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PET reconstruction of the posterior image
probability, including multimodal images

Marina Filipović, Éric Barat, Thomas Dautremer, Claude Comtat, and Simon Stute

Abstract—In PET image reconstruction, it would be useful
to obtain the entire posterior probability distribution of the
image, because it allows for both estimating image intensity and
assessing the uncertainty of the estimation, thus leading to more
reliable interpretation. We propose a new entirely probabilistic
model: the prior is a distribution over possible smooth regions
(distance-driven Chinese restaurant process), and the posterior
distribution is estimated using a Gibbs MCMC sampler. Data
from other modalities (here one or several MR images) are
introduced into the model as additional observed data, providing
side information about likely smooth regions in the image. The
reconstructed image is the posterior mean, and the uncertainty is
presented as an image of the size of 95% posterior intervals. The
reconstruction was compared to MLEM and OSEM algorithms,
with and without post-smoothing, and to a penalized ML or MAP
method that also uses additional images from other modalities.
Qualitative and quantitative tests were performed on realistic
simulated data with statistical replicates and on several clini-
cal examinations presenting pathologies. The proposed method
presents appealing properties in terms of obtained bias, variance,
spatial regularization, and use of multimodal data, and produces
in addition potentially valuable uncertainty information.

Index Terms—PET, image reconstruction, posterior probability
distribution, uncertainty, multimodal, MCMC sampler, Bayesian
inference, spatial regularization.

I. INTRODUCTION

MOST iterative reconstruction methods formulate an
objective function relating the observed (i.e. acquired

or measured) data to the unknown image. The reconstructed
image is equivalent to a minimum or maximum solution of
this objective function, found using numerical optimization
methods. The reconstruction problem is ill-posed and the so-
lution may not be unique. In the context of PET reconstruction,
the maximum likelihood - expectation maximization (MLEM)
based algorithms are widespread. Improvements may aim at
accelerating convergence (e.g. OSEM), or at reducing the noise
and the partial volume effect in the image by introducing
some spatial or temporal regularization. A thorough review
of existing iterative methods can be found in [1].

In the MLEM PET reconstruction method, the observed data
are modeled as a random variable, where the randomness is
due to the emission detection process. However, the image
being reconstructed (emission concentration) is regarded as
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deterministic and fixed. As the solution may not be unique,
and as the MLEM estimator variance increases with con-
vergence, some methods introduce additional constraints and
prior assumptions which can drive the final solution into some
desirable direction. These methods have two interpretations
leading to equivalent algorithms: 1) the image is deterministic,
but a penalty term is added to the maximum likelihood
objective function (penalized ML) 2) the image is a random
variable, and the solution corresponds to the maximum of
the posterior distribution (maximum a posteriori or MAP).
The spatial regularization is driven by the acquired PET data,
and possibly by additional images from other modalities, that
might show a better delineation of tissues.

A common assumption is that PET emission concentration
is likely to be smooth or homogeneous in some anatomically
delimited areas (e.g. gray matter, white matter, organs). When
used for PET reconstruction, CT and MRI information is often
described as anatomical, because it tends to highlight more
anatomical features and may provide better spatial resolution
and more contrast between some tissues. Different modali-
ties and imaging parameters highlight different morphological
and/or functional features of the imaged tissues and possibly
different types of edges, especially when they are targeted
at specific pathologies. A variety of methods using CT or
MR images have been proposed, as reviewed in [2]. Some
interesting methods and comparisons between them can be
found in [3], [4] and [5], the latter using a generalized equation
framework that unifies a large family of algorithms.

All of these methods focus on a single optimal solution
and do not deal with posterior probability distribution aspects.
However, some theoretical work has been done regarding
statistical uncertainty properties (bias, variance, noise prop-
agation) of ML (e.g. [6]) and penalized ML algorithms (e.g.
[7]).

Few groups have explored more in depth the random nature
of Bayesian models, i.e. using sampling methods to recover the
entire posterior probability distribution of the image instead of
a single solution. The main advantage of estimating the whole
posterior distribution is to obtain uncertainty information from
all the processes involved, i.e. from the observed data, from
the measurement noise and the background signal (e.g. random
and scattered coincidences), from the reconstruction process
itself, and also possibly from hyperparameters (parameters of
the prior). In visual interpretation of the reconstructed image,
the uncertainty can be displayed simultaneously to provide
information about the reliability of voxel intensities: an es-
timated voxel intensity comes with its range. The posterior
distribution has also been used to estimate the scanning time
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necessary for obtaining an image with a defined reliability in
[8], or to perform statistical tests for a specific diagnostic task
in [9]. The main difficulties for sampling the posterior consist
in building the sampler (deriving equations and choosing
sampling strategies and parameters), and in dealing with the
computational load. Markov chain Monte Carlo (MCMC)
samplers are widely used.

At the very beginning of the development of MAP meth-
ods, the solution was approached stochastically using MCMC
samplers and simulated annealing in [10], this algorithm
being midway between objective function optimization and
posterior sampling. In [11] and [12], SPECT reconstruction
was performed by sampling the joint posterior probability
distribution of the image and of the hyperparameters, using
a Gibbs/Markov Random Field (MRF) prior and Metropolis-
Hastings (MCMC) samplers on simulated and phantom data.
In [13], a Gibbs sampler was built for PET reconstruction, with
a nonparameteric Dirichlet Process Mixture prior, which was
spatially continuous and thus implied some spatial regulariza-
tion. The results were tested on simulated data and compared
to MLEM and to a MAP method. Using a similar model,
statistical tests were performed on the posterior distribution
in [14] and the method was applied to clinical data. In [15],
an other random model, named ”origin ensembles recon-
struction”, was built for PET reconstruction. A Metropolis-
Hastings sampler was used to sample a probability distribution
which is formally neither the posterior nor the likelihood. The
resulting mean image was shown to be related to a maximum
likelihood solution, and the method was tested on simulated
data. The same author [9] built a relationship between this
distribution and the posterior distribution, for different priors,
and performed statistical tests for detection tasks on simulated
data. In [8], a more recent Riemann manifold MCMC sampler
was used for PET reconstruction because of its suitability
for high-dimensional models with highly correlated variables.
The prior was non informative, and the tightening of posterior
distribution was used as a reconstruction reliability indicator
for estimating the required patient scan time.

