ′2(1)C(t)− f ′2(t, 0)C(0)−

∫ t

0
dt′′f ′2(t, t′′)

d

dt′′
C(t′′)+

+

∫ t

0
dt′′f ′′2 (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′′)
}

+
2

p∆p

{
f ′p(1)C(t)− f ′p(t, 0)C(0)−

∫ t

0
dt′′f ′p(t, t

′′)
d

dt′′
C(t′′)+

+

∫ t

0
dt′′f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′′)
}
,

(80)

µ(t) = 1 + r2C(t)f ′2(C(t)) + rpC(t)f ′p(C(t)) +
2

∆2
[f2(1)− f2(t, 0)] +

2

∆p
[fp(1)− fp(t, 0)]+

+

∫ t

0
dt′′
[

2

∆2
f ′2(t, t′′) +

2

∆p
f ′p(t, t

′′)

]
∂Q(t, t′′)
∂t′′

,

(81)

further simplifications can be obtained introducing µ′(t) = µ(t)− 2
∆2
f2(1)− 2

∆p
fp(1)

µ′(t) = 1 + r2C(t)f ′2(C(t)) + rpC(t)f ′p(C(t))− 2

∆2
f2(t, 0)− 2

∆p
fp(t, 0)+

+

∫ t

0
dt′′
[

2

∆2
f ′2(t, t′′) +

2

∆p
f ′p(t, t

′′)

]
∂Q(t, t′′)
∂t′′

,

(82)

(∂t+µ
′(t))C(t, t′) = C(t′)

[
r2f
′
2(C(t)) + rpf

′
p(C(t))

]
+

+
1

∆2

{∫ t′

0
dt′′
[
f ′2(t, t′′)

∂Q(t′, t′′)
∂t′′

+ f ′′2 (t, t′′)
∂Q(t, t′′)
∂t′′

C(t′, t′′)
]

+

−
∫ t

t′
dt′′
[
f ′2(t, t′′)

∂C(t′′, t′)
∂t′′

− f ′′2 (t, t′′)
∂Q(t, t′′)
∂t′′

C(t′′, t′)
]
− f ′2(t, 0)C(t′, 0)

}
+

+
2

p∆p

{∫ t′

0
dt′′
[
f ′p(t, t

′′)
∂Q(t′, t′′)

∂t′′
+ f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′, t′′)
]

+

−
∫ t

t′
dt′′
[
f ′p(t, t

′′)
∂C(t′′, t′)

∂t′′
− f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′′, t′)
]
− f ′p(t, 0)C(t′, 0)

}
,

(83)
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(∂t+µ
′(t))Q(t, t′) = µ′(t)− 1− C(t′)

[
r2f
′
2(C(t)) + rpf

′
p(C(t))

]
+

+
1

∆2

{
−
∫ t

t′
dt′′f ′2(t, t′′)

∂Q(t′′, t′)
∂t′′

+

∫ t

t′
dt′′f ′′2 (t, t′′)

∂Q(t, t′′)
∂t′′

[Q(t′′, t′)− 1]+

+ f ′2(t, 0)C(t′, 0)−
∫ t′

0
dt′′
[
f ′2(t, t′′)

∂Q(t′, t′′)
∂t′′

+ f ′′2 (t, t′′)
∂Q(t, t′′)
∂t′′

C(t′, t′′)
]}

+

+
2

p∆p

{
−
∫ t

t′
dt′′f ′p(t, t

′′)
∂Q(t′′, t′)

∂t′′
+

∫ t

t′
dt′′f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

[Q(t′′, t′)− 1]+

+ f ′p(t, 0)C(t′, 0)−
∫ t′

0
dt′′
[
f ′p(t, t

′′)
∂Q(t′, t′′)

∂t′′
+ f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′, t′′)
]}

,

(84)

(∂t+µ
′(t))C(t) = r2f

′
2(C(t)) + rpf

′
p(C(t)) +

1

∆2

{
− f ′2(t, 0)C(0)+

−
∫ t

0
dt′′f ′2(t, t′′)

d

dt′′
C(t′′) +

∫ t

0
dt′′f ′′2 (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′′)
}

+

+
2

p∆p

{
− f ′p(t, 0)C(0)+

−
∫ t

0
dt′′f ′p(t, t

′′)
d

dt′′
C(t′′) +

∫ t

0
dt′′f ′′p (t, t′′)

∂Q(t, t′′)
∂t′′

C(t′′)
}
.

(85)

First order expansion coefficients. In the numerics we will initialize the grid by a linear propagation of
the initial conditions. To determine the coefficients to use we can expand the functions up the second term for
small values of τ (and in the last equation of t)

C(t′ + τ, t′) = C(t′, t′) + C(1,0)(t′, t′)τ +
1

2
C(2,0)(t′, t′) +O(τ3) ,

Q(t′ + τ, t′) = Q(t′, t′) +Q(1,0)(t′, t′)τ +
1

2
Q(2,0)(t′, t′) +O(τ3) ,

C(t) = C(0) + C
(1)

(0)τ +
1

2
C

(2)
(0) +O(t3) .

