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Fig. 1. TEM images of vertically stacked SOI NW cross section (a) and 

longitudinal section (b). Both top and bottom Si channels are 10nm 

thick. BOX thickness is 145nm. Gate stack is composed by HfO2/TiN/W 

(EOT 1.2nm). WFIN indicates the top width of the NWs. 
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Fig. 2. |IDS| and |gm/VGS| vs. VGS for stacked NW, WFIN = 15nm, L = 

100nm, VDS = -40mV and VB from -90 to 90V.  
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Abstract—A new systematic procedure to separate the 

electrical characteristics of advanced stacked nanowires (NWs) 

with emphasis on mobility extraction is presented. The proposed 

method is based on I-V measurements varying the back gate bias 

(VB) and consists of three basic main steps, accounting for VB 

influence on transport parameters. Lower mobility was obtained 

for the top GAA NW in comparison to bottom -NW. 

Temperature dependence of carrier mobility is also studied 

through the proposed method up to 150°C. 
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I. INTRODUCTION 

Aggressively scaled multiple-gate transistors, such as 
nanowire MOSFETs, have demonstrated excellent 
performance and strong immunity against short channel 
effects, due to improved electrostatics [1]. Thanks to advances 
in fabrication process steps, such structures can be vertically 
stacked in order to fulfill higher drive current requests [2]–[4]. 
Reducing the intrinsic parasitic capacitances and boosting 
carriers’ mobility are considered two of the main challenges to 
implement stacked NWs for future technological nodes. 
Aiming to step up into the solution of these problems, 
vertically stacked p-NWs combining both inner spacers and 
SiGe S/D have been recently fabricated [3]. Overall 
performance and transport of these stacked NWs have been 
investigated in [5], but still no individual electrical 
characterization of each NW level is available, which could be 
valuable for technology optimization. A methodology to 
separate the channels conduction was firstly proposed and 
applied to Multi-Gate devices using the effect of the applied 
back bias VB [6]. However this method does not take into 

account the low field effect mobility (0) dependence on VB 
[7]. In this work, we improved the methodology in [6] by 

including explicit expressions for 0 and mobility degradation 

coefficients (1 and 2) dependence on VB, based on 
measurements and modelling. The proposed method is applied 
to advanced narrow stacked NWs from room to high 
temperature for a better understanding of their electrical 
characteristics. 

II. DEVICES AND MEASUREMENTS 

Two levels vertically stacked SOI NWs MOSFETs have 
been fabricated at CEA-LETI with a replacement metal gate 

process, integrating inner spacers and Si0.7Ge0.3:B raised S/D 
(Fig.1). Further fabrication details can be found in [3]. The 

bottom NW presents -shaped gate and depends 
electrostatically on VB, while the top wire is GAA (Gate-All-
Around) and independent of VB. The proposed methodology 

uses this VB dependence to dissociate - and GAA-NWs 
electrical properties.  

Fig. 2 presents the drain current (IDS) and its second 

derivative (gm/VGS) as a function of the front gate voltage 
(VGS) for narrow NW varying VB. From the logarithmic I-V 

(a) (b) 
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Fig. 3. VTH and S vs. VB for NWs with WFIN = 15 and 25nm, L = 100nm and 

VDS = -40mV. 
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Fig. 4. (a) Step 1. Measurements and model results of gm vs. VGS for NW with 

WFIN = 15nm, L = 100nm and VDS = -40mV. (b) Step 2. Measurements 

and model results of IDS vs. VGS for NW with WFIN = 15nm, L = 100nm 

and VDS = -40mV. 
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Fig. 5. (a) Step 3. Measurements and model results of IDS vs. VGS for NW with 

WFIN = 15nm, L = 100nm and VDS = -40mV. (b) Schematic 

representation of the proposed method highlighting steps 1 to 3. 

curves, it is observed that back conduction (BC) appears for 
negative VB. The derivative of the transconductance (gm) 
shows two distinguished peaks: one constant and insensitive to 
VB, related to the threshold voltage (VTH) of the top NW 
(VTH_TOP), and another one sensitive to VB, corresponding to 

bottom -NW threshold voltage (VTH_BOTTOM). No peak is 
observed due to BC because its contribution is almost 

negligible, as expected in narrow -NWs. Fig. 3 shows both 

VTH extracted from gm/VGS peaks and the subthreshold slope 
(S). For VB < -10V there is BC, so VTH_BOTTOM is constant and 
S degrades with VB reduction. For VB > -10V VTH_BOTTOM 
decreases with VB increase. Due to thin silicon layer, the 
bottom NW never reaches accumulation [8]. Applying high 
positive VB (>50V), VTH_BOTTOM < VTH_TOP and VTH and S are 
determined by the GAA-NW. 

