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We study the problem of folding of the regular triangular lattice in the presence of

bending rigidity K and magnetic field h (conjugate to the local normal vectors to the

triangles). A numerical study of the transfer matrix of the problem shows the existence

of three first order transition lines in the (K, h) plane separating three phases: a folded

phase, a phase frozen in the completely flat configuration (with all normal vectors pointing

up) and its mirror image (all normal vectors pointing down). At zero magnetic field, a first

order folding transition is found at a positive value Kc ≃ 0.11(1) of the bending rigidity,

corresponding to a triple point in the phase diagram.
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1. Introduction

It is tempting to try to describe geometrical objects like polymers (1D) or membranes

(2D) in analogy with spin systems. Natural spin variables are provided for instance by

the local normal or tangent vectors to the object, while elastic properties like bending

rigidity naturally translate into some nearest neighbor spin coupling. However, the cor-

respondence between geometrical objects and spin systems can be subtle, especially in

two dimensions, where geometric constraints on, say, the normals to the membrane imply

local constraints on the associated spin variables. Such constraints play a crucial role for

tethered membranes, i.e. 2D polymerized networks with fixed connectivity, since they

induce a crumpling transition by stabilizing an ordered phase in a region where the un-

constrained spin system would be disordered. This phenomenon was recognized in [1-5],

where a continuous crumpling transition is predicted.

Such a drastic change of statistical behavior is observed in the present paper, where we

consider a spin system describing the thermodynamics of folding of the regular triangular

lattice, a problem first considered in [6]. Considered as a geometrical object, the lattice

describes a tethered membrane skeleton, made of rigid bonds along which folds can be

performed. Here we consider only complete foldings which result in two–dimensional folded

configurations of the membrane. In such a process, each bond serves as a hinge between

its two neighboring triangles, and is in either one of the two states: folded (with the

two neighboring triangles face to face) or not (side by side)1. A folding configuration

(folded state) of the system is entirely specified by the list of its folded bonds. This

definition corresponds to a “phantom” membrane, where the folding process may imply

self–intersections, and where one cannot distinghish in the folded state between different

piling orders for superimposed triangles.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 1: The eleven local fold environments for a vertex. Folds are represented
by thick lines. One of the two possible spin configurations on the triangles is
also indicated.

1 We refer the reader to [6-7] for a more formal definition of folding.
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With this simplified definition, our folding problem can be formulated as an eleven

vertex model, expressing that the immediate surroundings of a vertex in a folded state must

be in one of the eleven local configurations depicted on Fig.1. In spite of its local definition,

folding is a highly non–local operation. As explained in [7], we note that whenever a bond

is folded, say, on the left half of a vertex, then another bond is folded on the right half,

hence folds propagate throughout the lattice.

In a previous work [7], we have computed the exact thermodynamic entropy per

triangle which counts the number Zf of folded configurations for a finite lattice made of

Nt triangles for large Nt → ∞. This was done by mapping the eleven vertex model above

onto the three–coloring problem of the triangular lattice bonds, solved exactly by Baxter

[9] in its dual version, the three–coloring of the hexagonal lattice. The result reads

s ≡ lim
Nt→∞

1

Nt
Log Zf ≡ Log q

q =

∞
∏

p=1

3p− 1
√

3p(3p− 2)
=

√
3

2π
Γ(1/3)3/2 = 1.20872... .

(1.1)

As mentioned above, we will rather use here the alternative description of the model

in terms of Ising spin variables σ = ±1 defined on the triangles, and indicating whether

they face up or down in the folded state. One can think of the spin as the normal vector to

the triangle. Spin configurations are given together with the fold configurations on Fig.1.