(86)

This gives the following coefficients: C(t, t) = 1, C(1,0)(t, t) = −1, Q(t, t) = 0, Q(1,0)(t, t) = 0, C(0) = C0 and

C
(1)

(0) =
[
r2f
′
2(C0) + rpf

′
p(C0)

]
(1− (C0)2)− C0, where C0 is the initial value of the overlap with the signal.

Numerical integration and derivation. The set of equations derived above presents six types of integrals

I
(1AB)
ij =

∫ ti

tj

dt′′A(ti, t
′′)
∂B(t′′, tj)

∂t′′
;

I
(2ABC)
ij =

∫ ti

tj

dt′′A(ti, t
′′)
∂B(ti, t

′′)
∂t′′

C(t′′, tj) ;

I
(3AB)
ij =

∫ tj

0
dt′′A(ti, t

′′)
∂B(ti, t

′′)
∂t′′

;

I
(4ABC)
ij =

∫ tj

0
dt′′A(ti, t

′′)
∂B(ti, t

′′)
∂t′′

C(tj , t
′′) ;

I
(5AB)
i =

∫ ti

0
dt′′A(ti, t

′′)
∂B(t′′)
∂t′′

;

I
(6ABC)
i =

∫ ti

0
dt′′A(ti, t

′′)
∂B(ti, t

′′)
∂t′′

C(t′′) .
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The integrals can be easily discretized

I
(2ABC)
ij =

ti∑
tl=tj+δt

∫ tl

tl−δt
dt′′A(ti, t

′′)
∂B(ti, t

′′)
∂t′′

C(t′′, tj) '

'
ti∑

tl=tj+δt

∫ tl

tl−δt
dt1A(ti, t1)

∫ tl

tl−δt
dt2

∂B(ti, t2)

∂t2

∫ tl

tl−δt
dt3C(t3, tj) '

'
ti∑

tl=tj+δt

1

2
[A(ti, tl) +A(ti, tl − δt)][B(ti, tl)−B(ti, tl − δt)]

1

2
[C(tl, tj) + C(tl − δt, tj)] .

In particular the 6 integrals become

I
(1AB)
ij = AimBmj −AijBjj +

i∑
l=m+1

1

2
(Ail +Ai(l−1))(Blj −B(l−1)j)+

−
m∑

l=j+1

1

2
(Blj +B(l−1)j)(Ail −Ai(l−1)) =

= AimBmj −AijBjj +

i∑
l=m+1

dA
(v)
il (Blj −B(l−1)j)−

m∑
l=j+1

(Ail −Ai(l−1))dB
(h)
lj ;

(87)

I
(2ABC)
ij =

i∑
l=j+1

1

2
(Ail +Ai(l−1))(Blj −B(l−1)j)

1

2
(Clj + C(l−1)j) =

=

i∑
l=m+1

dA
(h)
il (Bil −Bi(l−1))

1

2
(Clj + C(l−1)j) +

m∑
l=j+1

1

2
(Ail +Ai(l−1))(Bil −Bi(l−1))dC

(v)
lj ;

(88)

I
(3AB)
ij = AijBjj −Ai0Bj0 −

j∑
l=1

(Ail −Ai(l−1))dB
(v)
jl ; (89)

I
(4ABC)
ij =

j∑
l=1

1

2
(Ail +Ai(l−1))(Bil −Bi(l−1))dC

(v)
jl ; (90)

I
(5AB)
i =

i∑
l=1

dA
(v)
il (Bl −Bl−1) ; (91)

I
(6ABC)
i =

i∑
l=1

1

2
(Ail +Ai(l−1))(Bil −Bi(l−1))dCl , (92)

where the superscript (v) and (h) represent the vertical (t′) and horizontal (t) derivatives in the discretized
times, see Fig. 11 for an intuitive understanding.

We also discretized the derivative using the last two time steps

d

dt
g(t) =

3

2δt
g(t)− 2

δt
g(t− δt) +

1

2δt
g(t− 2δt) +O(δt3) . (93)

Given the time indices i and j, we will define and evaluate the following quantities

{Cij , Qij ,M2ij , N2ij ,Mpij , Npij ,Cbari, P2i, Ppi,mui} =

= {C(ti, tj), Q(ti, tj), f
′
2(C(ti, tj)), f

′′
2 (C(ti, tj)), f

′
p(C(ti, tj)), f

′′
p (C(ti, tj)), C(ti), f

′
2(C(ti)), f

′
p(C(ti)), µ(ti)}

plus the respective vertical and horizontal derivatives.
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Calling Di = 3
2dt + µ′i − 1

