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Abstract—Current Low Power Wide Area Network (LPWAN)
wireless transceivers are designed, or configured at deployment
time, to function assuming a worse-case application scenario.
Most of the time, they waste a significant amount of energy
when operated under favourable channel conditions. Energy
efficient and accurate channel state classification is imperative for
selecting the optimum trade-off between transceiver performance
and amount of saved energy, without impacting transmission
quality. This work presents a novel, low complexity channel state
indicator and a simple mono-feature classifier for channel state
recognition. The classifier is trained using a set of experimental
data acquisitions and has a 96% accuracy when tested with a
new collected data set. Specially designed for LPWA applications,
the classifier is capable of distinguishing undisturbed channels
from those suffering from both mobility-induced fading and
interference, while operating at low to medium SNR.

I. INTRODUCTION

The ultimate goal in the field of the Internet of Things (IoT),
and, more specifically, of Low Power Wide Area (LPWA)
wireless networks, is the development of strategies to reduce
the average energy consumption of the autonomous network
nodes. To this end, the automatic adaptation of the transceiver
performance to the varying Radio Frequency (RF) channel is a
research perspective whose aim is to eliminate the unnecessary
energy consumption in moments when the signal to noise ratio
(SNR) is in excess with respect to the communication link
budget. Indeed, a lot of recent work has focused on the many
tuning knobs that can be used to trade excessive SNR against
energy consumption, e.g. output power, modulation order,
coding rate, frame length, receiver noise figure, ... However, in
all cases, to enable any channel state adaptation algorithm, it is
necessary to develop energy efficient channel state recognition
mechanisms.

Wireless sensor nodes using LPWA communication tech-
nologies represent a large fraction of IoT networks. These
nodes are typically deployed for low mobility, km-range
applications. The large distances involved imply that the RF
communication channel will have a wide dynamic range,
making it necessary, and particularly for systems employing
ISM bands, to identify at least three channel states:

• An Undisturbed state where noise can be modelled as a
white Gaussian random process;

• An Interference state in which simultaneous RF trans-
missions can impede the desired transmissions;

• A Fading state in which the transmission quality is
impacted by the movement of the node itself or of
humans or objects in the node’s environment.

The identification of these three channel states, versus
2-state approaches which are commonly proposed in the
literature, makes it indeed much easier to develop adaptation
strategies that are specific to the observed propagation condi-
tions.

Due to the large distances, the main energy cost for LPWA
nodes is the one required for wireless transmissions. Any
channel state identification mechanism must therefore avoid
the transmission of dedicated frames or symbols or, in case
of erroneous channel classification, of repeated frames. In
addition, the calculation complexity of the channel state
indicator (CSI) must be low to avoid the power burden on
the wireless node’s application processor. If we wish to ease
the development of new MAC or network-level adaptation
algorithms, the CSI must be clear and simple to use, with
ideally a single value computed per frame. And finally, since
the future channel-aware system is meant to function at low
to medium SNR, the CSI must perform at its best in these
situations.

This paper focuses on the development of low complex-
ity channel analysis signals (CAS) which provide relevant
features for accurate channel state classification. While this
present work is limited to the LECIM (Low Energy Critical
Infrastructure Monitoring) FSK PHY of the IEEE 802.15.4-
2015 standard, our aim is to show that such an approach
can be generalized to other LPWA standards such as LoRa,
and including cellular standards such as NB-IoT. With this
demonstration, our hope is to encourage the development of
future transceivers that natively embed such a capability in
order to enable the massive deployment of channel-aware
protocols.

The contributions of this paper are:

• To the authors’ knowledge, the first channel state classi-
fier tailored to the requirements of LPWA networks with
a specific focus on the life-time enhancement of energy
autonomous nodes;
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• A 3-state channel identification algorithm adapted to low
to medium SNRs built upon a low complexity and single
frame classifier with 96% accuracy.

• An experimentation-based classifier design methodology
which can be easily generalized to other LPWA commu-
nication standards.

This paper is organized as follows: the specifications of the
desired classifier are given in Section II, followed by related
work in Section III. Our design methodology and proposed
approach are presented in Section IV and V, respectively.
Experimental results are discussed in Section VI.