Note that there are two spin configurations for each folded state, due to the degeneracy

under reversal of all spins, hence the partition function Z of the spin system is twice that

of the eleven vertex model: Z = 2Zf . It is clear from Fig.1 that the only allowed vertex

environments are those with exactly 0, 3 or 6 surrounding up spins. In order for a spin

configuration to correspond to a folded state, the six spins σi around any vertex v must

satisfy the local constraint

Σv ≡
∑

i around v

σi = 0 mod 3 , (1.2)

since Σv = 2( number of up spins) − 6 is a multiple of 3 iff the number of up spins itself

is a multiple of 3. Beyond the above counting of the number of allowed constrained

spin configurations, it would be desirable to understand the effect of a bending energy

for the folds, characterizing the rigidity of the membrane. In the spin language, this

means the presence of a ferromagnetic Ising–like interaction energy−Jσiσj between nearest
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neighbors. Most properties of the folded tethered membrane can in fact be investigated

by studying the magnetic behavior of our constrained Ising spin system. The average

magnetization M of the system is indeed an order parameter which is characteristic of the

flatness of the membrane (|M | > 0 for a configuration which is flat in average, and M = 0

for a configuration which is folded in average). This suggests to introduce a magnetic field

H in the system (with energy −Hσi per triangle), with no direct physical meaning for the

membrane, but instrumental in revealing information on its average state of folding. In

the following, we will therefore consider the constrained Ising model with Hamiltonian

HIsing = −J
∑

(ij)

σiσj −H
∑

i

σi . (1.3)

For convenience we will use the reduced coupling and magnetic field

K ≡ J/kBT ; h ≡ H/kBT . (1.4)

In our study of this model, we will give numerical and theoretical evidence for the existence

of a first order transition line in the (K, h) plane, between an ordered phase M = 1 (for

h > 0) where the membrane is completely flat, and a disordered phase M = 0, where the

membrane is folded and has a non–vanishing entropy. The most surprising fact is that we

find no intermediary magnetization of the system in the thermodynamic limit. For h = 0,

a first order folding transition still takes place, at a critical value Kc of the reduced Ising

coupling K. All these results clearly show a drastic modification of the thermodynamics

of the standard Ising model, emphasizing the special role played by the constraint (1.2).

The paper is organized as follows. In section 2, we describe the transfer matrix that we

shall use for numerical simulations on the thermodynamics of the constrained spin system,

and show how to take advantage of some particular properties of this matrix. The results

for the magnetization in the presence of a magnetic field are discussed in section 3, and

lead us to formulate the abovementioned two phase (M = 0, 1) hypothesis. Under this

assumption, we also derive a simple argument to calculate the critical value of the magnetic

field where the transition between these phases takes place. Section 4 is dedicated to the

precise study of the first order transition line in the thermodynamic limit. In particular,

we find the critical value Kc beyond which the M = 1 phase persists even at zero magnetic

field. We discuss the general phase diagram of the system in section 5, and gather more

evidence for the first order character of the transition. Related topics are discussed in

section 6, including the exact solution for the square lattice as well as some predictions of

a possible antiferromagnetic transition within the M = 0 phase, for negative K. Section 7

is a brief conclusion.
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2. Transfer matrix description

We consider the folding of an infinite strip of triangular lattice of finite width L, with

free boundary conditions on the edges of the strip. Imposing periodic boundary conditions

at infinity, the partition function of the model is expressed as

Z(L)(K, h) = lim
N→∞

[

Tr(T (L)(K, h)N)
]

1

N , (2.1)

where T (L) denotes the transfer matrix, acting as an operator on a column of size L, whose

state is specified by the 2L spin values σi = ±1, i = 1, .., 2L on the triangles.

... ..
.

σ

σ

σ

σ

σ

σ σ

σ1 σ1
22

33
4 4

2L’

’
’

’
’

2Lσ

L

Fig. 2: The transfer matrix T (L).

The matrix element of T (L) between two consecutive columns, as depicted on Fig.2,

reads

T
(L)
{σ′},{σ}(K, h) = T

(L)
{σ′},{σ}(0, 0) U

(L)
{σ′},{σ}(K) V

(L)
{σ′},{σ}(h),

where T (L)(0, 0) imposes the local folding constraint (1.2) on the six spins surrounding

each of the L − 1 inner vertices (marked by black dots on Fig.2 ), and U (L) and V (L) are

the usual temperature and magnetic field contributions to the transfer matrix of the Ising

model, namely

T
(L)
{σ′},{σ}(0, 0) =

L−1
∏

i=1

δ(σ2i + σ2i+1 + σ2i+2 + σ′
2i−1 + σ′

2i + σ′
2i+1 mod 3)

U
(L)
{σ′},{σ}(K) = exp(

K

2

2L−1
∑

i=1

(σiσi+1 + σ′
iσ

′
i+1) +K

L
∑

i=1

σ2iσ
′
2i−1)

V
(L)
{σ′},{σ}(h) = exp(

h

2

2L
∑

i=1

(σi + σ′
i)),
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with δ(x) the usual Kronecker delta function on integers.