In this paper, we present a new probabilistic PET reconstruc-
tion model, called ”Random Clustering Prior - Gibbs Sampler”
(RCP-GS), that seeks to infer the entire posterior probability
distribution of the imaged emission concentration. It uses also
additional data coming from other modalities, which was not
the case with previous methods. The term clustering here
refers to spatial clustering of adjacent voxels into homoge-
neous areas, which are sometimes also called ’supervoxels’ in
image processing literature. The prior is a distance-dependent
Chinese Restaurant Process (ddCRP) [16], which represents
here a probability distribution of possible spatial clusterings
of image voxels into uniform or smooth areas. This is a true
prior, especially compared to MAP methods, in the sense that
no PET nor MRI observed data are used in the construction of
the prior itself. The observed data in the model are the acquired
PET raw data, and any amount of additional coregistered,
already reconstructed images of any type (here we use one
or several different MR images). The posterior probability
distribution is sampled using a Gibbs (MCMC) sampler. This
reconstruction approach belongs to the domain of Bayesian

inference, and in the tomographic reconstruction community it
has been referred to as ”fully Bayesian”, to mark the difference
with respect to MAP methods that are often called Bayesian.
We avoid using the label Bayesian here because it has different
meanings in different contexts and can be confusing. The
proposed reconstruction is analyzed and compared to reference
methods (MLEM, OSEM, and a MAP (Penalized ML) method
which uses an MR image, called MR-MAP from now on)
using both simulated and clinical static data. Simulations are
built with reality in mind (real scanner description, attenuation,
scatter and random rate) [17], producing repeated acquisitions
(statistical replicates), and the clinical data come from various
patient examinations from the Signa PET/MR scanner (GE
Healthcare, Milwaukee, WI, USA).

II. THEORY

The probabilistic model is based on all the assumptions used
in MLEM PET reconstruction: independent Poisson distribu-
tions (likelihood) for the measurements (counts detection),
system matrix, additive contribution of random and scattered
coincidences, and use of complete data, i.e. the random
variable representing the number of true unscattered counts
detected in a line of response and originating from a voxel.

A. The prior

The ddCRP prior distribution models two aspects: grouping
of voxels into homogeneous regions or clusters, and assign-
ment of an intensity to each cluster (all the voxels belonging
to a cluster have the same intensity). Each ddCRP sample
represents thus a random spatial clustering of the image,
where each cluster is assigned a single random intensity. The
main assumptions introduced by this prior are: i) the clusters
are built out of neighbour (adjacent) voxels, ii) an indirect
prior information is introduced about approximate average size
of clusters. Drawing samples from this distribution can be
done using a dedicated Gibbs sampler, described in [16]. The
sampling process itself gives a good understanding of how the
prior works and how it models the image.

1) The spatial clustering: First, voxels are grouped into
clusters (uniform regions) by using links c between voxels
(a cluster is composed of linked voxels). For each voxel, a
categorical distribution (multinomial distribution with a single
trial/experience) is built for drawing a single link toward a
neighbour voxel or onto the voxel itself. So the possible
outcomes for this distribution are link destinations, with the
following probabilities: i) the probability of drawing a link
from the current voxel onto itself (meaning that the voxel
either stays independent or does not include other voxels into
its current cluster) is equal to a free parameter or hyperpa-
rameter α, divided by the sum of all the link probabilities
for this voxel, ii) the probability of drawing a link to any
neighbourhood voxel is equal to 1, divided by the sum of all
the link probabilities for this voxel.

The hyperparameter α has an indirect influence on the
overall average size of the clusters: the tendency would be
the larger the α, the smaller the clusters in average.
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2) The intensity: When the links c are drawn for each voxel,
we get a sample of voxel clustering into uniform regions (i.e. a
clustering sample). Then, if λs is the cluster intensity, for each
cluster s we can draw an intensity sample from a previously
defined prior probability distribution of cluster intensity p(λs).
This distribution is independent of the clustering process, and
has to be chosen according to the properties of PET images.
We chose a Gamma distribution, Gamma(a, b), for several
practical and realistic reasons: i) the Gamma distribution has
the convenient property of being the conjugate prior for the
Poisson likelihood, which means that the equations become
simpler (the posterior cluster intensity distribution can be
expressed analytically as another Gamma distribution), ii) it
ensures the non-negativity of the reconstructed image intensity,
and iii) by choosing appropriate values for its shape parameter
a and rate parameter b, the Gamma distribution is able to
approximate various other distributions, such as uniform or
other non informative or low informative distributions.

B. The posterior distribution and its sampler

Let yi be the observed number of counts acquired in the
line of response (LOR) i, nij the complete data (number of
true unscattered counts detected in LOR i and emitted in voxel
j), qi the additive contribution of random and scattered counts
for LOR i, Aij elements of the system matrix (including all
the scaling and correction factors, e.g. acquisition duration
time, calibration factor, projector coefficients with or without
TOF weights, attenuation, detector efficiency), λs the intensity
(emission concentration in Bq per volume) of the cluster s,
and c the spatial clustering of the image, implemented using
links between neighbour voxels. Additional observed data
from other modalities m represent the intensity of already
reconstructed MR images. As all the voxels in a cluster have
the same intensity, individual voxel intensity is noted λj and
stems from the variables (λs, c), as λj = λs3j .

The posterior distribution for the model is thus
p(λ, c, {n, q}|y,m), where λ and c fully describe the
reconstructed image. A Gibbs sampler requires conditional
probability distributions for each posterior variable given all
the other variables. These conditional distributions are then
sampled one after another iteratively, and a single iteration
produces a sample of the posterior distribution. Below are
given the three conditional distributions required for our
model, for the posterior variables λ, c and {n, q}. The
complete summary and derivations for the Gibbs sampler are
given in the Appendix. Some variables become irrelevant for
some probability distributions, so they will be omitted when
appropriate for simplifying the notation of equations.

1) Step1: The conditional posterior probability of the com-
plete data and random/scatter contribution p(n, q|λ, c, y) is
derived directly from basic assumptions used for MLEM PET
reconstruction. For each LOR observation yi, we build a
multinomial distribution with yi trials, where the outcomes
are all the relevant voxels j belonging to the LOR i and the
source of random and scattered counts qi (see the derivation
in the Appendix A). In other words, each count, detected at
LOR i, is randomly backprojected into one of the possible

emission origins, i.e. either into one of the relevant voxels j,
or into the source of random and scattered counts qi. Outcome
probabilities are determined using the system matrix and the
random/scatter expectation q̄i, as