∆2
M2ii − 2

p∆p
Mpii, the original dynamical equations are integrated as follow

CijDi =
2

dt
C(i−1)j −

1

2dt
C(i−2)j + Cbarj(r2P2i + rpPpi)+

+
1

∆2

(
−İ(1f ′2C)

ij + I
(2f ′′2 QC)
ij + I

(3f ′2Q)
ij + I

(4f ′′2 QC)
ij −M2i0Cj0

)
+

+
2

p∆p

(
−İ(1f ′pC)

ij + I
(2f ′′pQC)

ij + I
(3f ′pQ)

ij + I
(4f ′′pQC)

ij −Mpi0Cj0

)
,

(94)

QijDi = µ′i − 1 +
2

dt
Q(i−1)j −

1

2dt
Q(i−2)j + Cbarj(r2P2i + rpPpi)+

+
1

∆2

(
−İ(1f ′2Q)

ij + I
(2f ′′2 Q(Q−1))
ij − I(3f ′2Q)

ij − I(4f ′′2 QC)
ij −M2i0Ci0

)
+

+
2

p∆p

(
−İ(1f ′pQ)

ij + I
(2f ′′pQ(Q−1))

ij − I(3f ′pQ)

ij − I(4f ′′pQC)

ij −Mpi0Ci0

)
,

(95)

CbariDi =
2

dt
Cbari−1 −

1

2dt
Cbari−2 + r2P2i + rpPpi+

+
1

∆2

(
−İ(5f ′2Cbar)

i + I
(6f ′′2 QCbar)
i −M2i0Cbar0

)
+

+
2

p∆p

(
−İ(5f ′pCbar)

i + I
(6f ′′pQCbar)

i −Mpi0Cbar0

)
.

(96)

In the systems we used İ to characterize the integrals where we remove from the sum the term present in the
left-hand side (e.g. for Cij eq. 94). Using Simpson’s integration formula we define the increments

∆il =
1

12
(Qil −Qi(l−1)){W 2

2 [−(M2i(l+1) +N2i(l+1)Ci(l+1)) + 8(M2il +N2ilCil) + 5(M2i(l−1) +N2i(l−1)Ci(l−1))]+

+W 2
p [−(Mpi(l+1) +Npi(l+1)Ci(l+1)) + 8(Mpil +NpilCil) + 5(Mpi(l−1) +Npi(l−1)Ci(l−1))]}

and we determine µ′ as

µ′ = 1 + r2P2i + rpPpi + δµ′ +
i−Nt/4∑
l=1

∆il − (W 2
2M2i0 +W 2

pMpi0)Ci0 , (97)

with δµ′ initially set to 0.

Algorithm: Here we describe the main steps of the algorithm, pictorially represented Fig. 11.
Discretize the time (t, t′) in Nt (even) intervals, the results shown use Nt = 1024.

1. Initialization. Fill the first Nt/2 times by linear propagation of the value obtained from the perturbative
analysis

Cij = 1− (i− j)dt ; (98)

Qij = 0 ; (99)

Cbari = C0 +

{[
r2f
′
2(C0) + rpf

′
p(C0)

]
(1 + (C0)2)− C0

}
dt ; (100)

M2ij = f ′2(Cij) ; (101)

N2ij = f ′′2 (Cij) ; (102)

Mpij = f ′p(Cij) ; (103)

Npij = f ′′p (Cij) . (104)
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2. Fill the grid (small τ). Continue to propagate the values for small time differences τ = t− t′ � 1. In
terms of the algorithm it means that we have some elements of the grid, Nc of them, close to the diagonal
that will be updated by linear propagation because the approximation of small τ is still valid. In our
simulation the first ∆t is of the order 10−7 and Nc = 2.

3. Fill the grid (larger τ). The rest of the values will be copied from the previous t (At+∆t,t′ = At,t′).
These values are the initial guess for solving the self-consistent equations (94-95-96) and (97), in this
procedure the derivatives are updated using the 2nd order discretization.

4. Half the grid and expand. The grid is decimated which means that each observable is contracted

Ai,j ← A2i,2j and the derivate are updated as follows dA
(h)
i,j ←

1
2(dA

(h)
2i,2j +dA

(h)
2i−1,2j), dA

(v)
i,j ←

1
2(dA

(v)
2i,2j +

dA
(v)
2i,2j−1). The new time step is now: ∆t← 2∆t.

5. Start over from step 2.

D.3 Numerical checks on the dynamical algorithm

The dynamic-grid algorithm has been checked in a variety of ways.