In the large N limit, the partition function (2.1) is dominated by the largest eigenvalue

of T (L)(K, h), which we denote by λ
(L)
max(K, h), and the corresponding free energy per

triangle reads

−F (L)(K, h) =
1

2L
LogZ(L)(K, h) =

1

2L
Log λ(L)

max(K, h) .

The thermodynamic free energy per triangle is then defined as the L → ∞ limit

−F (K, h) = lim
L→∞

1

2L
Log λ(L)

max(K, h) . (2.2)

Our main task is therefore the numerical extraction of this eigenvalue, together with the

corresponding eigenvector v
(L)
max(K, h). We will also be interested in evaluating the sub-

leading eigenvalue λ
(L)
sub(K, h).

The analysis can be simplified in view of the following properties of the transfer matrix.

Due to the local constraint on the spin variables, the matrix T (L)(K, h), of size 22L × 22L,

is sparse. The exact number NL of non–zero entries of T (L) is easily computed by using

the vertical transfer matrix of size 2, T (2)(0, 0), namely

NL =
∑

{σ′},{σ}

[

T (2)(0, 0)L
]

{σ′},{σ}

.

Diagonalizing T (2) exactly, we find

NL =
1

2

[(

7 +
√
17

2

)L{
11 + 3

√
17√

17

}

−
(

7−
√
17

2

)L{
11− 3

√
17√

17

}]

.

The first values of NL are given in Table I below. NL grows like (5.56..)L ≪ 16L, which

justifies the use of a diagonalization algorithm adapted to sparse matrices: starting from a

given vector, we compute recursively its iterated image by T , which we moreover normalize

at each step; the process converges to the eigenvector vmax associated to λmax. The

subleading eigenvalue λsub is obtained by use of the same algorithm, together with a

suitable projection procedure, guaranteeing at each step that we substract the component

along the maximum eigenvector. This projection procedure is made easy by the following

symmetry property of the transfer matrix. Consider the picture of Fig.2, and rotate it by

180 degrees. One gets an identity between two transfer matrix elements, namely

T (L)(K, h)σ′

1
,σ′

2
,...,σ′

2L
;σ1,σ2,...,σ2L

= T (L)(K, h)σ2L,...,σ2,σ1;σ′

2L
,...,σ′

2
,σ′

1
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This can be recast into T (L)(K, h)T = RT (L)(K, h)R, where R is an involution, with

matrix elements

Rσ′

1
,σ′

2
,...,σ′

2L
;σ1,σ2,...,σ2L

=

2L
∏

i=1

δ(σ′
i − σ2L+1−i).

Any eigenvector v with eigenvalue λ < λmax is then clearly orthogonal to Rvmax. To

project out the vmax component off a given vector w, one simply has to perform the

substitution

w → w − (Rvmax|w)
(Rvmax|vmax)

vmax.

From the knowledge of the eigenvector v
(L)
max(K, h), we can get the expectation value of

local observables of the system. For instance, the magnetization M is obtained as follows.

The magnetization operator µ acts diagonally on the columns of 2L spins, with diagonal

elements µ{σ},{σ} =
∑2L

i=1 σi. In the N → ∞ limit, its expectation value M = 〈µ〉 reads

M =
(Rv

(L)
max(K, h)|µ v

(L)
max(K, h))

(Rv
(L)
max(K, h)|v(L)

max(K, h))
. (2.3)

As a test of the precision of our algorithms, we first compute λ
(L)
max(0, 0) for various

sizes L = 2, 3, .., 9. The results are summarized in Table I.

L NL λ
(L)
max(0, 0)

2 88 5.56155281

3 488 7.89397081

4 2712 11.32598261

5 15080 16.34742307

6 83864 23.67855022

7 466408 34.37351897

8 2593944 49.97256996

9 14426344 72.72483625

Table I: The number NL of non–vanishing transfer matrix elements and

the maximum eigenvalue λmax for strips of width L = 2, 3, .., 9.
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This leads to an estimate2 for the thermodynamic entropy per site −F (0, 0) = Log q, with

q = 1.208.., in very good agreement with a previous numerical estimate [6], and with the

exact result (1.1).