Aijλj∑
k Aikλk + q̄i

(1)

for the voxels, and

q̄i∑
k Aikλk + q̄i

(2)

for random/scatter contribution.
2) Step2: The conditional posterior probability distribution

of the spatial clustering (links) p(c|n,m) is implemented using
a dedicated Gibbs sampler presented in [16]. It is similar to the
sampler of the ddCRP prior distribution (described in section
II-A), except that now the observed data are introduced. The
main difference in the sampling procedure is the probability
of drawing a link between two voxels that do not belong to
the same cluster, i.e. a link that will cause two distinct clusters
s1 and s2 to merge. This probability conveys how likely the
merging of the two clusters is, depending on the samples of all
the other variables, and depending on actual observations (i.e.
acquired data). The complete derivation is given in Appendix
B and follows the procedure described in [16]. The probability
of a link that causes two clusters to merge, when the PET
observed data are taken into account, is given in Eq.3:

Γ(ns1 + ns2 + a)

Γ(ns1 + a)Γ(ns2 + a)

(As1 + b)(ns1+a)(As2 + b)(ns2+a)

(As1 + As2 + b)(ns1+ns2+a)

(3)
For brevity, bold symbols are used for representing sums

of variables over some dimensions, for instance the sensitivity
for voxel j is noted Aj =

∑
iAij , and the sum of nij for a

cluster s becomes ns =
∑

i

∑
j∈s nij .

In order to include MR images as observed data providing
information about the spatial clustering part of our model, each
MR image must also be represented by a probabilistic model.
Here we use a Gaussian random model for each MR image
(both prior and likelihood and therefore also the posterior
are Gaussian). σ is the known (estimated) standard deviation
of MRI observation noise, Ns1 is the number of voxels in
the cluster s1, ms1 being the sum of observed MR image
intensities for the cluster s1, and ρ the ratio of noise standard
deviation to image prior standard deviation (see Appendix B
for details). The probability of a link that causes two clusters
to merge, when MR observed data (one MR reconstructed
image) are taken into account, is given in Eq.4:

1

ρ

√
Ns1Ns2

Ns1 +Ns2

e
− 1

2σ2
(
ms2
Ns2
−ms1
Ns1

)
2 Ns1Ns2
Ns1

+Ns2 (4)

The final probability of a link that merges two clusters,
including both PET and MRI data, is simply the product of
PET and MRI contributions (Eq.3 and 4), because these prob-
abilities are mutually independent. It is thus straightforward to
build this model either only with PET data, or with as many
additional independent images as advisable.
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We introduced a small empirical modification of ddCRP
posterior sampling, by making a further distinction regarding
neighbourhood voxels: if a neighbour voxel belongs to the
same cluster as the current voxel, the link probability is no
longer equal to 1 but to α (divided by the sum of all link
probabilities). This means that, for a voxel, the probabili-
ties are the same for drawing a link into itself and into a
neighbour voxel that already belongs to the same cluster. This
is considered appealing because both these outcomes have a
similarly low impact on the clustering sample, and mainly
produce unnecessary permutations of voxel links inside the
same cluster.

3) Step3: The conditional posterior probability distribution
of cluster intensity p(λ|c, n) can be built independently for
each cluster s, which results in a Gamma distribution with the
following shape and rate parameters (see the Appendix C for
derivation).

p(λs|nj∈s) = Gamma(ns + a,As + b) (5)

As the expectation of a Gamma distribution is the ratio of
its shape and rate parameters, the expectation of the posterior
conditional cluster intensity is equal ns+a

As+b . The influence of
the prior parameters on the final reconstructed image intensity
is thus explicit: the influence is smaller if the parameters are
small, it decreases when cluster size or the number of counts
in a cluster increase, and it increases in small clusters with
few observed counts.

An image sample is obtained after successively sampling the
three conditional probabilities. Each iteration of the sampler
produces a new sample, but the first iterations are discarded,
because a MCMC sampler requires a so-called burn-in period
(a certain number of iterations) to converge to the actual
posterior distribution that it is designed to sample. It should be
noted that the notion of sampler convergence is different from
the usual notion of convergence when solving for a min/max
of objective functions. A sampler converges when it starts
producing samples that correspond to the targeted posterior
probability distribution. After the convergence, the sampler
should be iterated as long as possible, in order to produce
enough samples for depicting accurately the whole posterior
distribution. To this purpose, the sampler has to ’mix’ well:
change has to occur between subsequent samples, so that the
produced samples span the whole range of possible values and
do not get stuck or restrained to a small area.

C. Interpretation of the model

The properties and purposes of this model can be sep-
arated into three distinct categories: i) providing valuable
uncertainty information thanks to the fully probabilistic nature
of the model, ii) performing spatial regularization thanks to
the ddCRP prior, which is a distribution featuring spatial
regularization suitable for fully probabilistic models, and iii)
including additional information about locally smooth areas
thanks to the possibility of including supplementary observed
data, e.g. MR images.

Regarding the final reconstructed image, there are several
possibilities for choosing an image estimator from the pos-
terior probability distribution. In this study we focused on
posterior expectation, estimated by averaging the samples. The
final PET image represents therefore an average of generated
samples of clustering and cluster intensities.

It is interesting to explore the relationship between the
proposed model (RCP-GS) and the MLEM model. In order
to approximate the MLEM model with our model, the prior
distribution of cluster intensity should approximate a uniform
distribution, for instance by setting the prior Gamma param-
eters to a = 1 and b = 0. Then, the maximum likelihood
solution would correspond to the mode (the maximum) of the
cluster intensity posterior distribution (Eq.5), which in this
setting would be ns

As
, according to the formula for Gamma

distribution mode. This estimation has an intuitive interpreta-
tion, as shown in [15]. The notable differences with respect
to MAP methods are that i) the MRI data are not included
in the prior and ii) the final image estimation is based on the
posterior mean and not on the posterior mode or maximum.

The observed data in this probabilistic model are PET raw
data containing detected counts, formatted either in sinogram
or in list mode, and already reconstructed MR images. The
PET data contain observations about both spatial uniformities
and intensities in the PET image, whereas MRI data contain
observations about spatial uniformities and intensities in the
MR image. So the meeting point of PET and MRI in the model
are the homogeneous regions (clusters). Each clustering sam-
ple should be composed of clusters shared by both modalities,
and of clusters specific to each modality. Thus, the MR images
have an influence only on the clustering part of the model.