10 2 100 102 104 106

t
0.0

0.2

0.4

0.6

0.8

1.0

C

C with p = 0.8
C with p = 0.83
C with p = 0.86
C with p = 0.89
C with p = 0.92
C with p = 0.95
C with p = 0.98
C w linear code

(a) p = 3 ∆2 = 1.01

10 2 100 102 104 106

t
0.0

0.2

0.4

0.6

0.8

1.0

C
C with p = 0.66
C with p = 0.7
C with p = 0.74
C with p = 0.78
C with p = 0.8
C with p = 0.84
C with p = 0.88
C with p = 0.92
C with p = 0.96
C w linear code

(b) p = 3 ∆2 = 1.05

10 2 100 102 104 106

t
0.0

0.2

0.4

0.6

0.8

1.0

C

C with p = 0.58
C with p = 0.62
C with p = 0.66
C with p = 0.7
C with p = 0.74
C with p = 0.76
C with p = 0.84
C with p = 0.92
C w linear code

(c) p = 3 ∆2 = 1.10

10 2 100 102 104 106

t
0.0

0.2

0.4

0.6

0.8

1.0

C

C with p = 0.343
C with p = 0.344
C with p = 0.346
C with p = 0.35
C with p = 0.38
C with p = 0.45
C with p = 0.6
C with p = 0.8
C with p = 1.0
C w linear code

(d) p = 3 ∆2 = 2.00

Figure 12: Evolution of the correlation with the signal at fixed ∆2 for different ∆p. The dotted red line
overlapping with other lines, is the same quantity evaluated using the fixed grid algorithm up to time 100. We
have started the LSE from an informative initial condition.
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Cross-checking using the fixed-grid algorithm. For short times the dynamical equations were solved
using the fixed-grid algorithm and compared with the outcome of the dynamic-grid algorithm, obtaining the
same results, see Fig. 12. In the figure we used the fixed-grid with tmax = 100 and the ∆t = 6.25 ∗ 10−3.

Same magnetization in the easy region. In the impossible and easy regions, the overlap with the signal
of both AMP and dynamic-grid integration, converges to the same value. In Fig. 13 we show the overlap
obtained with AMP, black dashed line, and the overlap achieved by the integration scheme at a given time. We
can see that the overlap with the signal as obtained solving the LSE equations converges to the same value of
the fixed point of AMP. Given a fixed ∆2 we can observe that the time to convergence increase very rapidly as
we decrease ∆p. We fitted this increase of the relaxation time to get the boundary of the Langevin hard region.
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(c) p = 3 ∆2 = 0.70
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Figure 13: Correlation with the signal of AMP (dotted lines) and Langevin (solid lines) at kth iteration
and t time respectively. The black dashed line is the asymptotic value predicted with AMP. In the easy
region, provided enough running time, Langevin dynamics finds the same alignment as AMP. The figures show
qualitatively the same behaviour for different values of ∆2.

Dynamical transition. The dynamical transition where the finite magnetization fixed point disappears can
be regarded as a clustering or dynamical glass transition. Indeed coming from the impossible phase, going
towards the hard phase, at the dynamical transition the free energy landscape changes and the unique ergodic
paramagnetic minimum of the impossible phase gets clustered into an exponential number of metastable glassy
states (see Sec. E). Correspondingly the relaxation time of the Langevin algorithm diverges. Fitting this
divergence with a power law we obtain an alternative estimation of the dynamical line. In the right panel of
Fig. 14 we plot with yellow points the dynamical transition line as extracted from the fit of the relaxation time
of the Langevin algorithm extracted coming from the impossible phase and entering in the hard phase.
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Figure 14: On the left: phase diagram of the spiked matrix-tensor model for p = 3 as presented in the left panel
of Fig. 7 with the additional boundary of the Langevin hard phase (green circles and stars). The boundary
of the Langevin hard phase has been obtained by fitting the relaxation time at fixed ∆p and increasing ∆2

(circles) and conversely, at fixed ∆2 and decreasing ∆p (stars). The blue dashed line marks a region above
which we do not observe anymore a stable positive 1RSB complexity. Finally we plot with orange and yellow
dots the dynamical transition line as extracted from the relaxation time of the Langevin algorithm coming from
respectively the hard and impossible phase. On the right: phase diagram of the spiked matrix-tensor model for
p = 4 as presented in the right panel of Fig. 7 with the additional Langevin hard phase boundary. Also in this
case we observe that Langevin hard phase extends in the AMP easy phase. Interestingly the Langevin hard
phase here folds and closes near the tri-critical point. The blue dashed line marks a region above which we do
not observe anymore a stable positive 1RSB complexity.

D.4 Extrapolation procedure

In order to determine the Langevin Hard region, given a fixed value of ∆p (∆2), we measure the relaxation time
that it takes to relax to equilibrium. On approaching the Langevin hard region, this relaxation time increases
and we extrapolate the divergence to obtain the critical ∆∗p (∆∗2 respectively) where the relaxation time diverges.
The extrapolation is done assuming a power law divergence. Fig. 14 shows the results of this procedure for the
cases 2 + 3 and 2 + 4.