3. Magnetization, critical magnetic field and the two phase hypothesis

As mentioned above, the magnetization M of the system is an order parameter for

the flatness of the lattice. At K = 0, h = 0 the system is folded in average, with a

non–vanishing folding entropy −F (0, 0), therefore the magnetization M (2.3) vanishes

identically. On the other hand, we will have M → 1 for sufficiently large h > 0.

0.0 0.1 0.2 0.3 0.4
0.0

0.5

1.0

M
ag

ne
tiz

ati
on

 M
    

 

0.0 0.1 0.2 0.3 0.4
0.0

0.5

1.0

K=0 K=0

L=4 L=6

Magnetic field h

Fig. 3: Magnetization M versus magnetic field h for L = 4 and 6. The four
curves correspond respectively (from the right to the left) to exp(K/2) =
1 (K = 0) , 1.0333.., 1.0666.. and 1.1. The dashed vertical lines indicate the

critical magnetic field h
(L)
c as predicted by eqn.(3.1).

Fig.3 represents the magnetization M versus the magnetic field h ≥ 0, computed

through the formula (2.3) for strips of width L = 4 and 6, for several values of K, in the

range [0, 0.2]. It clearly appears, and even more so for the larger L, that the magnetization

tends to remain zero over a finite range of (small enough) magnetic fields, and then abruptly

jumps to 1 when h reaches some critical value h
(L)
c (K). Moreover, this critical field h

(L)
c (K)

2 We obtain the value of q as the limit of the sequence qL =

√

λ
(L+1)
max /λ

(L)
max, extracted by the

Aitken delta–2 algorithm (exponential fit).
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is maximal for K = 0 and decreases with increasing K. For a given K, h
(L)
c (K) also

decreases with increasing L, eventually reaching its thermodynamic limit hc(K) for L →
∞.

This somewhat unexpectedly rapid change in M is the first tangible sign of the ex-

istence of a first order magnetic transition in the system. At this point, it is reasonable

to infer that in the thermodynamic limit L → ∞, and for a given coupling K ≥ 0, the

magnetization M is exactly zero for 0 ≤ h < hc(K), and exactly one for h > hc(K), being

therefore discontinuous at h = hc(K), with hc(K) a decreasing function of K. Indeed all

our results in the following will corroborate this picture of a first order transition between

two phases with respectively M = 0 and M = 1, without any possible intermediate value

of the magnetization.

A first check of the above two phase hypothesis is actually provided by the possible

derivation of the value of the critical magnetic field through the following simple theoretical

argument. Suppose that for large enough but finite strip width L, we can already describe

the system in terms of two phases M = 0 and M = 1. In the phase M = 0 (h < h
(L)
c (K)),

the system is insensitive to the value of the magnetic field h, its partition function is

therefore given by Z(L)(K, h) ≃ Z(L)(K, 0) = exp
(

− 2LF (L)(K, 0)
)

. In the flat phase

M = 1 (h > h
(L)
c (K)), the partition function is that of the pure state with all spins up,

hence reads Z(L)(K, h) ≃ exp
(

(3L − 1)K + 2Lh
)

, since 3L − 1 bonds separate the 2L

triangles. The phase transition is then predicted to occur at the critical value of the field

h where the free energies of the two phases are identical, namely

h(L)
c (K) = −F (L)(K, 0)− K

2

(

3− 1

L

)

, (3.1)

where −F (L)(K, 0) = 1
2LLog λ

(L)
max(K, 0) can now be calculated numerically, directly from

the zero magnetic field transfer matrix. The corresponding predicted values of the critical

field are represented on Fig.3 by dashed vertical lines, for the various values of K and L.

The agreement with the observed transition point is excellent. In the following, we shall

therefore consider h
(L)
c (K) of eqn.(3.1) as giving the exact location of the transition point.
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0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
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0.0

0.1

0.2

0.3
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h c(L

)

L=2

L=8

Fig. 4: The critical magnetic field h
(L)
c (K) resulting from eqn.(3.1), and the

purported thermodynamic limit hc(K) (dashed line).

