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C.E. Saclay

F-91191 Gif-sur-Yvette, France

Abstract

We consider a model of D-dimensional tethered manifold interacting by excluded volume in

IRd with a single point. By use of intrinsic distance geometry, we first provide a rigorous definition

of the analytic continuation of its perturbative expansion for arbitrary D, 0<D< 2. We then

construct explicitly a renormalization operation R, ensuring renormalizability to all orders. This

is the first example of mathematical construction and renormalization for an interacting extended

object with continuous internal dimension, encompassing field theory.
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The Statistical Mechanics of random surfaces and membranes, or more generally of

extended objects, poses fundamental problems [1]. Among those, the study of polymerized

membranes, which are simple generalizations of linear polymers [2,3] to two-dimensionally

connected networks, is prominent, with a number of possible experimental realizations [4,5].

From a theoretical point of view, a clear challenge is to understand self-avoidance (SA)

effects in membranes. Recently, a model was proposed [6,7] which aimed to incorporate

the advances made in polymer theory by Renormalization Group methods into the field of

polymerized, or tethered membranes. These extended objects, a priori two-dimensional in

nature, are generalized for theoretical purposes to intrinsically D- dimensional manifolds

with internal points x ∈ IRD, embedded in external d-dimensional space with position

vector ~r(x) ∈ IRd. The associated continuum Hamiltonian H generalizes that of Edwards

for polymers [2]:

βH =
1

2

∫

dDx
(

∇x~r(x)
)2

+
b

2

∫

dDx

∫

dDx′ δd
(

~r(x)−~r(x′)
)

, (1)

with an elastic Gaussian term and a self-avoidance two-body δ-potential with interaction

parameter b > 0. For 0 < D < 2, the Gaussian manifold (b = 0) is crumpled with a finite

Hausdorff dimension dH = 2D/(2−D); and the finiteness of the upper critical dimension

d⋆ = 2dH for the SA-interaction allows for an ǫ-expansion about d⋆ [6–8], performed via a

direct renormalization method adapted from that of des Cloizeaux in polymer theory [9].

It should be stressed however that only the polymer case, with an integer internal

dimension D = 1, can be mapped, following de Gennes [10], onto a standard field theory,

namely a (Φ2)2 theory for a field Φ with n → 0 components. This is instrumental to

show that the direct renormalization method for polymers is mathematically sound [11],

and equivalent to rigorous renormalization schemes in standard local field theory, such

as the landmark Bogoliubov Parasiuk Hepp Zimmermann (BPHZ) construction [12]. For

manifold theory, we have to deal with non-integer internal dimension D, D 6= 1, where

no such mapping exists. Therefore, two outstanding problems remain in the theory of

interacting manifolds: (a) the mathematical meaning of a continuous internal dimension

D; (b) the actual renormalizability of the perturbative expansion of a manifold model like

(1), implying scaling as expected on physical grounds.

A first answer was brought up in [13], where a simpler model of a crumpled manifold

interacting by excluded volume with a fixed Euclidean subspace of IRd was proposed. The

direct resummation of leading divergences of the perturbation series indeed validates there

one-loop renormalization, a result later extended to the Edwards model (1) [14].

1



In this Letter, we announce the results of an extensive study of these questions [15].

We first propose a mathematical construction of the D-dimensional internal measure dDx

via distance geometry within the elastic manifold, with expressions for manifold Feynman

integrals which generalize the α-parameter representation of field theory. In the case of

the manifold model of [13] , we then describe the essential properties which make it indeed

renormalizable to all orders by a renormalization of the coupling constant, and we directly

construct a renormalization operation, generalizing the BPHZ construction to manifolds.

The simplified model Hamiltonian introduced in [13] reads:

βH =
1

2

∫

dDx
(

∇x~r(x)
)2

+ b

∫

dDx δd
(

~r(x)
)

, (2)

with now a pointwise interaction of the Gaussian manifold with the origin. Notice that this

Hamiltonian also represents interactions of a fluctuating (possibly directed) manifold with

a nonfluctuating D′- Euclidean subspace of IRd+D′

, ~r then standing for the coordinates

transverse to this subspace. The excluded volume case (b > 0) parallels that of the

Edwards model (1) for SA-manifolds, while an attractive interaction (b < 0) is also possible,

describing pinning phenomena. The dimensions of ~r and b are respectively [~r] = [xν ] with

a size exponent ν ≡ (2 −D)/2, and [b] = [x−ǫ] with ǫ ≡ D − νd. For fixed D and ν, the

parameter d (or equivalently ǫ) controls the relevance of the interaction, with the exclusion

of a point only effective for d ≤ d⋆ = D/ν.