Numerical checks on the extrapolation procedure. To test the quality of the fits we use a similar
numerical procedure to locate the spinodal of the informative solution, which is given by the points where the
informative solution ceases to exist. This spinodal must be the same for both the AMP and the Langevin
algorithm [6].

Since we aim at studying the spinodal of the informative solution, we initialize the LSE with C0 = 1 and
let it relax, measuring the time it takes to equilibrate at the value of C given by the informative fixed point
of AMP. We do this fixing ∆2 and changing ∆p. As we approach the critical ∆p,dyn, the relaxation time will
diverge and we can fit this divergence with a power law. The dynamic threshold extracted in this way is
finally compared with the one obtained from AMP. In Fig. 15 we show how this scheme has been applied for
∆2 ∈ {1.01, 1.05, 1.10, 2.00}. As we get closer to the critical line ∆2 = 1 the relaxation time increases (and the
height of the plateau decreases), making the fit harder. All in all, we observe a very good agreement between
the points found with these extrapolation procedures and the prediction obtaine with AMP, as shown in Fig. 14.

D.5 Annealing protocol

In this section we show that using specific protocols we are able to enter in the Langevin hard region. A generic
annealing scheme would lower the noises of both the channels simultaneously, which, as we tested and discussed
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(c) ∆2 = 1.10: estimation 0.59104 (AMP 0.59034)
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(d) ∆2 = 2.00: estimation 0.34326 (AMP 0.34314)

Figure 15: Relaxation time obtained from the LSE starting from an informative initial condition C0 = 1. The
four cases refers to the 2 + 3 model and are fitted with a power law and the relaxation time appears to diverge
very close to point predicted by AMP (the AMP prediction is given in the captions).

in the main text, will not be able to avoid the Langevin hard region. Instead we can use the following protocol

T2 ≡ 1 ,

Tp ≡ Tp(t) = 1 +
C

∆p
e−

t
τann .

(105)

The constant C allows to select at the initial time the desired effective ∆p,eff = ∆p + Ce−
t

τann far from (and
much larger than) the original one. Instead τann chooses the speed of the annealing protocol. Fig. 16 shows
that using this protocol we are able to enter in Langevin Hard region even with ∆2 close to the AMP threshold.
To this purpose we initiated the effective ∆p,eff close to 100 (i.e. C = 100), very far from the Langevin hard
region, and we used different speeds for the annealing of ∆p (different colors in the figures). In the figures we
can observe that approaching the ∆2 = 1 we need slower and slower protocols (larger and larger τann). The
reason for this behavior is due to the fact that approaching ∆2 = 1 with ∆p = 100 a longer time is required to
gain a non trivial overlap with the solution. Evidence of this growing timescale at ∆p = 100 is given in Fig. 17
where we show the relaxation time for magnetizing to the solution varying ∆2. In particular, we can observe
that at ∆2 = 0.70 the relaxation time is of the order of 100 time units.

For the protocol to be successful it is therefore crucial that the annealing time τann is large enough to give
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the possibility of magnetizing the solution before ∆p,eff has significantly decreased towards ∆p. According to
this analysis, it is not surprising that in Fig. 16 for ∆2 = 0.90 the proposed protocol seems not to be successful.
For this value of the parameter ∆2, the time to find a solution even with ∆p = 100 should be larger than
1000 time units, which is much larger than the used τann and anyway out of the time window of our numerical
solution. However, with an annealing time large enough it would be in principle possible to recover exactly the
same boundaries of the AMP easy region.

E Glassy nature of the Langevin hard phase: the replica approach

In this section we study the landscape of the spiked matrix-tensor problem following the approach of [25]. We
underline here that we are interested in studying the free energy landscape problem rather than the energy
landscape since the former is the relevant quantity for finite temperatures (β = 1 in our case, as discussed
in Sec. A). The results of [25] suggest that the AMP-hard phase and part of the AMP-easy phase are glassy.
Therefore we could expect that low magnetization glassy states trap the Langevin algorithm and forbid the
relaxation to the equilibrium configurations that surrounds the signal. This may happen also in a region where
AMP instead is perfectly fine in producing configurations strongly correlated with the signal. In order to check
this hypothesis we compute the logarithm of the number of glassy states, called the complexity by using the
replica method [64, 25]. The goal of this analysis is to trace an additional line in the phase diagram that delimits
the region where stable one step replica symmetry breaking (1RSB) metastable states exist. We conjecture that
this provides a physical lower bound to the Langevin hard phase in the (∆p, 1/∆2) phase diagram.

E.1 Computation of the complexity through the replica method

The replica trick is based on the simple identity: E log x = limn→0
∂
∂nExn. Using this observation we can

compute the expected value of the free energy, Φ = −(logZ)/N , averaging the Zn and taking the limit n→ 0.
This is in general as difficult as the initial problem, however, if we consider only integer n and extrapolate
to 0, the computation becomes much less involved due to the fact that for integer n the average Exn can be
sometimes performed analytically. Indeed in this case the replicated partition function Zn can be regarded as
the partition function of n identical uncoupled systems or replicas. Averaging over the disorder we obtain a
clean system of interacting replicas. The Hamiltonian of this system displays an emerging replica symmetry
since it is left unchanged by a permutation of replicas. This symmetry can be spontaneously broken in certain
disordered models where frustration is sufficiently strong [37].