4. Transition line and critical coupling Kc

We are now interested in understanding the thermodynamic critical line hc(K) sepa-

rating, in the (K, h) phase diagram, the M = 0 and M = 1 phases.

On Fig.4, we have represented the curves h
(L)
c (K) as given by eqn.(3.1) for L =

2, 3, ..., 8 and K ∈ [0, 0.36]. These curves enjoy the following properties. Eqn.(3.1) ex-

presses the critical field h
(L)
c (K) as the difference between the total zero field free energy

and that of a particular state (the flat M = 1 state): h
(L)
c (K) is therefore positive. It

is also clear that h
(L)
c (K) → 0 when K → ∞ as the system gets fully ordered for strong

coupling. Finally h
(L)
c (K) is a decreasing function of K, indeed

dh
(L)
c (K)

dK
=

1

2L

∑

(ij)

(

〈σiσj〉(K,0) − 1
)

= E(L)(K, 0)− 1

2

(

3− 1

L

)

,

(4.1)

where the sum extends over the 3L− 1 active bonds (ij) of a column of 2L triangles, and

E(L)(K, 0) is the zero field average energy per triangle of a strip of width L. As 〈σiσj〉 is
always smaller or equal to one, we deduce that h

(L)
c (K) decreases with increasing K.
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When L → ∞, the curves h
(L)
c (K) of Fig.4 tend to the thermodynamic critical line

hc(K). The properties mentioned above for finite L naturally extend to the thermodynamic

limit. The critical field, now given by

hc(K) = −F (K, 0)− 3

2
K , (4.2)

is thus positive or zero. At K = 0, h
(L)
c (0) is nothing but the entropy per triangle

−F (L)(0, 0) = 1
2L

Log λ
(L)
max(0, 0), with λ

(L)
max(0, 0) given in Table I. Consequently, in the

thermodynamic limit L → ∞, we have the exact result

hc(0) = Log q = .189... , (4.3)

the transition thus taking place at a non–zero value of h. By continuity, hc(K) will remain

strictly positive for small positive K. Differentiating eqn.(4.2), we get

dhc(K)

dK
=

3

2
(〈σiσj〉(K,0) − 1)

= E(K, 0)− 3

2
,

(4.4)

where 〈σiσj〉 denotes the correlation function of any two neighbouring spins, and E(K, 0)

is the zero field average energy per triangle of the system. Again, as 〈σiσj〉 is always

smaller or equal to one, we deduce that hc(K) is a non–increasing function. Note that

eqn.(4.4) is nothing but the Clapeyron relation

d

dK
hc(K) = − E1 − E0

M1 −M0
,

where Ei (resp. Mi) denotes the Ising bending energy (resp. magnetization) in the phase

i = 0 or 1 on each side of the critical line.

Once hc(K) is known, the h dependence of the system is determined since

−F (K, h) =

{

−F (K, 0) h < hc(K)
3
2K + h h > hc(K)

(4.5)

In turn from eqn.(4.2), hc(K) is encoded in the zero field free energy −F (K, 0).

A new interesting phenomenon can be read off Fig.4. For large enough L, the decrease

to zero of h
(L)
c (K) with increasing K takes place over a finite interval [0, K

(L)
c ], with h

(L)
c ≃

0 for K > K
(L)
c . This is best seen on Fig.5 which represents the curves dh

(L)
c (K)/dK =

E(L)(K, 0)−(3L− 1)/2L for L = 2, 3, ..., 8 andK ∈ [0, 0.36]. One clearly sees a jump in the

10



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
K

-2.00

-1.50

-1.00

-0.50

0.00

dh
c(L

) /dK

L=2

L=8
KC

(8)

Fig. 5: dh
(L)
c (K)/dK = E(L)(K, 0) − (3L− 1)/2L, for L = 2, 3, ..., 8 and

K ∈ [0, 0.36].

slope of h
(L)
c (K) from a finite value (≃ −1.2 for L = 8) to 0. Moreover the intersections

of the various curves provide us with estimates of the critical values K
(L)
c . The latter

decrease with L and converge to a limiting value Kc ≃ 0.1.