The model is described by its (connected) partition function Z = V−1
∫

D[~r] exp(−βH)

(here V is the internal volume of the manifold) and, for instance, by its one-point vertex

function Z(0)(~k)/Z =
∫

dDx0〈ei~k·~r(x0)〉, where the (connected) average 〈· · ·〉 is performed

with (2). Those functions are formally defined via their perturbative expansions in the

coupling constant b: Z =
∑∞

N=1
(−b)N

N ! ZN and a similar equation for Z(0) with coef-

ficients Z(0)
N . The term of order N , ZN , is a (b = 0) Gaussian average involving N

interaction points xi. This average is expressed solely in terms of the Green function

G(x, y) = −1
2
AD|x − y|2ν, solution of −∆xG(x, y) = δD(x − y), with AD a suitable nor-

malization, hereafter omitted. In the following, it is important to preserve the condition

0 < ν < 1 (i.e. 0 < D < 2), corresponding to the actual case of a crumpled manifold, and

where (−G) is positive and ultraviolet (UV) finite. A direct evaluation of ZN then leads

to its integral representation in terms of the normalized Gij ≡ −1
2 |xi − xj |2ν [13]:

ZN =
1

V

∫ N
∏

i=1

dDxi

(

det [Πij ]1≤i,j≤N−1

)− d
2

(3)
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where the matrix [Πij] is simply defined as Πij ≡ Gij −GNj −GiN with a reference point,

xN , the symmetry between the N points being restored in the determinant. The integral

representation of Z(0)
N is obtained from that of ZN by multiplying the integrand in (3) by

exp(−1
2
~k2∆(0)) with :

∆(0) ≡ det[Πij ]0≤i,j≤N−1

det[Πij ]1≤i,j≤N−1

, (4)

and integrating over one more position, x0. The resulting expression is quite similar to

that of the manifold Edwards model [14].

Analytic continuation in D of the Euclidean measure. Integrals like (3) are a

priori meaningful only for integer D. Still, an analytic continuation in D can be performed

by use of distance geometry. The key idea is to substitute to the internal Euclidean

coordinates xi the set of all mutual (squared) distances aij = (xi − xj)
2. This is possible

for integrands invariant under the group of Euclidean motions (as in (3) and (4)). For

N integration points, it also requires D large enough, i.e. D ≥ N − 1, such that N − 1

relative vectors spanning these points are linearly independent. We define the graph G as

the set G = {1, . . . , N} labelling the interaction points. Vertices i ∈ G will be remnants

of the original Euclidean points after analytic continuation, and index the distance matrix

[aij ]. The change of variables {xi}i∈G → a ≡ [aij] i<j
i,j∈G

reads explicitly [15]:

1

V

∫

IRD

∏

i∈G

dDxi · · · =

∫

AG

dµ
(D)
G (a) · · · , (5)

with the measure

dµ
(D)
G (a) ≡

∏

i<j
i,j∈G

daij Ω
(D)
N

(

PG(a)
)

D−N
2

, (6)

where N = |G|, Ω(D)
N ≡

∏N−2
K=0

SD−K

2K+1 (here SD = 2πD/2

Γ(D/2) is the volume of the unit sphere

in IRD), and

PG(a) ≡
(−1)N

2N−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 . . . 1
1 0 a12 . . . a1N
1 a12 0 . . . a2N
...

...
...

. . .
...

1 a1N a2N . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (7)

The factor Ω
(D)
N is the volume of the rotation group of the rigid simplex spanning the points

xi. The “Cayley-Menger determinant” [16] PG(a) is proportional to the squared Euclidean

volume of this simplex, a polynomial of degree N − 1 in the aij. The set a of squared
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distances has to fulfill the triangular inequalities and their generalizations: PK(a) ≥ 0

for all subgraphs K ⊂ G, which defines the domain of integration AG in (5). For real

D > |G| − 2, dµ
(D)
G (a) is a positive measure on AG, analytic in D. It is remarkable that,

as a distribution, it can be extended to 0 ≤ D ≤ |G| − 2 [15]. For integer D ≤ |G| − 2,

although the change of variables from xi to aij no longer exists, Eq.(6) still reconstructs

the correct measure, concentrated on D-dimensional submanifolds of IRN−1, i.e. PK = 0

if D ≤ |K| − 2 [15]. For example, when D → 1 for N = 3 vertices, we have, denoting the

distances |ij| = √
aij:

dµ
(D→1)
{1,2,3}(a)

d|12|d|13|d|23|
= 2 δ

(

|12|+|23|−|13|
)

+ perm

which indeed describes nested intervals in IR.