In mean field models characterized by fully connected factor graphs, the resulting Hamiltonian of interacting
replicas depends on the configuration of the system only through a simple order parameter, the overlap Q̃
between them, which is a n× n matrix that describes the similarities of the configurations of different replicas
in phase space. Furthermore the Hamiltonian is proportional to N which means that in the thermodynamic
limit N → ∞, the model can be solved using the saddle point method. In this case one needs to consider
a simple ansatz for the saddle point structure of the matrix Q̃ that allows to take the analytic continuation
for n → 0. The solution to this problem comes from spin glass theory and general details can be found in
[37]. The saddle point solutions for Q̃ can be classified according to the replica symmetry breaking level going
from the replica symmetric solution where replica symmetry is not spontaneously broken to various degree of
spontaneous replica symmetry breaking (including full-replica symmetry breaking). Here we will not review
this subject but the interested reader can find details in [37]. The model we are analyzing can be studied in
full generality at any degree of RSB (see for example [34, 35, 43] where the same models have been studied in
absence of a signal). However here we will limit ourselves to consider saddle point solutions up to a 1RSB level.

The complexity of the landscape can be directly related to replica symmetry breaking. A replica symmetric
solution implies an ergodic free energy landscape characterized by a single pure state. When replica symmetry
is broken instead, a large number of pure states arises and the phase space gets clustered in a hierarchical
way [37]. Making a 1RSB approximation means to look for a situation in which the hierarchical organization
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Figure 16: The figures show the correlation with the signal in time obtained using different annealing protocols,
whose details are reported in the legend of the first figure. All the protocols have C = 100 which means that
all the dynamics start with close effective ∆p ∼ 100, Tp(0)∆p ' 100. What changes among the different lines is
the relaxation speed, from the fastest, drawn in blue, to the slowest, drown in brown. They are compared with
the asymptotic value of AMP, dotted line, and the Langevin dynamics without smart annealing, dashed line.
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Figure 17: Relaxation times of Langevin dynamics at ∆p = 100 without using protocols.

contains just one level: the phase space gets clustered into an exponential number of pure states with no further
internal structure.

If we assume a 1RSB glassy landscape, we can compute the complexity of metastable states using a recipe
due to Monasson [64] (see also [65] for a pedagogical introduction). The argument goes as follows.

Let us consider system with x real replicas infinitesimally coupled. If the free energy landscape is clustered
into an exponential number of metastable states, the replicated partition function, namely the partition function
of the system of x real replicas, can be written as

Zx ' eN [Σ(f∗)−xβf∗]

where f∗ is the internal free energy of the dominant metastable states that is determined by the saddle point
condition dΣ

df (f∗) = βx and β the inverse temperature. Note that since we are interested in the Bayes optimal
case, this corresponds to set β = 1. The function Σ(f) is the complexity of metastable states having internal
entropy f . Therefore, using the free parameter x we can reconstruct the form of Σ(f) from the replicated free
energy. In order to compute the replicated free energy we need to apply the replica trick on the replicated
system, logZx = limn→0

∂
∂n(Zx)n. Calling the replicated free energy Φ = − 1

N logZx, we get the complexity as

Σ = x∂Φ
∂x − Φ.

We can now specify the computation to our case where the partition function is the normalization of the
posterior measure. With simple manipulations of the equations [61], the partition function can be expressed as
the integral over the overlap matrix

(Zx)n = Znx ∝
∫ ∏

ab

dQabe
NnxS(Q) ' lim sup

Q
eNnxS(Q) ; (106)

where the overlap Q is a (nx+ 1)× (nx+ 1) matrix

Q =


1 m · · ·m
m

Q̃...
m


that contains a special row and column that encodes the overlap between different replicas with the signal and
therefore the corresponding overlap is the magnetization m.

The 1RSB structure for the matrix Q̃ can be obtained by defining the following nx × nx matrices: the

identity matrix 1ij = δij , the full matrix J(0)
nx,ij = 1, and J(1)

nx = diag(J
(0)
x , . . . , J

(0)
x ) a block diagonal matrix
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where the diagonal blocks J
(0)
x have size x × x and are matrices full of 1. In this case the 1RSB ansatz for Q̃

reads
Q̃ = (1− qM )1nx + (qM − qm)J(1)

nx + qmJ(0)
nx .