In the thermodynamic picture, this means the existence of a critical value Kc of the

coupling K, such that hc(Kc) = 0 (i.e. −F (Kc, 0) = 3
2
Kc), and thus hc(K) = 0 for all

K > Kc. On Fig.4, we have represented in dashed line the curve hc(K) as obtained by

extrapolating3 to L = ∞ the values of h
(L)
c (K) at fixed K. This direct extrapolation

confirms the emergence of a critical Kc and predicts a value Kc = 0.11(1). From Fig.5, it

corresponds to E(Kc, 0) ≃ 0, i.e. a vanishing nearest neighbor spin correlation 〈σiσj〉 ≃ 0.

3 Like for our numerical estimate of q, we obtain the value hc(K) as the logarithm of the limit

of the sequence qL(K) = exp(L+ 1)h
(L+1)
c (K)/ expLh

(L)
c (K), extracted by the Aitken delta–2

algorithm.

11



h

K0.2 0.3

0.1

0.2

0.3

-0.1

-0.2

-0.3

0 0.1

M=-1

M=0 Kc

M=+1

folded

flat

flat

Fig. 6: Phase diagram in the (K, h) plane. Three first order lines h =
hc(K),−hc(K) (K < Kc) and h = 0 (K > Kc) separate the three phases
M = 0, ±1 and meet at the triple point (Kc, 0). The dashed line represents
a constant magnetic field line, which crosses the transition line h = hc(K) at
a critical value Kc(h).

5. Phase diagram

Our results are summarized on Fig.6, representing the phase diagram of the sytem in

the (K, h) plane. We extended the range of h and K to include real negative values. The

phase diagram is clearly symmetric under h → −h, while a negative K simply corresponds

to an antiferromagnetic Ising coupling, which favorizes folding. Three first order transition

lines h = hc(K), −hc(K) (K < Kc), and h = 0 (K > Kc) separate the three phases

M = 0, ±1. The line hc(K) naturally extends to negative K through eqn.(3.1). For large

negative K, the M = 0 phase is dominated by the two pure antiferromagnetic states with

alternating spins, with free energy −F (K, 0) → −3
2K, hence hc(K) ∼ −3K for K → −∞.

We expect nothing special to occur at K = 0 for the line hc(K), where we have the exact

result hc(0) = Log q = .189.... Instead our study predicts the existence of a triple point

(Kc, 0) at the positive value Kc ≃ .11(1). For the physical zero magnetic field membrane

problem, this corresponds to a first order folding transition at K = Kc. Within the domain

M = 0, the system is insensitive to the magnetic field h. Along the constant magnetic

field dashed line of Fig.6, with K increasing from −∞, the free energy of the system is

12



−F (K, 0) until one reaches the critical line K = Kc(h) (inverse of h = hc(K)), beyond

which the free energy becomes the linear function −F (K, h) = 3
2K + h.

0.00 0.05 0.10
K

0.21

0.25

0.29

(L
og

 λ(6)

ma
x,s

ub
)/1

2

exp(h)=1.1
exp(h)=1.2

Fig. 7: Plot in dashed lines of 1
2LLog λ

(L)
max,sub(K, h) for L = 6, exp(h) = 1.1

(short dashes) and exp(h) = 1.2 (long dashes), and K ∈ [0, 0.15]. The solid

lines represent the free energies −F
(6)
1 (K, h) = h+17K/12, and −F

(6)
0 (K, 0).

The crossings occur at the critical couplings K
(6)
c (Log 1.2) ≃ 0.05 and

K
(6)
c (Log 1.1) ≃ 0.10.

As usual for first order transitions in the transfer matrix formalism, this change of

behavior results from the crossing of the two largest eigenvalues λmax and λsub of the

transfer matrix T in the thermodynamic limit. Indeed this is already visible for finite L, as

exemplified on Fig.7, where we plot for L = 6 (in dashed lines) the two leading eigenvalues

of T (6)(K, h) for two different positive values of h, in the vicinity of the corresponding

critical points K
(6)
c (h). One clearly sees the exchange of the two eigenvalues with

1

2L
Log

{

λmax

λsub

}

=















{

−F
(L)
0

−F
(L)
1

}

K < K
(L)
c (h)

{

−F
(L)
1

−F
(L)
0

}

K > K
(L)
c (h)

,
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where −F
(L)
1 (K, h) = h+ (3L− 1)K/2L, and −F

(L)
0 (K, h) = −F (L)(K, 0) denote respec-

tively the free energy in the phase with magnetization M = 1 and 0, represented for L = 6

on Fig.7 in solid lines.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
K

-0.5

0.0

0.5

1.0

1.5

E(6)
(K

,h)

exp(h)=1.0
exp(h)=1.1
exp(h)=1.2

17/12

Fig. 8: Finite (dashed) and zero (solid) field energy versus Ising coupling,
for L = 6 and exp(h) = 1.2, 1.1, 1 respectively, and K ∈ [0, 0.36].