It should be noted that PET observations are indirect,
because a reconstruction inverse problem lies between the
acquired data and the reconstructed image. On the contrary,
MR images are already reconstructed and so represent direct
observations. The noise in MR observations tends to be lower
than in PET observations. One could say that, over sampler
iterations, two processes unfold in parallel: the sampler con-
vergence to the true posterior distribution, and the solving of
the PET reconstruction inverse problem. The first conditional
probability requires an initial PET image estimation, similar
to conventional reconstructions. Hence, if a uniform initial
PET image is supplied to the sampler, the PET probabilistic
model is rather inconsistent in the first iteration, whereas
the MRI probabilistic model is rather consistent from the
start. This unbalanced initial status of the models may be
disadvantageous for the PET, because in the first iterations
the MRI may have a stronger influence on the clustering part
of the model. To even out the initial influence of PET and
MRI observed data, we introduced the following feature: the
MRI data start playing a part in the model only after a certain
number of iterations, after the PET model has already become
more consistent (i.e. when the solving of the inverse problem
has already progressed). It should be noted that the tuning of
the α parameter depends on whether additional information
about spatial smoothness (MR images) are included or not. If
the α parameter is tuned with the MR image in mind, and the
MR image is included after a certain number of iterations,
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the α value is less adapted for the first iterations. This is
not deemed an issue because the main purpose of the first
iterations is to make rough progress towards inverse problem
solving.

The uncertainty contained in the posterior distribution is
conveyed through an image of the size of 95% posterior inter-
vals, computed empirically: for each voxel, generated posterior
intensity samples are used to build an interval containing 95%
of sampled intensity values, by selecting a lower bound at the
0.025 quantile and a higher bound at the 0.975 quantile. Then,
for each voxel, the size of the posterior interval is computed
as higher bound minus lower bound, and presented as an
image. By definition, the 95% (Bayesian) posterior interval is
the interval on the posterior distribution that contains the true
voxel intensity with a probability of 0.95. It is closely linked
though not equivalent to (frequentist) confidence intervals,
which by definition contain the true voxel intensity in 95%
of repeated experiences. There are various theoretical and
empirical methods for estimating both kinds of intervals. [18]
and [19] provide interesting discussions on the relationships
between these intervals and on the complementarity and the
interaction of frequentist and Bayesian approaches to intervals
in applied statistics. It should be noted that the actual coverage
properties (95 or other percentage) will be fullfilled for ideal
models, that fit the data and the reality perfectly and do
not result in ill-posed inverse problems. When dealing with
realistic data, the models (i.e. MLEM, MAP, RCP-GS) fit the
data only to some extent, so the ideal estimation properties
regarding bias, variance, intervals coverage, model fitness,
etc. can only be approached asymptotically. In addition, the
estimation of posterior intervals is closely linked to bias and
variance properties of the estimation of image intensity.

III. MATERIALS AND METHODS

First, we present all the implementation and validation
details that are global and common to both simulated and
patient data. Second, we present the details that are specific
to each type of data.

All the reconstruction methods, the proposed and the ref-
erence algorithms, were entirely implemented using the CAS-
ToR (Customizable and Advanced Software for Tomographic
Reconstruction) platform in C++, [20], [21].

A. General implementation

Concerning the Gamma prior for cluster intensity, we chose
its parameters such as to approximate a distribution which
contains as few prior information about the cluster intensity
as possible. There are various non-informative prior distri-
butions, which bring no or few information into the model,
e.g. a uniform distribution, Jeffreys priors [22]. We opted
for the Jeffreys prior that is built for Poisson likelihood:
p(λs) ∝ λ

− 1
2

s . To approximate this distribution, the Gamma
prior shape parameter is set to a = 0.5 and the Gamma
rate parameter to an arbitrary very small value b = 10−18.
It should be noted that in this study, from now on, these
prior parameters are regarded as fixed, and are not treated
as free prior parameters (hyperparameters) in the model. The

implementation used double floating point precision, and some
numerical optimizations and checks were made to minimize
the loss in precision due to floating point operations. The
voxel neighbourhood for the ddCRP was defined as minimal:
it consisted of adjacent voxels on each axis, without diagonal
neighbours, so 4 neighbours for 2D images and 6 neighbours
for 3D images.

We observed that the sampler had some difficulties mixing
and converging to the posterior distribution (the samples
changed slowly and depended on the initialization of random
generators), which is not a rare issue in MCMC samplers.
Taking also into account the required computation time, we
opted for an empirical solution: the sampler was run several
times in parallel starting from different random initializations.
The main criteria for choosing the number of sampler iter-
ations, runs, the burn-in period and the number of samples
used for building the final posterior distribution, was to assess
empirically when the change in the posterior mean image
(averaged over all the runs) becomes negligible.

The performance and the characteristics of the proposed re-
construction method were analyzed and compared to standard
reconstruction methods (MLEM for simulated data and OSEM
for clinical data) and to a reference MR-MAP method. Among
the variety of MAP methods, we chose a Gibbs or Markov
random field (MRF) prior which includes an MR image,
with the following features: the relative differences potential
function [23], Euclidian distance proximity weights, and Bow-
sher similarity weights based on a single MR image [24].
These features were chosen because they have been used and
tested often in the literature, and because they present some
advantages: the Bowsher similarity weights are simple and
do not require any preprocessing nor segmentation of the MR
image, and the relative differences potential function allows for
some edges and is differentiable. The implementation followed
[5] in terms of the optimization algorithm (Green’s one-step-
late MAP-EM) and in terms of Bowsher weights. There are 4
parameters or hyperparameters for this MAP method: the size
of the neighbourhood Nj , defined here with a sphere whose
radius is given in mm and not in voxels, the parameter β
weighting the whole penalty, the parameter γ which regulates
the tolerance of edges in the relative differences potential
function, and the number of ’most similar’ voxels in the
neighbourhood for the Bowsher similarity weights, defined
here as a percentage of the (fixed) number of voxels in the
predefined neighbourhood. The logarithm of the penalty is thus
given by Eq.6, where wjk is the Bowsher weight (0 or 1) for
voxel j and its neighbour k, and djk is the Euclidian distance
between voxels j and k:

−β
∑
j

∑
k∈Nj

1

djk
wjk

(λj − λk)2

(λj + λk) + γ|λj − λk|
(6)

All the reconstructions were fully quantitative: they took
into account all the correction factors (attenuation, random
and scattered coincidences, detector efficiency, dead time
correction, etc.). There was no system resolution modeling
in the reconstructions.
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The reconstructions were run on a Dell station PowerEdge
R930, with 256GB RAM, and 4 CPUs (Intel Xeon E7-
4850v3), each having 14 cores, with hyperthreading.