Using this ansatz we can compute S(Q) that is given by

S(Q) =
1

nx

1

2
log det Q+

1

2p∆p

∑
ab

Qpab +
1

4∆2

∑
ab

Q2
ab

 =

=
1

2
log(1− qM ) +

1

2x
log

1− qM + x(qM − qm)

1− qM
+

1

2

qm −m2

1− qM + x(qM − qm)
+

+
1

2p∆p
(1− qpM + x(qpM − q

p
m) + 2mp) +

1

4∆2
(1− q2

M + x(q2
M − q2

m) + 2m2) .

(107)

We can observe that starting from this expression we can derive the RS free energy, eq. (36), taking qM = qm
or equivalently in the limit x→ 1. From eq. (107) we obtain the saddle point equations

0 = 2
∂S

∂qM
= (x− 1)

[
1

x

(
1

1− qM + x(qM − qm)
− 1

1− qM

)
− qm −m2

[1− qM + x(qM − qm)]2
+
qp−1
M

∆p
+
qM
∆2

]
;

0 = 2
∂S

∂qm
= x

[
qm −m2

[1− qM + x(qM − qm)]2
− qp−1

m

∆p
− qm

∆2

]
;

0 =
∂S

∂m
=

−m
1− qM + x(qM − qm)

+
mp−1

∆p
+

m

∆2
.

(108)

The low magnetization solution to these equations gives the complexity of the metastable branch of the posterior
measure which is given by

−Σ(x;Q∗) = − log
1− qM + x(qM − qm)

1− qM
+ x

(
qp−1
m

∆p
+
qm
∆2

)
− x2 (qm −m2)(qM − qm)

[1− qM + x(qM − qm)]2
+ x2 q

p
M − q

p
m

p∆p
+

+ x2 q
2
M − q2

m

2∆2
.

(109)

The free parameter x allows us to tune the free energy of the states of which we compute the complexity. Thus
we can characterize the part of the phase diagram where an exponential number of states is present.

To complete the 1RSB analysis we must compute the stability of the 1RSB saddle point solution for Q. In
particular it is important to compute the so called replicon eigenvalues that characterizes the instability of this
solution towards further replica symmetry breaking. Following [66, 43] we have two replicon eigenvalues given
by

λI = 1− (1− qM + x(qM − qm))2

[
(p− 1)

qp−2
m

∆p
+

1

∆2

]
, (110)

λII = 1− (1− qM )2

[
(p− 1)

qp−2
M

∆p
+

1

∆2

]
. (111)

We can analyze what happens to the landscape when we fix ∆p < 1 and we start from a large value of
∆2 < ∆2,dyn(∆p) and we decrease ∆2. In this case for sufficiently high ∆2 and large enough ∆p the system
is in a paramagnetic phase and no glassy states are present. At the dynamical transition line instead we find
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Figure 18: Complexity with as a function of the Parisi parameter x for p = 3 on the line ∆p = 0.5. The solid
line characterizes the stable part of the complexity while the dashed line the unstable one.
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Figure 19: The stable part of the 1RSB complexity as a function of the free energy for p = 3 and ∆p = 0.5.
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a positive complexity as plotted in Fig. 18. At this point the equilibrium states that dominate the posterior
measure are the so called threshold states for which the complexity is maximal. For those states the eigenvalue
λII = 0 which confirms that these states are marginally stable [27]. Decreasing ∆2 one crosses the information
theoretic phase transition where the relevant metastable states that dominate the posterior measure have
zero complexity. This corresponds to a freezing/condensation/Kauzmann transition. Below the information
theoretic phase transition the thermodynamics of the posterior measure is dominated by the state containing
the signal. However one can neglect the high magnetization solution of the 1RSB equations to get the properties
of the metastable branch and computing the complexity of states that have zero overlap with the signal. The
complexity curves as a function of the Parisi parameter x for decreasing values of ∆2 are plotted in Fig. 18
for fixed ∆p = 0.5 and several ∆2. The curves contain a stable 1RSB part and an unstable one where λII is
negative. The 1RSB line shown in Figs. 14 is obtained by looking at when the states with positive complexity
and λII = 0 disappear. This means that it gives the point where the 1RSB marginally stable states disappear
and therefore it is expected to be a lower bound for the disappearance of glassiness in the phase diagram. The
important outcome of this analysis is that for ∆2 < 1 but not sufficiently small, namely in part of the AMP-easy
phase, the replica analysis predicts the existence of 1RSB marginally stable glassy states that may trap the
Langevin algorithm from relaxing towards the signal [25] and therefore supports the existence of the Langevin
hard phase.

Finally in Fig. 19 we plot the complexity as a function of the internal free energy of the metastable states
for some values of ∆2 and ∆p.