The change of behavior of the free energy along a constant–field line at Kc(h) is

confirmed at finite L by the plot of its derivative w.r.t. K, the Ising energy E(L)(K, h) =

−∂KF (L)(K, h), which we represent on Fig.8 for exp(h) = 1, 1.1, 1.2 and L = 6. We clearly

see that the finite field energies E(6)(K, h) exactly match the zero field energy E(6)(K, 0)

before K reaches the critical value K
(6)
c (h), where they abruptly jump (the more so for

higher h) to the asymptotic value (3× 6− 1)/(2× 6) = 17/12.

The corresponding specific heat C
(L)
v (K, h) = ∂KE(L)(K, h) is represented on Fig.9

for L = 6 in dashed (exp(h) = 1.1, 1.2) and thick solid (exp(h) = 1) lines. As expected, the

finite field specific heats match the zero field specific heat until K reaches K
(6)
c (h), where

they exhibit a delta–function peak, before immediately (the more so for higher h) reaching

a zero value. The peak for h = 0 seems to be qualitatively different from that for finite

h. To see how this peak develops as the size L grows, we have represented on the same

figure the zero field specific heat for L = 2, 3, ..., 8 in thin solid lines. The smoothness of
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Fig. 9: Specific heat C
(6)
v (K, h) for exp(h) = 1 (thick solid line), 1.1 and 1.2

(dashed lines) and C
(L)
v (K, 0) for L = 2, 3, ..., 8, for K ∈ [0, 0.36].

the curves might be the sign of some extra divergence on top of the delta–function in the

thermodynamic specific heat Cv(K, 0), possibly of the form Cv(K, 0) ∼ (Kc −K)−α when

K approaches the triple point from below. Our data do not allow us at present to reach

any conclusion on this point.

6. Discussion

The main result of this paper is the phase diagram of Fig.6. In particular, the ex-

istence of a triple point (K = Kc > 0, h = 0) at the boundary of the three phases with

magnetization M = 0, ±1 is a non–trivial outcome of our study. It is interesting to note

that a very similar picture can be obtained exactly4 in the case of the folding of the square

lattice. As already noted in [6], the thermodynamic entropy of folding −Fsquare(0, 0) of

4 An exact solution can be obtained for instance by using a transfer matrix which is diagonal

in terms of folded line variables.
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the square lattice vanishes, due to the very strong constraint that, for this particular lat-

tice, folds must propagate along straight lines, all the way through the lattice. A folded

state of the square lattice is entirely specified by the data of its folded horizontal and

vertical lines. For a square lattice of size L × L, this leads to a free energy per square

−Fsquare(0, 0) = limL→∞
1
L2Log 4L = 0, as annouced. Like in the triangular case, the

square lattice folding problem is easily transformed into a (face) square lattice Ising spin

system, with the local constraint that there are exactly 0, 2 or 4 spins up around each

vertex. The zero field thermodynamic free energy −Fsquare(K, 0) per square at an arbi-

trary value of the reduced Ising coupling K is easily obtained as follows: at K = 0, it

vanishes; for K → ∞, it tends to the flat state value 2K; for K → −∞, it tends to the

completely folded state value −2K. From the usual convexity property of −F , we conclude

that necessarily

−Fsquare(K, 0) = 2|K| .

The free energy appears here simply as a competition between the contribution of the

completely folded state −F0(K, 0) = −2K and that of the flat state −F1(K, 0) = 2K,

with −Fsquare(K, 0) = Max(−F0,−F1). Analogously, in the presence of a finite positive

magnetic field h, the free energy results from the competition between the contribution of

the completely folded state, insensitive to h, −F0(K, h) = −2K, and that of the flat (all

spins up) state −F1(K, h) = 2K + h. This yields

−Fsquare(K, h) = Max
(

− F0(K, h),−F1(K, h)
)

=

{

−2K K < −h/4
2K + h K > −h/4

.