Another nice feature of this formalism is that the interaction determinants in (3) and

(4) are themselves Cayley-Menger determinants. We have indeed det [Πij ]1≤i,j≤N−1 =

PG(a
ν) where aν ≡ [aνij ] i<j

i,j∈G
is obtained by simply raising each squared distance to the

power ν. We arrive at the representation of “Feynman diagrams” in distance geometry:

ZN =

∫

AG

dµ
(D)
G IG , IG =

(

PG(a
ν)
)− d

2

Z(0)
N =

∫

AG∪{0}

dµ
(D)
G∪{0} I

(0)
G ,

I
(0)
G = IG exp

(

−1

2
~k2PG∪{0}(a

ν)

PG(aν)

)

,

(8)

which are D-dimensional extensions of the Schwinger α-parameter representation. We now

have to study the actual convergence of these integrals and, possibly, their renormalization.

Analysis of divergences. Large distance infrared (IR) divergences occur for mani-

folds of infinite size. One can keep a finite size, preserve symmetries and avoid boundary

effects by choosing as a manifold the D-dimensional sphere SD of radius R in IRD+1.

This amounts [15] in distance geometry to substituting to PG(a) the “spherical” polyno-

mial PS
G (a) ≡ PG(a) +

1
R2 det(−1

2a), the second term providing an IR cut-off, such that

aij ≤ 4R2. In the following, this regularization will be simply ignored when dealing with

short distance properties, where PS
G ∼ PG.

Schoenberg’s theorem. This result of geometry [16] states that for 0 < ν < 1, the set

aν = [aνij ] i<j
i,j∈G

can be realized as the set of squared distances of a transformed simplex
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in IRN−1, whose volume PG(a
ν) is positive and vanishes if and only if at least one of the

mutual original distances itself vanishes, aij = 0. This ensures that, as in field theory,

the only source of divergences in IG and I
(0)
G is at short distances. Whether these UV

singularities are integrable or not will depend on whether the external space dimension

d < d⋆ = D/ν or d > d⋆.

Factorizations. The key to convergence and renormalization is the following short

distance factorization property of PG(a
ν). Let us consider a subgraph P ⊂ G, with at

least two vertices, in which we distinguish an element, the root p of P, and let us denote

by G/pP ≡ (G \ P) ∪ {p} the subgraph obtained by replacing in G the whole subset P by

its root p. In the original Euclidean formulation, the analysis of short distance properties

amounts to that of contractions of points xi, labeled by such a subset P, toward the point

xp, according to: xi(ρ) = xp + ρ(xi − xp) if i ∈ P, where ρ → 0+ is the dilation factor,

and xi(ρ) = xi if i /∈ P. This transformation has an immediate correspondent in terms of

mutual distances: aij → aij(ρ), depending on both P and p. Under this transformation,

the interaction polynomial PG(a
ν) factorizes into [15]:

PG(a
ν(ρ)) = PP(a

ν(ρ))P
G/pP

(aν)

×
{

1 +O(ρ2δ)
}

.
(9)

with δ = min(ν, 1− ν) > 0 and where, by homogeneity, PP(a
ν(ρ)) = ρ2ν(|P|−1) PP(a

ν).

Fig. 1: Factorization property (9).

The geometrical interpretation of (9) is quite simple: the contribution of the set G splits

into that of the contracting subgraph P multiplied by that of the whole set G where P has

been replaced by its root p (fig. 1), all correlation distances between these subsets being
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suppressed. This is just, in this model, the rigorous expression of an operator product

expansion [15].

The factorization property (9) does not hold for ν = 1, preventing a factorization

of the measure (6) dµ
(D)
G (a) itself. Still, the integral of the measure, when applied to a

factorized integrand, factorizes as:

∫

AG

dµ
(D)
G · · · =

∫

AP

dµ
(D)
P · · ·

∫

A
(G/pP)

dµ
(D)

(G/pP)
· · · . (10)

This fact, explicit for integer D with a readily factorized measure
∏

i d
Dxi, is preserved

[15] by analytic continuation only after integration over relative distances between the two

“complementary” subsets P and G/pP.

Renormalization. A first consequence of factorizations (9) and (10) is the absolute

convergence of ZN and Z(0)
N for ǫ > 0. Indeed, the superficial degree of divergence of ZN

(in distance units) is (N − 1)ǫ, as can be read from (8), already ensuring the superficial

convergence when ǫ > 0. The above factorizations ensure that the superficial degree

of divergence in ZN or Z(0)
N of any subgraph P of G is exactly that of Z|P| itself, i.e.