E.2 Breakdown of the fluctuation-dissipation theorem in the Langevin hard phase

When the Langevin algorithm is able to reach equilibrium, being it the signal or the paramagnetic state, it should
satisfy the Fluctuation-Dissipation Theorem (FDT) according to which the response function is related to the

correlation function through R(t, t′) = −∂C(t,t′)
∂t . Furthermore, time translational invariance (TTI) should arise

implying that both correlation and response functions should be functions of only the time difference meaning
that R(t, t′) = R(t − t′) and C(t, t′) = C(t − t′)5. When the dynamics is run in the glass phase, metastable
states may forbid equilibration. In this case time translational invariance is never reached at long times6 and
the dynamics displays aging violating at the same time the FDT relation. The analysis of the asymptotic aging
dynamics has been cracked by Cugliandolo and Kurchan in [27, 67] (see also [60] for a pedagogical review) in
the simplest spin glass model (see also [68] for a much more complex situation) where no signal is present. The
outcome of this work is that when the dynamics started from a random initial conditions is run in the glass phase,
it drives the system to surf on the threshold states. In the model analyzed in [27] these states correspond to the
1RSB marginally stable glassy states that maximize the complexity. In this section we analyze the Cugliandolo-
Kurchan scenario by contrasting the numerical solution of the dynamical equations with the replica analysis
of the complexity. According to [27], the long time Langevin dynamics7 can be characterized by two time
regimes. For short times differences t − t′ ∼ O(1) and t′ → ∞, the system obeys the FDT theorem and TTI;
this regime can be understood as a first fast local equilibration in the nearest metastable state available. On a
longer timescale t− t′ →∞ and t/t′ <∞, the dynamics surfs on threshold states and FDT and TTI are both
violated. In this time window, both the response and correlation functions become functions of λ = h(t)/h(t′)
being h(t) an arbitrary reparametrization of the time variable8. By defining C(λ) = C(t, t′) and R(λ) = tR(t, t′)
the Cugliandolo-Kurchan solution implies that in this aging regime the FDT relation can be generalized to

R (λ) = x C′ (λ) (112)

with x an effective FDT ratio that controls how much the FDT is violated. In the scenario of [27], the value of
x coincides with the 1RSB Parisi parameter that corresponds to threshold states computed within the replica

5All one time quantities are constant in equilibrium.
6It is supposed to be reached only on exponential timescales in the system size.
7But still for times that are not exponentially large in the system size N .
8The function h(t) must be a monotonously increasing function. The asymptotic reparametrization invariance is a key property

of the dynamical equations [27].
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Figure 20: Left panel: parametric plot of integrate response function with respect to correlation function for
p = 3, ∆2 = 0.8 and ∆p = 0.2. The different lines represent different waiting time, t′. The black dashed line
correspond to the FDT prediction x = 1. The vertical dotted line is the point where we observe a kink, which
we denote by C = q̂EA and should be equal to the saddle point value of qM as extracted from the 1RSB threshold
states in the replica computation [27]: q̂EA = 0.633 and qM = 0.638. For C smaller than qEA the FDT is violated
and is replaced by a generalized version as in Eq. (112). We can obtain the value of the FDT ratio from a fit of
the slope of the asymptotic curves for C < q̂EA. We obtain x̂ = 0.397 which should be compared with the Parisi
parameter that corresponds to 1RSB marginally stable states obtained from the replica computation that is
x = 0.408. Right panel: parametric plot of the integrated response as a function of the correlation for p = 3
and ∆2 = 1.4 and ∆p = 0.2. In this case the value of the FDT ratio extracted from fitting the data is x̂ = 0.397
to be compared with the value of the Parisi parameter for the 1RSB threshold states that is x = 0.408. At the
same time data gives q̂EA = 0.633 while the replica computation gives qM = 0.638.

approach. In order to test this picture we follow Cugliandolo and Kurchan [69] and we plot the integrated
response F(t, t′) = −

∫ t
t′ R(t, t′′)dt′′ as a function of C(t, t′) in a parametric way. This is done in Fig. 20.

If FDT holds at all timescales, one should see a straight line with slope −1. Instead what we see in the
Langevin hard phase is that for large values of t′ the curves approach asymptotically for t′ � 1 two straight
lines. For high values of C, meaning for short time differences t− t′ ∼ O(1), the slope of the straight line is −1
which means that F = 1−C as implied by the short time FDT relation. On longer timescales FDT is violated,
confirming the glassiness of the Langevin hard phase. By doing a linear fit we can use the data plotted in Fig. 20
to estimate the FDT ratio x appearing in Eq. (112). This can be compared with the Parisi parameter x for
which we have marginally stable 1RSB states. We find an overall very good agreement (data coming from the
fit is reported in the caption of Fig. 20). The small discrepancy between the two values of x can be either due
to the numerical accuracy in solving the dynamical equations as well as the possibility that the 1RSB threshold
is not exactly the one that characterizes the long time dynamics. Further investigations are needed to clarify
this point. Finally, according to [27] the value of C at which the two straight line cross should coincide with the
value of qM computed for the threshold states within the 1RSB solution. Again we find a very good agreement.
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