II. CLASSIFIER REQUIREMENTS

Our aim is to design a channel state indicator dedicated to
LPWA networks in which application throughput is typically
very small and where the most important requirement is
improving node lifetime and not the throughput of the wireless
link. For heavily duty-cycled IoT applications in which frame
transmissions are relatively ‘rare’, single-frame channel diag-
nostics is a must. The orders of magnitude energy cost differ-
ence between RF data transmissions and local, on-board data
processing implies that the long periods between successive
frame transmissions can be leveraged for computations that
can be performed at low clock rates. Our goal is therefore to
design a simple to use, low complexity, information-rich chan-
nel state indicator (CSI) able to ease the development of high
performance adaptation protocols. Indeed, the more precisely
we can describe the instantaneous channel conditions, the
better the adaptive protocol (whether at MAC or routing-level)
can make appropriate reconfiguration decisions. The proposed
classifier will have the capacity to discriminate between three
channel classes: ‘undisturbed’, ‘fading’, when the channel is
impacted by mobility-induced fading, and ‘interference’, when
simultaneous RF transmissions are detected.

Additionally, the classifier must be accurate in low to
medium SNR situations since they are those in which the
future channel-aware system is meant to function (in steady-
state). Recognizing the channel state at low to medium SNR

is imperative to save a maximum of energy without impacting
transmission quality. In particular, it is imperative to know the
channel state before the onset of symbol errors (due to channel
imperfections) if the frame is un-coded. Finally, the classifier
must not become ‘blind’, i.e. incapable of recognizing inter-
ference or fading states, at medium SNR levels.

III. RELATED WORK

Practically all previous work on channel quality recogni-
tion aimed at either increasing the network throughput or
improving the reliability of routing protocols. A huge body
of work exists in which authors employ indicators available
on Commercial Off The Shelf (COTS) radio transceivers,
such as received signal strength indicator (RSSI) or link
quality indicator (LQI), or MAC-level metrics such as packet
reception ratio (PRR), and so on [1]. However, many authors
have discussed the limited accuracy and potentially misleading
nature of such metrics [1]–[3]. More generally, using these
metrics, it is often difficult to understand the reasons behind
the loss of channel quality. And metrics requiring many
transmitted frames (such as PRR) necessarily miss short-term
variations of channel quality.

The inefficiencies of these methods have motivated recent
work on finer-grain approaches able to discriminate between
different types of channel impairments [2], [4]–[6]. In [2],
software defined radios programmed as IEEE 802.15.4 [7]
receivers with hard chip decisions were instrumented to cal-
culate the per-symbol Hamming distance between the received
chip sequences and the predefined pseudo-random codes. A
pattern matching analysis of this signal is performed for
several consecutive frames and the cumulative result feeds
a classification algorithm that distinguishes between normal
(undisturbed), attenuation (due to the propagation medium,
reflection and propagation distance) and interference types of
channels.

The work in [2] is a special case of a more general
approach that was presented earlier in [4] and [5]. Here, the
higher protocol layers are provided not only with the frame’s

Fig. 1. IEEE 802.15.4-2015 LECIM FSK PHY digital baseband receiver algorithm with CAS and CSI computation.



decoded symbols, but also with information corresponding to
the probability that each decoded symbol is correct, termed
SoftPHY hints by the authors. Using this information, a per-
symbol SNR can be estimated precisely. Sudden jumps in
SNR can be identified as frame collisions. As discussed above,
the SoftPHY hint for a symbol can be simply the Hamming
distance separating the decoded and ideal symbols in a hard
decision decoding spread spectrum receiver or it could also
be the modulus of the log likelihood ratio that is produced by
certain linear convolutional or block decoders. However, since
all of these SoftPHY hints (one per symbol) are passed to the
higher layers without further processing, the authors assume
that it is up to the higher layers to do the job of signal analysis
and classification.