B. Simulated data
First, simulations were run in order to perform extensive

quantitative tests.
A 2D realistic noisy MRI T1 weighted brain image based

on a label image was generated from the BrainWeb database,
[25], [26]. The label image was used to generate a 2D 18F-
FDG PET image with realistic uptake values in kBq/cm3

for a healthy brain. The MR and the PET images were thus
perfectly registered. It should be noted that the MR image
does not present strong edges for all the structures visible in
PET. In order to include further edge mismatches, we added
a hyperintense lesion in the PET image but not in the MR
image. In-house simulation library [17] was used to simulate
30 statistical replicates (repeated acquisitions) of realistic PET
raw data, using the Siemens Biograph PET/CT geometry. The
simulation included attenuation, random and scattered coinci-
dences, and PSF-based resolution modeling. The total number
of true, random and scattered coincidences was estimated
approximately with the aim of matching the noise equivalent
counts of a central 2D slice of standard 10min patient brain
3D acquisitions from the GE Signa PET/MR scanner. The
total number of counts was 1e7 and the corresponding noise
equivalent counts was 2.5e6.

The number of iterations for the Gibbs sampler was set to
1000, the number of runs to 30, the last 100 samples from
each run were used for the final posterior distribution, and the
MRI data were included after the first 100 iterations.

In both the proposed and the MR-MAP method, the spatial
regularization and the influence of images from other modal-
ities depend on hyperparameter values. Selecting values for
hyperparameters implies making compromises regarding bias,
variance, root mean square error, and visual characteristics
of the final image (sharpness, noise, preservation of PET
unique features, etc). Due to the lack of universal criteria for
choosing optimal parameter values, and to the difficulty of
finding matching values for different methods with different
behaviours, we selected near optimal values for the RCP-GS
and the MR-MAP methods based on low mean square error
with respect to the true image and on some visual assessment
(e.g. preservation of PET only features). The influence of
hyperparameter values was investigated by performing recon-
structions with a range of values, including the near optimal
value. In the proposed method, the ddCRP free prior parameter
α was set to a range of values (10−20, 10−10, 1, 1010, 1020),
with 1 being the optimal value. For the MR-MAP method,
the parameter β weighting the entire penalty was also set to
a range of values (4, 8, 12, 16, 20), with 12 being the optimal
value, whereas the other parameters were fixed to values that
tended to produce images with lower mean square error with
respect to the true image (6mm for the sphere radius, 20%
for the Bowsher percentage of most similar voxels in the
neighbourhood, and γ = 2 for the relative difference penalty).

The properties of the proposed RCP-GS image estimator
(the posterior mean) were analyzed and compared to reference

methods in terms of estimator bias, variance, and root mean
square error, using the simulated statistical replicates. Regions
of interest were defined using the label image, by selecting the
entire gray matter, white matter, cerebrospinal fluid and the
entire lesion. The ROI bias was computed as the difference
between the estimated ROI mean and the true ROI value
and was averaged over replicates. The ROI standard deviation
was computed as the standard deviation of the estimated
ROI mean across replicates. The root mean square error was
computed for all the brain voxels, as the root of the sum of
the voxel-wise variance across replicates and of the squared
voxel-wise bias across replicates, and then summed over brain
voxels. The MLEM reconstruction was run until convergence
using 500 iterations, and post-smoothed with Gaussian filtering
using several FWHM values, ranging from 0 to 4mm, which
corresponds to the PSF of the simulated PET acquisition
system. The MR-MAP reconstruction was run using the same
number of iterations, during which it did reach the final
solution.

95% posterior intervals were available only for the proposed
method. They were computed independently for each replicate
and their coverage of true image intensities was analyzed. It
is a first step towards a more rigorous validation of estimated
posterior intervals (for more details and discussions see [18]).

C. Patient data

Three patient data sets were obtained from a Signa PET/MR
scanner (GE Healthcare, Milwaukee, WI, USA): 1) The brain
bed step of a whole body 18F-FDG oncological exam with
a 2D T2 weighted fast spin echo MRI acquisition and a 3D
T1 weighted fast spin echo MRI acquisition after Gadolinium
injection, showing a metastatic lesion in the brain stem, and
having 4.5e7 noise equivalent counts; 2) An epilepsy 18F-
FDG brain exam with a 3D T1 weighted gradient echo
MRI acquisition, showing no diagnostic signs of epilepsy in
either modality, and having 6.2e8 noise equivalent counts;
3) A glioma 18F-DOPA brain exam with a 2D FLAIR MRI
acquisition, and two T1 weighted MRI acquisitions after
Gadolinium injection (3D gradient echo and late enhancement
2D fast spin echo), each acquisition showing different tumor
characteristics, and having 4.5e8 noise equivalent counts.

The proposed method was compared to OSEM with 8
iterations and 27 subsets (parameters close to usual clini-
cal brain reconstructions), with and without Gaussian post-
smoothing matching the FWHM of system PSF, and to the
MR-MAP method with the same number of iterations and
subsets. All the reconstructions were performed on sinograms
including TOF information. They were entirely quantitative
and comparable to clinical reconstructions. The correction
factors were estimated using the manufacturer PET Toolbox
library. System resolution modeling was not used.

All the MR images were resampled with a trilinear interpo-
lation to match the voxel size of the reconstructed PET image,
which entailed down-sampling and/or over-sampling of MR
images, depending on the axes and on their spatial resolu-
tion. The PET voxel size was chosen according to clinical
TOF reconstructions performed on the PET/MR scanner, as
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1.56× 1.56× 2.78mm3 for the metastatic lesion and epilepsy
data sets, and 1.17×1.17×2.78mm3 for the glioma data set.

The proposed method used as much MR images as available
(2 for the metastasic lesion exam, 1 for the epilepsy, 3 for
the glioma). The MR-MAP method used a single MR image
having the best spatial resolution (the T2w image for the
metastasic lesion and 3D T1w for the epilepsy and the glioma
exams), because Bowsher similarity weights have not been
extended to more than one additional image until now. In
addition, the metastatic lesion exam was also reconstructed
with the proposed and with the MR-MAP method using each
of the 2 MR images separately.

The Gibbs sampler was run 30 times as for the simulated
data set. The number of iterations per run was 250, the last
50 samples of each run were used for the final posterior
probability distribution, and the MRI data were included after
the first 50 iterations. The ddCRP free prior parameter α was
roughly adjusted for each examination, in order to obtain a
similar average volume of cluster samples, ∼ 50mm3± 20%.
This average cluster volume was chosen empirically by trial
and error. The final parameter values for the metastatic lesion
data set were α = 1 with 2 MR images, α = 102 with T1w
MRI and α = 102 with T2w MRI. For the epilepsy dataset
α = 106, and for the glioma α = 10−18, using all the available
MR images. A mask covering the entire head was applied
during reconstruction to speed-up the computation time.