Consequently the system undergoes a first order phase transition from the completely

folded state with magnetization M = 0 to the flat state with M = 1, along the critical line

hc,square(K) = 2(|K| −K) ,

the square lattice analogue of eqn.(3.1).

As shown on the resulting phase diagram of Fig.10, the qualitative behavior of the

system is very similar to the triangular case discussed above, corroborating a posteriori

the diagram of Fig.6. A crucial difference is that the triple point now sits at the origin of

the (K, h) plane, i.e. Kc,square = 0. Consequently no folding transition occurs at positive

K for the square lattice, which remains flat. That Kc is positive for the triangular lattice

follows directly from the positivity of the entropy at K = 0, which makes the triangular

case more interesting.
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Fig. 10: Phase diagram of the square lattice folding problem.

A surprising outcome of our study of the triangular lattice case is the absence of

intermediate magnetization states between M = 0 and M = 1. Denoting by −Fm(K, 0)

the contribution of the configurations with magnetization M = m to the zero field free

energy, a sufficient condition for having no intermediate magnetization is that the critical

field hc,m(K) governing the transition between the M = 0 and an hypothetical M = m

phase be always larger than hc,1(K) = hc(K), for K < Kc, namely

hc,m(K) =
−F (K, 0) + Fm(K, 0)

m
> hc,1(K) = −F (K, 0) +

3

2
K ,

with m < 1. The freezing of the system for K > Kc in, say, the M = 1 phase is probably

a consequence of the intrinsically non–local character of the folding constraint, preventing

the creation of bounded domains of down spins inside a groundstate of up spins.

The stability of the M = 0 phase at positive K in the presence of a magnetic field

h < hc(K) is more surprising. A way of refining the study of the M = 0 phase is to

introduce a new order parameter, the staggered magnetization

Mst =
1

Nt
〈
(

∑

△

σi −
∑

▽

σi

)

〉,

where the sum alternates between triangles pointing up and down in the lattice. One can

then distinguish between the disordered folded state Mst = 0 and a compactly ordered

folded state Mst > 0 where the triangles start to pile up. In the presence of a staggered

magnetic field, we expect the system to behave qualitatively like an antiferromagnetic
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Fig. 11: Heat capacity C
(L)
v (K, 0) for L = 4, 6, 8 and K ∈ [−0.8, 0].

(face) triangular Ising model, with a continuous “piling” transition at some negative value

of the coupling Kc,st < 0.

Indeed, as explained in [7], the situation is very different when we start to unfold the

antiferromagnetic Mst = 1 groundstate than when we try to fold the ferromagnetic M = 1

one. Local deformations of the completely folded groundstate are allowed and enable a

“low temperature” (large negative K) expansion in terms of a gas of loops of unfolded

bonds, quite similar to the standard loop gas expansion of the Ising model. As far as

numerical results are concerned, we only see on Fig.11 the slow emergence of a peak in the

specific heat at a value Kc,st ≃ −0.3. At K = 0, an exact solution [9] predicts a disordered

folded state Mst = 0 with finite staggered susceptibility.

7. Conclusion

In this paper, we have derived the phase diagram of the constrained spin system

describing the folding of the triangular lattice. In the presence of a magnetic field, we found

a critical line along which a first order transition takes place between a zero magnetization

phase and the M = 1 pure state, terminating at a triple point (K = Kc, h = 0). This

18



transition persists at zero magnetic field, now driven by the coupling K, and can be

interpreted as a first order folding transition between a folded phase and the completely

flat state of the lattice. The latter is reminiscent of the crumpling transition of tethered

membranes [1-4], which is however continuous rather than first order.

The phase diagrams of Fig.6 and 10 are very far from the usual unconstrained Ising

ones. It would be interesting to investigate the role of the local folding constraint by

applying it gradually to the Ising model, and by looking at the deformation of the phase

diagram. In this framework, one should be able to follow the evolution of the system from

a continuous second order phase transition to a first order one. Note that in the square

case both the Ising and constrained models are special cases of the eight vertex model in

an electric field, yet to be solved.
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