In [6], the authors use forward error correction (FEC) on top
of (normally un-coded) IEEE 802.15.4 transmissions in order
to extract the position of bit errors within each frame. Using
this information, the authors compute a symbol error density
(SED) defined as c/(SL − SF + 1), where c is the number
of detected symbol errors, and SL and SF are respectively
the last and first error positions. Experiments in the presence
and absence of interference are used to find a discriminating
threshold for a binary classifier. While this technique has the
important advantage of being applicable to COTS transceivers,
the coding overhead results in a significant power consumption
penalty. In addition, only two channel states are defined,
limiting the possibilities offered to the adaptation protocol.
We include a detailed comparison of the SED-based classifier
with our work in the results below.

IV. EXPERIMENTATION-BASED METHODOLOGY

An experimentation-based methodology is used to design
our classifier in order to ensure that it can correctly handle
real-world signals, as opposed to signals which would be
constructed only through simulation. While this methodology
is applicable to any LPWA wireless communication system,
for this work, we choose to implement radio transceivers based
on a variant of the IEEE 802.15.4-2015 LECIM FSK PHY
standard [7] which is an LPWA standard dedicated to critical
infrastructure monitoring. After a description of this standard,
the SDR experimentation platform is described.

A. DBB Receiver for IEEE 802.15.4-2015 LECIM FSK PHY

This variant of the LECIM FSK PHY employs the GMSK
modulation at 37.5 kchip/s. The frame structure is illustrated
in Fig. 2. The preamble is a “00110011” four byte sequence.
The 16-bit CRC sequence is based on the generator polyno-
mial G(x) = x16 + x15 + x2 + 1. FEC can optionally be
used and is a rate 1/2 convolutional coding with constraint
length K = 7. The LECIM FSK PHY optionally uses
direct-sequence spread spectrum modulation with a spreading
factor from 2 to 16. If FEC encoding is used, only the
payload and the CRC are coded, interleaved, whitened and
optionnally spread. The header is treated similarly but without
the whitening step. The preamble and the SFD are added as
is to the beginning of the frame. In the channel state classifier

design described below, the use of FEC is not necessary but we
have implemented the convolutional coding/decoding step to
allow the computation of a SED for performance comparisons.

Fig. 2. Implemented frame structure (compatible with IEEE 802.15.4-2015
LECIM FSK PHY).

The corresponding DBB receiver is presented in Fig. 1.
Blocks in blue handle frame synchronization and start of frame
delimiter (SFD) detection. The synchronization algorithm,
based on a correlation with the known preamble sequence, also
finds the optimal decimation moment, allowing the sample
stream to be decimated by a factor of 8. Blocks in yellow
perform demodulation while blocks in green compute the
channel analysis signal (CAS) which is used to extract the
channel state indicator (CSI). The DBB is composed of the
following elements:

• FIR1 is a wide band, high order low pass filter with a -3
dB cut-off frequency fFIR1 = 65.7 kHz. The value of
this cut-off frequency takes into account the chip-rate, the
maximum carrier frequency offset (CFO) of the hardware
and a safety margin;

• AGC is an automatic gain control block which outputs
a controlled amplitude signal. This block simplifies the
synchronization algorithm of the DBB by allowing the
use of a constant preamble detection threshold;

• The CFO block calculates and corrects the carrier fre-
quency offset;

• FIR2 is a low pass, high order filter with a -3 dB cut-off
frequency ffir2 = 30.7 kHz.

• Next, the Hermitian product between samples A[k] and
A[k− 1] is calculated. The Hermitian product is defined
as A[k] × A∗[k − n] with n the delay between the two
samples. With a delay of 1, the imaginary part of the
product is a good approximation of the instantaneous
frequency and can therefore be used to demodulate FSK
signals.

• Finally, the imaginary part of the signal is the soft input
to the de-spreading block.

Fig. 3 shows the simulated BER performance of the im-
plemented IEEE 802.15.4-2015 LECIM FSK PHY baseband
receiver. The ExpSF4 series are measurements made using the
SDR-based platform described below.

B. SDR-Based Experimentation Platform

Since COTS devices do not allow access to DBB al-
gorithms, an SDR platform is needed for experimentation.
The goal of the experiments is to provide realistic data for
the classifier training set and the test set. Physically, the
SDR platform is composed of three universal software radio
peripherals (USRP) placed in a 5 m × 4 m room. The
first one is used as transmitter (Tx), the second as receiver



Fig. 3. Bit Error Rate performance of the implemented IEEE 802.15.4-2015
LECIM FSK PHY baseband receiver. The ExpSF4 series is obtained from
the SDR-based experimentation platform.