The parameters for the MR-MAP method were tuned to
produce images with similar visual properties and with similar
SUV mean and standard deviation values in manually drawn
3D regions of interest as the proposed method. The parameter
values were γ = 2, Bowsher percentage 40%, neighbourhood
sphere radius 8mm and the β was 0.001 for the metastasic
lesion data set with T1w MRI and 0.0007 with T2w MRI,
0.004 for the epilepsy, and 0.002 for the glioma data set. The
quantitative difference with respect to OSEM was thus similar
for the proposed and for the MR-MAP method.

For visual comparison, we presented and analyzed slices
which contained relevant features in terms of pathology, high-
lighted differently by different image types (PET and various
MR images). The uncertainty images (images of 95% posterior
intervals) produced with RCP-GS were analyzed visually.

IV. RESULTS

A. Simulated data

Fig.1 shows the simulated PET (Fig.1a) and MR (Fig.1d)
images, the MLEM reconstruction without post-smoothing
(Fig.1f) and with a post-smoothing matching the system res-
olution (Fig.1e). The proposed method (Fig.1b) and the MR-
MAP method (Fig.1c) are shown for near optimal parameter
values that produced low estimator root mean square error
and better visual image characteristics (sharper edges, but
preserved PET unique features), α = 1 and β = 12.

In the proposed reconstruction, the edges are sharper than
with other methods and overlap well with the edges in the
true image, which can be interpreted as an improvement
in spatial resolution. Some edges that do not exist in the
MRI image are less visible in the reconstructed PET image,

Fig. 1. Simulation results for a single replicate: a) simulated PET image,
b) RCP-GS mean, c) MR-MAP, d) simulated MR image, e) post-smoothed
MLEM, f) converged MLEM, g) a sample of RCP-GS emission image, h) a
sample of voxels clustering, i) RCP-GS 95% posterior intervals image; the
MLEM colorscale in kBq/cm3 is common to all the PET emission images

for instance the lower edge of the lesion compared to the
MR-MAP image. Image areas that have uniform intensity
in the true image approach uniformity also in the proposed
reconstruction, except for some individual voxels near strong
edges which tend to have ’noisy’ artefacted values.

A sample of the PET emission image (Fig.1g) is shown
along with the corresponding sample of voxels clustering
(Fig.1h). Each cluster is composed of a certain amount of
adjacent voxels. The clusters change in shape and size from
sample to sample, and a single sample can contain both small
and large clusters. When the hyperparameter α is increased,
the overall spatial regularization is decreased, and the cluster
size tends towards a single voxel, and vice versa.

In the image of 95% posterior intervals size (Fig.1i), areas
with larger intervals tend to match areas in the reconstructed
image where the intensities differ more from the true image,
especially in the ’noisy’ artefacted voxels, which is promising
regarding the diagnostic relevance of obtained uncertainty
information. An example of noisy artefacted voxels is pointed
out by a white arrow in the image sample (Fig.1g) and in the
intervals image (Fig.1i), and by a black arrow in the clustering
image (Fig.1h). They usually correspond to clusters containing
a single or very few voxels, located near the edges of regions
with different intensities.

Fig.2 presents estimator (across replicates) bias - standard
deviation plots for the selected regions of interest. For hy-
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Fig. 2. Comparison of estimator bias - standard deviation for ROIs : larger
dots correspond to images shown in Fig.1, and the arrows show the direction
from lowest to highest spatial regularization)

perparameter values corresponding to images shown in Fig.1
(large dots in Fig.2), the proposed method presents lower
bias compared to all the other methods for all the regions
except for the lesion, for which the bias is higher than for
converged MLEM (large red dot with lowest regularization)
and lower than for the other methods, whereas the variance of
the proposed method is lower compared to converged MLEM
and higher compared to all the other methods. For all the
methods, the hyperintense lesion and the gray matter are
underestimated, and the CSF and WM are overestimated. For
a fixed level of variance, the proposed method has the lowest
bias for all the regions. The standard deviation percentage
values are very low because large ROIs were selected (e.g.
entire gray/white matter). The changes of bias values remain
moderate.

Changing the strength of spatial regularization (based on
both PET and MR data) in the proposed and in the MR-
MAP method shows some similarities and some differences.
For both methods, when the regularization strength is low,
the estimator bias and variance tend to approach converged
MLEM (large red dot with lowest regularization), and when
the strength is high, the bias and variance tend to pull away
from converged MLEM. For the proposed method, increasing
the strength of regularization tends to lower both the bias and
the variance, except in the lesion, where the bias tends to
increase. For the MR-MAP method, increasing the strength
tends to increase the bias and lower the variance. For the

proposed method, the tendency is not as strictly increasing
or decreasing. It has been observed that for both the proposed
and the MR-MAP method, increasing the strength of spatial
regularization tends to cause the MR features to override
slightly the PET features.

For hyperparameter values corresponding to images shown
in Fig.1, the proposed method reduces the root mean square
error of whole brain voxels by 66% compared to converged
MLEM, by 36% compared to the MLEM with strongest post-
smoothing, and by 22% compared to the MR-MAP.

The computation time for a single RCP-GS reconstruction
was approximately 15min (30 runs × 1000 sampler iterations),
compared to 22s for MR-MAP and 19s for MLEM (500
iterations).
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Fig. 3. Simulated data: 95% posterior intervals’ coverage of true values for
different values of RCP-GS hyperparameters (large dots correspond to the
image shown in Fig.1b), for several ROIs; (lowest α = highest regularization)

The 95% posterior intervals are available only for the
proposed method. Fig.3 presents for each ROI the percentage
of ROI voxels for which the computed 95% posterior intervals
include the true voxel intensity value (averaged over repli-
cates), as a function of hyperparameter values (corresponding
to different degrees of spatial regularization). As discussed
in section II-C, this percentage should amount to 95% to be
fully reliable, but it may drop when the models are not perfect
(which is always the case to some extent with realistic data)
and when estimators are biased. When the spatial regulariza-
tion is low, the coverage of the posterior intervals approaches
the required percentage, because the proposed method presents
some bias and large variance (similar tendency as the con-
verged MLEM), causing large intervals which are more likely
to contain the true value in the presence of some bias. When
the spatial regularization is high, the coverage drops, because
the proposed method presents lower variance with still some
bias (similar tendency as spatially penalized methods), causing
tighter intervals that are less likely to contain the true value in
the presence of bias. For near optimal hyperparameter values,
corresponding to the image shown in Fig.1b, the percentage
of whole brain voxels whose 95% posterior intervals contain
the true value amounts to 70%, in average over replicates.

