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Shared genetic aetiology between 
cognitive performance and brain 
activations in language and math 
tasks
Yann Le Guen 1, Marie Amalric  2, Philippe Pinel2, Christophe Pallier2 & Vincent Frouin  1

Cognitive performance is highly heritable. However, little is known about common genetic influences 
on cognitive ability and brain activation when engaged in a cognitive task. The Human Connectome 
Project (HCP) offers a unique opportunity to study this shared genetic etiology with an extended 
pedigree of 785 individuals. To investigate this common genetic origin, we took advantage of the HCP 
dataset, which includes both language and mathematics activation tasks. Using the HCP multimodal 
parcellation, we identified areals in which inter-individual functional MRI (fMRI) activation variance was 
significantly explained by genetics. Then, we performed bivariate genetic analyses between the neural 
activations and behavioral scores, corresponding to the fMRI task accuracies, fluid intelligence, working 
memory and language performance. We observed that several parts of the language network along the 
superior temporal sulcus, as well as the angular gyrus belonging to the math processing network, are 
significantly genetically correlated with these indicators of cognitive performance. This shared genetic 
etiology provides insights into the brain areas where the human-specific genetic repertoire is expressed. 
Studying the association of polygenic risk scores, using variants associated with human cognitive ability 
and brain activation, would provide an opportunity to better understand where these variants are 
influential.

The genetic contribution to intellectual ability in human has been studied for almost a century1. These first stud-
ies on twins and families constitute the starting point of the behavioral genetic field. One of the first goal was to 
estimate the heritability of behavioral traits, meaning the proportion explained by genetics in the variance of 
an observed trait. These heritability studies were historically conducted in dizygotic and monozygotic twins for 
which a sensible model known as Falconer formula2 links the variance of a trait to the a priori genetic and envi-
ronment shares, conveniently determined in twins. Among the behavioral traits, language and math functions 
in humans have been extensively studied in fundamental neuroscience as distinctive abilities of human lineage. 
They are frequently assessed through standard behavioral tests as regular phenotypes but also with neuroimaging 
to provide brain characteristics, named endophenotypes3,4. Those two kinds of phenotype are used jointly as a 
way to classify the broad behavioral symptoms of language impairments into stable characteristics that in turn 
are candidates to search for potential associations with either medical treatment responses or genetic profiles5,6. 
Structural properties observed using magnetic resonance imaging (MRI) or activations observed with functional 
MRI (fMRI) have been used to produce such endophenotypes7. These can reveal differences between control and 
disease groups in language-specific regions8 or distinguish disorder subtypes such as grammatical-SLI (specific 
language impairment)9. In this study, the endophenotypes correspond to fMRI activations, which are hypoth-
esized to reflect brain spatial display of underlying molecular mechanisms when a subject is tested. This raises 
the question of their potential common genetic roots with cognitive ability assessed by tests. Imaging-genetics 
resources, such as the Human Connectome Project (HCP) provide an unprecedented opportunity to study the 
variability of behavioral endophenotypes along with behavioral tests in control subjects, as well as to determine 
their potential heritability or association with genetics. This dataset provides a unique opportunity to link in one 
study issues addressed by the genetics, neuroimaging and psychology communities because it contains: pedigree 
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information, fMRI images and behavioral tests. There are existing bridges between these fields, but to the best 
of our knowledge data is rarely available at the same time. The rationale of this study is thus to look into the 
heritability of fMRI activations and behavioral scores separately and then to investigate the shared genetics roots 
between the two.

Following up on these ideas, we first proposed to study the genetic influence involved in fMRI activation dif-
ferences among typically developed individuals. We used the pedigree data from the HCP language comprehen-
sion and verbal math fMRI tasks. These tasks recruit regions directly implicated in brain disorders, such as Broca’s 
area in SLI10, the angular gyrus in developmental dyslexia3 and the intraparietal sulcus in dyscalculia4. A few stud-
ies have already attempted to estimate the narrow sense heritability of brain activations for various tasks. They 
notably include digit and n-back working memory11,12, visual math subtraction13, and stimuli such as written 
words, faces and spoken language14. However, these studies had relatively small sample sizes for reliably detecting 
heritability estimates ranging between 25 and 50%. In addition to including a larger sample size, the HCP data 
were processed using state of the art methods, providing 2-mm isotropic resolution and finer inter-individual 
registration. In particular, the so-called grayordinate activations are computed on the surface of the cortex15 
for each individual, and inter-subject fMRI alignment is performed using areal-feature-based registration16. The 
grayordinate approach refers to fMRI analyses performed on the cortical surface, as opposed to a volume-based 
approach. We decomposed our analysis onto the HCP’s multimodal parcellation of the human cerebral cortex17, 
which enabled us to map the genetic influence on fMRI activations on a very fine scale.

Furthermore, it is known that neural activation endophenotypes from MRI may reflect not only impairments 
in language but also differences in cognitive scores. For example, weaker left-lateralizations have been reported 
for some developmental language disorders18, and in normal populations, fMRI activations during simple tasks 
correlate with various cognitive scores. Notably, single digit calculation fMRI activations are predictive of high 
school math scores19, and the fronto-parietal functional connectivity in children performing a task that required 
them to match Arabic numbers to an array of dots correlated with their score on a standardized math test20. Using 
HCP data and in line with these approaches, we show in this paper how variations in language related fMRI 
activations correlate with cognitive abilities assessed by the median reaction time (RT), average accuracy and 
difficulty level during the HCP language and math tasks. Remarkably, recent studies have shown that, beyond 
the age-related heritability of general cognitive ability21,22 and of various indicators of academic performance23, 
these scores are highly pleiotropic21,24 [pleiotropy occurs when one gene regulates one or more phenotypic traits].