(Rx) and the third as the interferer (Ix). The USRPs are
N210 models [8] from Ettus Research with WBX [40 MHz
- 2200 MHz] daughter-board [9]. All experiments employ a
carrier within the 869.3-869.4 MHz ISM band which is not
limited by duty cycle in France, if transmissions are below
10 mW. Since we are interested in studying the behaviour of
the receiver in low SNR conditions, attenuators are inserted
between each emitting USRP output SMA port (60 dB for
Tx and 30 dB for Ix) and the half-wave dipole antenna. The
interferer Ix frequency carrier has an offset of 100 kHz from
that of Tx. This allows us to limit the transmission range
to approximately two meters which is necessary for leading
controlled experiments.

Each USRP is connected to a PC by Gbit Ethernet. Each
USRP is driven by GnuRadio and acts as an RF front-end with
up/down frequency conversion, analog filtering and DA/AD
conversion. For the Tx and Ix, complex baseband data
generated by MATLAB are fed to the USRP by GnuRadio. For
the experiments, 1250 byte length frames were used in order
to capture long duration signals which are typical of LPWA
frames at maximum coupling loss (2 seconds here). Frames
were generated with a spreading factor of 4 and encoded
as described previously. For the Rx, the USRP samples the
baseband complex sample stream at 300 kHz, i.e. 8 samples
per symbol, which is then fed to the MATLAB DBB.

C. Data collection

In order to produce labelled data-sets, three experiments are
executed. In the first, frames are acquired in an undisturbed
environment. For the second, an interference environment is
generated using Ix. To avoid wrongly labelled frames, we en-
sure that all received frames are disturbed by running Ix with
a duty cycle of 0.4s. We limit our experiments to interferers of
inferior frame length with respect to the desired frame since
the opposite case can be identified as a sudden change in SNR.
The interferer employed in our experiments is an identical
IEEE 802.15.4-2015 LECIM FSK PHY transmitter. Only

constant envelope interferers are considered (e.g., FSK-based
transmissions, LoRa) since these are the most common in
LPWA communications. The third experiment is executed in a
mobility context, including pedestrian motion near the USRPs,
or an arm or object moving trough the direct transmission
path between Tx and Rx. All signal acquisitions are made
at low to medium SNR. The variation of SNR is obtained by
changing the Tx USRP RF gain. A total of 360 frames are
collected,120 for each experiment and labelled ‘undisturbed’,
‘interference’ or ‘fading’. This is enough for feeding the
classifier training and evaluation steps. Only frames with valid
CRC were analyzed.

V. LOW COMPLEXITY CHANNEL STATE CLASSIFICATION

In this section, we present the low complexity channel
analysis signal (CAS) and channel state indicator (CSI) that
were selected to build our channel state classifier.

A. Channel Analysis Signal

Similarly to previous work by [2], [4], [5], we directly
exploit signals present in the digital baseband receiver to
extract a low complexity CAS. The CAS must reflect the cer-
tainty level that the received symbol is correct. In GMSK, the
symbols (corresponding to chips in the IEEE802.15.4-2015
LECIM FSK PHY) are represented by frequency deviations of
the signal. The standard deviation of the absolute value of the
instantaneous frequency estimations, already calculated in the
DBB thanks to the Hermitian product, is proportional to the
uncertainty level of the received chips (and therefore, inversely
proportional to SNR). The absolute value of the imaginary part
of the Hermitian product has the additional advantage of being
robust to fluctuations of receive signal amplitude.

With xk, k = 1, ...N the outputs of the imaginary part
extraction block (cf. Fig.1), a CASk is computed for each
received chip, where

CASk =
1

win

win−1∑
i=0

|xk−i|. (1)

We define CAS = [CAS1, ..., CASN ] as the channel
analysis signal. To compute each CASk, a moving average
over a computation window of win samples is used to smooth
the signal and highlight the disturbance footprint. The value
win = 1000 is selected which corresponds to a duration of
Twin = 26.6 ms given the 37.5 kHz sample rate. The choice
of win is compatible with the duration of the expected RF
interference as well as the expected mobility of objects or
humans in the vicinity of the nodes.