As mentioned in section II-C, the MCMC sampler iter-
ations do not have the same meaning as MLEM or MAP
optimization iterations. Fig.4(up) illustrates the evolution of
the lesion ROI mean over iterations for RCP-GS (single
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of the 95% posterior interval)

example run), MLEM and MR-MAP. Sampler iterations are
different from optimization iterations in that the ROI mean
is a random variable in this context: at each iteration, the
computed value of the ROI mean represents a random sample
from the posterior distribution, resulting in a randomly varying
curve. The behaviour of RCP-GS sample curves, the imperfect
mixing and the need for several runs of the sampler, are
illustrated in detail in Fig.4(bottom). Fig.4(bottom left) shows
the same single run RCP-GS curve zoomed to the last 400
samples: it can be observed that adjacent samples still show
some correlation and explore the possible values relatively
slowly. Fig.4(bottom right) shows the corresponding histogram
(green), which represents only a partial contribution to the
posterior histogram of the last 400 samples produced by all the
runs (violet). The histogram for all the runs (violet) illustrates
also the posterior distribution that can be obtained from the
generated samples for the lesion ROI mean, with the corre-
sponding 95% posterior interval bounds marked by vertical
lines. The jump at iteration 100 for RCP-GS corresponds to
the inclusion of the MR image, when the chosen α parameter
becomes more appropriate (feature explained in section II-C).
Sampler iterations are similar to optimization iterations in
that the inverse problem is being solved: for MLEM the ROI
mean tends towards a certain value, and for RCP-GS the ROI
mean averaged over adjacent iterations (moving average) tends
towards a certain value.

B. Patient data

For the oncological 18F-FDG data set, a slice featuring
the metastatic lesion in the brain stem is presented in Fig.5.
The proposed reconstruction using both MR images (Fig.5h)
presents sharper edges and more details compared to OSEM.

The lesion is sharper mostly thanks to the T1w MRI and
some gray and white matter structures contain more details
mostly thanks to the T2w MRI. The proposed and MR-
MAP reconstructions using a single MR image show the
influence of that image: the lesion edges become visually
more similar to the edges in the MR image. The T1w MR
image presents sharper depiction of the lesion, whereas the
T2w MR image does not show much contrast in the lesion
area. When using only the T1w MR image, lesion edges
in the RCP-GS image (Fig.5f) are sharper and remain more
consistent with the approximate edges in the OSEM image,
compared to the MR-MAP image (Fig.5c). On the contrary,
when using only the T2w MR image, lesion edges in the MR-
MAP image (Fig.5d) are smoother and remain more similar to
the approximate edges in the OSEM image, compared to the
RCP-GS image (Fig.5g). The same 2D slice of a 3D sample
of voxels clustering is also presented in Fig.5k: each color
shade corresponds to a cluster label, containing only adjacent
voxels. The clusters are smaller than actual anatomical or
functional structures. The shape of clusters surrounding the
head are caused by the mask applied during reconstruction
for speed-up.

The computation time was 4 days for RCP-GS (30 runs ×
250 sampler iterations), compared to 1h20 for MR-MAP and
50min for OSEM (8 iterations × 27 subsets).

For the epilepsy 18F-FDG data set, a slice featuring struc-
tures well delineated in PET and less delineated in MRI
(thalamus, putamen, caudate nucleus, etc.) is presented in
Fig.6. The proposed reconstruction (Fig.6a) presents sharper
edges and more details, even in these central structures which
are not well delimited in MR images. Small structures are
better delineated than in the MR-MAP image (Fig.6b), and
there is less noise, except for a couple of gray matter voxels
which have a much higher intensity than they should. The
image of posterior intervals (Fig.6f) presents larger intervals
for these voxels with noisy artefacted intensities, and for the
areas around some edges which are not visible in both images.

For the glioma 18F-DOPA data set, a slice featuring the
largest portion of the glioma is presented in Fig.7. The
proposed reconstruction (Fig.7a) presents sharper edges, more
details, and the lowest noise, in non pathological tissues and in
the lesion. The lesion has different characteristics in different
modalities. The proposed reconstruction is influenced by all
the images, but the final shape remains approximately similar
to the standard OSEM PET reconstruction (Fig.7c), though it
is more round and smooth compared to OSEM and MR-MAP
(Fig.7b). The image of posterior intervals (Fig.7h) presents
larger intervals for some noisy artefacted voxels, for some
areas whose edges are not visible in both modalities, and also
for the lesion, especially near the edges.

V. DISCUSSION

The proposed method, RCP-GS, shows some interesting
properties with respect to the MLEM/OSEM and to the MR-
MAP method, in terms of bias and variance in the simulated
data, and in terms of spatial regularization and influence of one
or several MR images for both simulated and clinical data.
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Fig. 5. Lesion exam: a) smoothed OSEM, b) OSEM, c) MR-MAP (T1w), d)
MR-MAP (T2w), e) RCP-GS interval (both MR images), f) RCP-GS mean
(T1w), g) RCP-GS mean (T2w), h) RCP-GS mean (both MR images), i) T1w
MRI, j) T2w MRI, k) RCP-GS clustering sample; the OSEM colorscale in
SUV is common to all the PET emission images

One of the main advantages of the proposed method is
its ability to provide uncertainty information through the
posterior distribution of the reconstructed image. Describing
and presenting the posterior distribution of many correlated
variables remains a challenge in statistics. These preliminary
results summarize the posterior distribution through posterior
intervals of individual voxels. Other features and represen-
tations of the uncertainty and their applications remain to
be explored in the future (e.g. posterior voxels covariance,
statistical comparison of regions of interest). Further work is
required to validate and characterize the resulting posterior dis-
tribution and the derived uncertainty information, for instance
by measuring the discrepancy and the fitness of the model
with respect to the acquired data as in [27]. The uncertainty
is propagated from several sources: from the prior distribution
of intensity and spatial clustering, from observed PET data

Fig. 6. Epilepsy exam: a) RCP-GS mean, b) MR-MAP, c) post-smoothed
OSEM, d) OSEM, e) T1w MRI, f) RCP-GS 95% posterior intervals; the
OSEM colorscale in SUV is common to all the PET emission images

providing information about PET emission concentration and
from observed PET and MRI data providing information about
homogeneous regions. This is an interesting feature because
it captures the complexity of the reconstruction process, but it
also makes the interpretation of posterior intervals challeng-
ing, because the various sources of uncertainty are difficult
to separate. In Poisson and Gamma distributions, variance
increases when the mean increases (this tendency has also
been observed and explored theoretically in the context of
standard MLEM [6]). Therefore, posterior intervals naturally
tend to be wider in image regions with higher intensity. For
the interpretation of PET images, it appears useful to analyze
simultaneously an image of estimated emission concentration
and the corresponding estimation uncertainty. Further work
is needed for investigating more in depth the application
of uncertainty information to diagnostic interpretation and
diagnostic tasks.