(|P|−1)ǫ > 0. By recursion, this ensures the absolute convergence of the manifold Feynman

integrals. A complete discussion has recourse to a generalized notion of Hepp sectors and

is given elsewhere [15]. In the proof, it is convenient to first consider D large enough where

dµ
(D)
G is a non singular measure, with a fixed ν considered as an independent variable

0 < ν < 1, and to then continue to D = 2− 2ν, 0 < D < 2, corresponding to the physical

case.

When ǫ = 0, the integrals giving ZN and Z(0)
N are (logarithmically) divergent. Another

main consequence of Eqs. (9) and (10) is then the possibility to devise a renormalization

operation R, as follows. To each contracting rooted subgraph (P, p) of G, we associate

a Taylor operator T(P,p), performing on interaction integrands the exact factorization

corresponding to (9):

T(P,p)I
(0)
G = IP I

(0)

G/pP
, (11)

and similarly T(P,p)IG = IP I
G/pP

. As in standard field theory [12], the subtraction renor-

malization operator R is then organized in terms of forests à la Zimmermann. In manifold

theory, we define a rooted forest as a set of rooted subgraphs (P, p) such that any two sub-

graphs are either disjoint or nested, i.e. never partially overlap. Each of these subgraphs

in the forest will be contracted toward its root under the action (11) of the corresponding
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Taylor operator. When two subgraphs P ⊂ P ′ are nested, the smallest one is contracted

first toward its root p, the root p′ of P ′ being itself attracted toward p if p′ happened to

be in P. This hierarchical structure is anticipated by choosing the roots of the forest as

compatible: in the case described above, if p′ ∈ P, then p′ ≡ p. Finally, the renormalization

operator is written as a sum over all such compatibly rooted forests of G, denoted by F⊕:

R =
∑

F⊕

W (F⊕)

[

∏

(P,p)∈F⊕

(

− T(P,p)

)

]

. (12)

Here W is a necessary combinatorial weight associated with the degeneracy of compatible

rootings, W (F⊕) =
∏

p root
of F⊕

1/|P(p)| with P(p) being the largest subgraph of the forest

F⊕ whose root is p. An important property is that, with compatible roots, the Taylor

operators of a given forest now commute [15]. The renormalized amplitudes are defined as

ZR(0)

N ≡
∫

AG∪{0}

dµ
(D)
G∪{0}R [I

(0)
G ] . (13)

The same operation R acting on IG leads automatically by homogeneity to R [IG] = 0 for

|G| ≥ 2. We state the essential result that now the renormalized Feynman integral (13)

is convergent: ZR(0)
N < ∞ for ǫ = 0. A complete proof of this renormalizability property

goes well beyond the scope of this Letter and is given elsewhere [15]. the analysis being

inspired from the direct proof by Bergère and Lam of the renormalizability in field theory

of Feynman amplitudes in the α-representation [17].

The physical interpretation of the renormalized amplitude (13) and of (12) is now

fairly simple. Eqs.(10) and (11) show that the substitution to the bare amplitudes (8)

of the renormalized ones (13) amounts to a reorganization to all orders of the original

perturbation series in b, leading to the remarkable identity:

Z(0) =

∞
∑

N=1

(Z)N

N !
ZR(0)

N . (14)

This actually extends to any vertex function, showing that the theory is made perturba-

tively finite (at ǫ = 0) by a simple renormalization of the coupling constant b into Z itself.

From this result, one establishes the existence of a Wilson function V
∂Z
∂V

∣

∣

b
, describing the

scaling properties of the interacting manifold for ǫ close to zero [15]. For ǫ > 0, an IR fixed

point at b > 0 yields universal excluded volume exponents; for ǫ < 0, the associated UV

fixed point at b < 0 describes a localization transition.
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In summary, we have shown how to define an interacting manifold model with con-

tinuous internal dimension, by use of distance geometry, a natural extension of Schwinger

representation of field theories. Furthermore, in the case of a pointwise interaction, we have

shown that the manifold model is indeed renormalizable to all orders. The main ingredi-

ents are the Schoenberg’s theorem of distance geometry, insuring that divergences occur

only at short distances for (finite) manifolds, and the short-distance factorization of the

generalized Feynman amplitudes. The renormalization operator is a combination of Tay-

lor operators associated with rooted diagrams, a specific feature of manifold models. This

is probably the first example of a perturbative renormalization established for extended

geometrical objects. This opens the way to a similar study of self-avoiding manifolds, as

well as to other generalizations of field theories.

We thank M. Bergère for helpful discussions.
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