Figures 4, 5 and 6 show examples of the CAS computed on
frames transmitted through channels labelled as ‘undisturbed’,
‘interference’ and ‘fading’. Observing the curves we can see
the temporal footprint corresponding to each channel state.
For the ‘undisturbed’ case, the CAS has a small amplitude
and fast variations around the average value, µCAS . In those
labelled as ‘interference’, the presence of the interferer is
clearly visible. In those labelled as ‘fading’, the duration of the



fading phenomena can clearly be put into perspective with the
coherence time Tc of the channel, i.e. the time during which
two transmissions suffer correlated fading effects, defined as
0.4 ∗ c/(vf), where v is the speed of the moving element,
f is the carrier frequency, and c is the speed of light [10].
Assuming a sub-GHz carrier, a coherence time on the order
of 100 ms is typical of low mobility IoT use-cases. The
complexity of the CAS computation is very low, requiring
only a modulus computation and a moving average filter in
the DBB.

The CAS computation is easily generalized to other stan-
dards. E.g. in a LoRa DBB, symbols are recovered as bin
locations of an FFT performed on the received sample stream.
[11]. In this case, the CAS could be defined as the magnitude
of the FFT bin corresponding to the LoRa symbol.

Fig. 4. CAS and ACC for two frames transmitted through ‘undisturbed’
channel

Fig. 5. CAS and ACC for two frames transmitted through ‘fading’ channel

B. Low Complexity Channel State Indicator
We propose a very simple and low complexity CSI com-

puted from the CAS defined above which condenses the
state channel information into only one value. We define our
CSI as the average crossing count (ACC) which captures the
variations of the CAS around its average value. An ACC value
is computed for each received frame which can be fed to the
classification algorithm to identify the current channel state.

To compute ACC, the CAS is centered by its average µCAS

to convert the average crossings to zero crossings. The average

Fig. 6. CAS and ACC for two frames transmitted through an ‘interference’
channel

crossing count is the summation of the Sk sign switches,
described by (3). The CSI computational complexity is low
and the size of required memory to temporarily save the
CAS values depends on the maximum frame length. Fig. 8
shows the labelled ACC distribution according to the different
channel states.

Sk = sgn(CASk − µCAS) (2)

ACC =
1

2

N∑
k=2

| Sk − Sk−1 | (3)

C. Classifier Definition and Training

In this work, the classification in the three channel classes,
‘undisturbed’, ‘fading’ and ‘interference’, is done using a
single feature, ACC. Two thresholds, λ1 and λ2, are required
to discriminate between the three classes. The channel state
is classified as ‘interference’ when the ACC is below λ1, as
‘undisturbed’ when ACC is higher than λ2 and as ‘fading’
otherwise. The value of λ1 and λ2 are set using a learning
data set consisting of 180 randomly chosen labelled frames
acquired using the SDR platform. Each class, ‘undisturbed’,
‘fading’ and ‘interference’, contains 60 frames. To evaluate the
ability of ACC to discriminate between the ‘undisturbed’ and
‘disturbed’ (fading and interference) channel states and then
between the ‘fading’ and ‘interference’ states, ROC curves are
built. Let us consider the ‘undisturbed’/‘disturbed’ detector
case. A frame with an ACC higher than λ2 is classified as
‘undisturbed’, otherwise it is classified as ‘disturbed’. The
ROC curve displays the true positive rate (the percentage
of ‘disturbed’ frames correctly classified as ‘disturbed’) as a
function of the false positive rate (the percentage of ‘undis-
turbed’ frames classified as ‘disturbed’) for various values of
λ2, varying from 0 to the maximum value of ACC.