This model was designed for standard patient acquisition
protocols, so it is not intended for improving the reconstruc-
tions of very noisy PET data. Further tests are required for
evaluating the performances and the limits of the proposed
method in terms of the SNR of PET raw data.

It should be noted that there is no final piece-wise clustering
of the image: the grouping of voxels into homogeneous regions
occurs only in individual samples of the posterior distribution,
with clusters being usually much smaller than the actual
anatomical or uniform areas in either image.
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Fig. 7. Glioma exam: a) RCP-GS mean, b) MR-MAP, c) post-smoothed
OSEM, d) OSEM, e) T1w MRI (Gd), f) FLAIR MRI, g) T1w late enhance-
ment MRI (Gd), h) RCP-GS 95% posterior intervals; the OSEM colorscale
in SUV is common to all the PET emission images

The ddCRP prior is more general and flexible than our
current implementation. It models probabilistic grouping of
voxels into spatial clusters with identical characteristics, which
characteristics are arbitrary and independent of the clustering
process. Here we chose a single simple characteristic, i.e. the
cluster intensity, but more complex features could be used, in
order to avoid the patchy aspect of individual image samples.
Also, the distance weighting between voxels is here simply 1
for neighbour voxels and 0 for the others, but more complex
weighting of distances between voxels could be tested, as
in MAP methods. The ddCRP prior puts some assumptions
on the overall average size of smooth regions and almost
no assumption on regions intensity except the non-negativity.
It should be noted that a deterministic method for solving
inverse problems, such as MLEM, might also be viewed as a
probabilistic method with a uniform (non-informative) prior.
Further refinement of matching the statistical model to reality
would imply using more accurate distributions, taking into

account the physics of the emission process and the complexity
of the detection process that may be available in scanner raw
data.

The lack of PET system resolution modeling in the recon-
struction impairs slightly the matching of structures in MR
and PET images. Hence, improvements are expected after the
introduction of resolution modeling. As the backprojection
is probabilistic in the proposed method, image convolution
with system PSF cannot be used as easily as in conventional
reconstructions. A solution consists in implementing the PSF
directly into system matrix coefficients, but it is computa-
tionally costly, even for usual reconstruction methods such as
OSEM. Therefore, future work shall introduce PSF modeling
in a probabilistic manner in the model.

Using Gaussian models for MRI processing or reconstruc-
tion is common and widespread, even though the noise in MR
magnitude images is best modeled with a Rayleigh distribu-
tion. The model used here produced good initial results. As
only the PET image is of interest here, sampling the posterior
MRI cluster intensity is not relevant, but it could be done in
order to obtain denoised MR images.

The computational load for MCMC methods is high, be-
cause of the number of samples needed for converging to
the actual posterior distribution and of the number of sam-
ples needed afterwards for exploring thoroughly the space of
possible unknown values and thus rendering accurately the
posterior distribution. The Gibbs sampler’s mixing and conver-
gence to the posterior distribution presented some difficulties,
which is not a rare issue when applying MCMC samplers
to realistic data and to models with many correlated random
variables. In PET reconstruction inverse problem, the hidden
variables (complete data n) imply high correlations, which
tend to cause slower mixing and exploration of the domain of
sample values. Our current solution to the mixing/convergence
problem produces good results but remains empirical, and
further work is needed for exploring more efficient and more
theoretically sound solutions, as well as assessing the mixing
properties more in depth, using methods described in [28].
When the sampler mixing improves, the number of iterations,
the burn-in period, etc. shall be chosen in a less empirical
way. There shall be no need for several runs, which should
decrease the computation time. Convergence issues may show
up especially in some very small or single-voxel clusters,
whose intensity becomes trapped in inappropriate or ’noisy’
artefacted values. Small amount of backprojected counts per
cluster, small cluster size and low cluster sensitivity increase
the influence of the wide intensity prior, making the intensity
of such clusters more difficult to sample.

The issue of potential detrimental influence of MRI on PET
has to be addressed, as in MR-MAP methods. In the proposed
method, the MR images do not affect the PET image intensity
directly: they have an influence only on the clustering part of
the model. The proposed and the MR-MAP method do not
have the same approach to the spatial regularization and to
the inclusion of side images, but there are some substantial
similarities. Both methods have parameters that require tuning
(1 free parameter for the proposed method and 4 for the MR-
MAP method), and there is no universal automatic procedure
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for choosing optimal parameters, especially for real data. In
both methods, the spatial regularization depends on both PET
and MRI, and the influence of parameter tuning shows similar
trends: when parameters are tuned to increase the influence of
MRI data, the shapes in the reconstructed PET image tend
to fit the shapes in the MR image, regardless of whether
they exist in the PET data or not. In the MR-MAP method,
this issue occurs with strong smoothing penalty and strong
reliance on MRI for the choice of neighbourhood voxels.
In the proposed method, this issue occurs when allowing
for larger clusters, especially when PET observed data are
less reliable than MRI observed data, i.e. when MR images
contain large homogeneous structures and have low noise,
while the PET raw data have high noise level and contain
inconsistencies. As far as differences between the methods
are concerned, in the proposed method the MR image is
neither a prior nor a part of the prior, contrary to usual MR-
MAP methods. The MRI data are part of the observed noisy
data that supply side information about smooth regions and
structures. Including additional images requires also dealing
with different voxel sizes and partial volume effects in PET
and MRI data. Subsampling of MR images, mostly in axial
direction, may impair the delineation of different tissues and
create partial volume effects, while oversampling may create
questionable structures, mostly when the spacing between 2D
slices is large. Future work is needed to explore the behaviour
of RCP-GS without the additional MR images, and to compare
the spatial regularization performance to a MAP method based
only on PET data.

To estimate a PET emission concentration image using
posterior samples, it is easier and more reliable to estimate the
posterior expectation than the posterior maximum, because of
the quantity of available samples. The proposed estimator is
thus optimal rather in the quadratic sense than in the maximum
likelihood or maximum a posteriori sense.

VI. CONCLUSION

A new probabilistic PET reconstruction method named
”Random Clustering Prior - Gibbs Sampler” (RCP-GS) is
presented, with the aim of reconstructing both a spatially
regularized image and the associated uncertainty. This opens
new areas for exploration and for applications. The proposed
reconstruction showed appealing properties on both simulated
and clinical data. Future work shall focus on improvements of
sampler behaviour and on quantitative validation and interpre-
tation of the estimated uncertainty.
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