III. ANAYSIS AND DISCUSSION 

By applying the Y-function method [9] to the measured IDS, 
it is possible to extract the overall parameters related to the 

sum of - and GAA-NW contributions. The proposed method 
uses 3 steps. 

Step 1.– As the GAA-NW is VB independent, if the region 
of main interest where the Y-function is applied is carefully 

chosen (Fig.4-a), the extracted 1(VB), 2(VB) and 0(VB) can 

be exclusively attributed to the bottom -NW. A linear 
behavior is verified between the transport parameters and VB. 
The same linear behavior has been observed for reference 
wafers with non-stacked TriGate (TG) NWs with similar 

dimensions, as indicated in Fig.6. Linear fittings of 1(VB), 

2(VB) and 0(VB) lead to the extraction of corresponding slope 

and intercept, i.e. 1,ΩG = A1 + a1VB, 2,ΩG = B2 + b2VB 

and 0,ΩG = C0 + c0VB. Fig. 4-a shows measurements and 
fitted lines of gm as a function of VGS. The peak variation with 
VB clearly indicates its influence on the mobility parameters of 

the -NW, which is the reason why this region was selected 
for applying the Y-function in this step. Negative VB values are 

chosen because VTH_BOTTOM is constant and -NW current shift 
does not affect the extraction.  

Step 2.– For VB ≥ 0, there is no BC and IDS(VB ≥ 0) = 

IDS,G(VB) + IDS,GAA (1), where - and GAA-NWs drain 

currents (at low VDS) are given by: 
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VGT is the gate voltage overdrive (VGT = VGS − VTH). 

Considering that mismatches of WFIN and tSi between - and 
GAA-NWs are negligible, as suggested in Fig.1, the effective 

channel widths are Weff,G = (2tSi + WFIN) and Weff,GAA = (2tSi + 
2WFIN). The linear behavior with VB is attributed to mobility 

parameters of the -NW. The subtraction of total drain 
currents at different VB ≥ 0 leads to an expression that only 

depends on IDS,G: 

IDS(VB) = IDS(VB1≥0) − IDS(VB2>VB1) = 

          IDS,G(VB1) − IDS,G(VB2)       (4)  

As indicated in Fig.4-b, the fitting procedures of (4) allow 

to determine A1, B2 and C0. 
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Fig. 6. Extracted parameters through the proposed methodology for NWs with 

WFIN = 15nm and L = 100nm. 
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Fig. 7. 0,G vs. VB, varying T (a) and 0 for both top GAA and bottom -
NWs vs. T (b), varying VB  for NW with WFIN = 25nm and L = 100nm. 

Step 3.– Once all parameters for the -NW are determined, 

IDS,G can be calculated and, by fitting IDS measurements to (1), 

it is possible to extract 0,GAA, 1,GAA and 2,GAA. This last step 
of the proposed methodology is presented in Fig. 5-a.  

The schematics of the entire procedure is shown in Fig. 5-b. 

Fig. 6 indicates the obtained parameters for both - and GAA-

NWs of the stacked structure. Similar 0 and (1 + 1VGT + 

2VGT
2) behavior with VB is found by comparing the stacked 

-NW and the non-stacked TG NW corroborating with the 
validity of the proposed method. 

The proposed method has been applied in stacked NWs, 

varying T from 25°C up to 150°C. The 0,G increases with VB 
decrease, evidenced in Figs. 6 and 7, is in agreement with 
previous reported work in literature [7]. It is mainly explained 
by the inversion charge distribution in the NW channel 
modulated by VB, and the position from Si/insulator interface. 

At VB = 0V, Fig.7-b shows that both - and GAA-NWs 

present similar 0 slope varying T, -0.12 and -0.11cm2/V.s.°C, 

respectively. The linear mobility decrease with T increase is 
dominated by phonon scattering. However, Fig. 7 shows a 

strong increase of 0 T-dependence by decreasing VB, in 
agreement with reduced surface roughness contribution and 
higher phonon scattering contribution at negative VB. 

IV. CONCLUSIONS 

The improved method for separating the contributions of 
each NW on stacked NW SOI MOSFETs by means of back 
bias variation has shown to be a powerful tool for electrical 
parameters extraction. The proposed method allows for 
accurate description of the measured trends in a wide range of 
VB and temperature. The linear behavior between mobility 
parameters and VB, which has also been evidenced in non-
stacked TG NWs, must be taken into account in order to 
correctly describe the drain current of narrow NW SOI 
MOSFETs. Lower mobility values extracted to GAA-NWs are 
in agreement with results in literature, due to lower hole 
mobility of (100)/[110] surface conduction and stronger 
surface roughness degradation. The proposed method also 

revealed that the mobility dependence on T for -NW 
remarkably vary with VB in the studied range. 
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