Fig. 7 shows the ROC curves for the ‘undis-
turbed’/‘disturbed’ and ‘fading’/‘interference’ detectors
using the learning data set. One can see that ACC proves
to be quite efficient in discriminating between ‘disturbed’
and ‘undisturbed’ frames as well as between ‘interference’
and ‘fading’ frames. The two ROC curves almost reach the



performance of the ideal detector i.e. 100% TP with 0% of
FP. The two ROC curves can be used to select the value of
the two detection thresholds λ1 and λ2. Both are selected
from the optimum operating point i.e. the point closest to
(0,1), the ideal performance. The optimum operating points
provide the λ1 and λ2 thresholds of 85 and 530, respectively.
Fig. 8 shows the labelled training set ACC distribution with
respect to λ1 and λ2. We can observe that these thresholds
provide good boundaries between the three classes. Since the
ROC curves never pass by the (0,1) point, the classifier is not
flawless thus explaining the presence of some error points in
the ACC distribution.

Fig. 7. ROC curves for classifying, respectively, undisturbed versus disturbed
channel states (left) and interference versus fading channel states (right).

Finally, the classifier tuned on the learning data set is
expressed as follows :

if ACC > 530 then
the frame is ‘undisturbed’

else
if ACC > 85 then

the frame is ‘fading’
else

the frame is ‘interference’
end if

end if

VI. EXPERIMENTAL RESULTS

The performance of the classifier is evaluated on a vali-
dation set, made of the 180 labelled frames acquisitions (60
frames per class), which were not used in the training set.
The ACC-based classifier is able to correctly classify 96% of
the 180 frames, 3 ‘undisturbed’ frames were misclassified as
‘fading’ and 5 ‘fading’ as ‘undisturbed’.

Next, we compare our ACC-based CSI with the symbol
error density (SED) indicator presented in [6]. Recall that this
indicator requires forward error correction (FEC) in order to
extract the position of bit errors within each frame. The SED
is defined as c/(SL − SF + 1), where c is the number of
detected symbol errors and SL and SF are respectively the last
and first error positions. The authors claim that comparing the
SED to a simple threshold is sufficient to distinguish between
two channel classes: an interference class and a class where
channels suffer from multi-path fading or attenuation (MFA).

Fig. 8. Representation of the labelled input training set of ACC with the
thresholds λ1 and λ2.

The authors also claim that multi-path fading and attenuation
cannot be distinguished. Clearly, the results shown in Figure
8 show that, using our ACC as a channel state indicator, it is
possible to distinguish these two states. To test the authors’
first claim and compare the SED with our work, we reuse
our acquisition dataset and compute a SED for each received
frame. This is possible since the data contained in the acquired
frames are encoded using the 1/2 rate convolutional code
defined in the LECIM FSK PHY.

First, we observe that the SED is zero when there are
no errors in the frame, rendering it unusable in a medium
SNR channel. This is a major limitation in a channel-aware
LPWA system in which we specifically aim to have wireless
links which have low to medium SNR. Since our dataset
includes frames received at various SNR levels, we must
therefore exclude all of these frames from the analysis. For
the remaining frames, we observe that, whatever the channel
class, all SED values tend to zero with increasing SNR, simply
because errors become less common. Since a fixed threshold
is used to distinguish between the two classes, distinguishing
these two in the context of variable SNR experiments is thus
impossible. SED will therefore be an adequate indicator only
in very low SNR scenarios where the decoding algorithm
corrects a sufficient number of errors. The channel state
indicator proposed in this work does not suffer from this
limitation. In conclusion, in an LPWA context, while our
approach offers 3-state classification with 96% accuracy, the
SED indicator offers only limited use and accuracy.

VII. CONCLUSION

Accurate channel state identification is the cornerstone of
lifetime enhancement of massive IoT wireless nodes based
on LPWA communication schemes. This work proposes a
low complexity channel state indicator computed directly
within the DBB and which can easily be generalized to other
LPWAN standards. This indicator is used to define a three-
state classifier that achieves a correct decision rate of 96%
when distinguishing ‘undisturbed’, ‘fading’ and ‘interference’



channels. The proposed indicator remains relevant at medium
SNR, when the state-of-the-art SED indicator becomes un-
usable. Our work will aid in the development of cross-layer
channel-aware adaptation strategies. Future work will include
experimentation with non constant envelope interferers (e.g.
Sigfox) and different propagation environments for the vali-
dation of the classifier performance in generalized scenarios.
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