This raises the question of the potential pleiotropy between neural activations and cognitive abilities. Thus, 
as a second contribution, we studied the shared genetic variance of fMRI activations and cognitive performance 
scores measured during the MRI session or behavioral scores acquired independently from the task. We studied 
behavioral variables measured by the HCP using standardized tests from the National Institute of Health (NIH): 
fluid intelligence, working memory, and language assessments such as vocabulary comprehension and oral read-
ing decoding. Details of these variables and their heritability estimates can be found in Table S1, and how well 
they correlate phenotypically and genetically with the behavioral scores measured during the task is reported in 
Table S2.

Recent genome wide association studies have unveiled new loci and genes influencing human cognitive per-
formance (e.g. human intelligence25, general cognitive function26,27 and educational attainment27) and possibly 
intelligence as a construct in differential psychology21. However, for these human-specific characteristics, little 
is known about the underlying integration mechanism of molecular functions or the brain areas where they are 
most influential. The shared genetic etiology investigated in this work provides new perspectives to decipher the 
basis of cognitive abilities such as language in humans. This study had two major aims: (1) to estimate the herit-
ability of fMRI activations during story comprehension and math tasks; and (2) to determine the shared genetic 
etiology between these activations and cognitive performance.

Results
Task fMRI Activations in MATH and STORY tasks. Figure 1 shows the activations for MATH (vs the 
intercept of the general linear model (GLM) being considered as baseline), STORY and the contrast STORY - 
MATH. The intercept reflects the mean of the residual BOLD time series after removing variance explained by 
all other regressors. Both tasks show clear activations in the planum temporale and Heschl’s gyrus area, reflect-
ing the fact that the stimuli were presented in the auditory modality. The MATH task, in which participants 
were requested to perform addition and subtraction, activates areas traditionally implicated in mathematical 
calculations, that is, the intraparietal sulcus, the middle frontal and the inferior temporal regions28,29. The story 
listening task activates the language understanding network, encompassing bilateral temporal regions and left 
frontal regions30,31. As expected, the group activations for the STORY task are more left lateralized, notably in the 
left posterior superior temporal and inferior frontal regions, which correspond to Wernicke’s and Broca’s areas, 
respectively. Moreover, regions implicated in inhibition networks are also activated by these tasks32,33, notably 
the middle frontal gyrus in the math task and the medial prefrontal cortex, implicated in motivation and execu-
tion, and above the anterior cingulate cortex, controlling selective attention34,35. In addition, both tasks activate 
complementary networks; in particular, the math task deactivates the semantic and episodic memory processes, 
known as the default mode network, which is also active in resting or passive states36. This last remark makes the 
STORY-MATH contrast particularly relevant for studying the genetic influence on activation specifically elicited 
by math and story tasks.

Univariate Genetic Analyses. We performed a cortex-wise heritability analysis on the median acti-
vation (β-value) in the 360 areals of the HCP multi-modal parcellation. After stringent Bonferroni correction 
(p < 0.05/360 ≈ 1.4·10−4), we found 54 regions whose activations during the MATH task are heritable and 46 
regions for the STORY task. These results are summarized in Fig. 2 and heritability estimates are included in 
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Tables S3–S6. The details and names of the areals can be found in the Supplementary Information of the paper 
describing the multimodal parcellation of the human cerebral cortex17. For the MATH (resp. STORY) task, the 
heritability estimates range from 0.23 to 0.45, with the maximum in the left “Area PGp” corresponding to the 
angular gyrus (resp. 0.22 to 0.55, with the maximum in the left “PeriSylvian Language Area”). In addition, we per-
formed heritability analysis using the median z-stat value in each areal instead of the median parameter estimate 
(β-value) and obtained similar results (Fig. S1).

Figure 1. Group average activations for the HCP language tasks, including MATH (a) and STORY (b) blocks, 
and the STORY-MATH contrast (c). Group maps are shown with a lower threshold of z = ±10 and saturation 
from z = 30 to introduce the main areas activated by the tasks. Due to the large number of subjects, the 
associated p-values are significant; we arbitrarily set the thresholds to emphasize the regions that are known to 
be recruited by these tasks.

Figure 2. Heritability estimates for the activations of the MATH (a) and STORY (c) tasks, and their associated 
p-values (respectively b and d). Only the estimates significant after correction (p < 0.05/360, with 180 areals in 
each hemisphere) are displayed. Activations correspond to the median parameter estimate (β) in each areal of 
the HCP multimodal parcellation.
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The univariate genetic analysis of the activations associated with verbal math emphasizes mainly areals span-
ning the math network, including the intraparietal sulcus, middle frontal, inferior temporal and angular gyri. 
The analysis of activations associated with story comprehension distinctively underlines regions of the language 
network as bilaterally heritable. Among these regions are the superior temporal sulcus dorsal and ventral parts, 
Brodmann area (BA) 47 in Broca’s area, and the middle frontal gyrus at the junction with the precentral sulcus. 
Interestingly, the heritability networks of the MATH and STORY tasks overlap very little except in the auditory 
cortex, around the planum temporale, in the frontal cortex (BA 8), and in the inferior temporal region.

Table 1 presents the heritability estimates of the behavioral scores gathered during the MRI scans. The global 
accuracy on the HCP language tasks, averaging the scores in the MATH and STORY tasks, was significantly 
heritable, with h² = 0.34, close to the traditionally high heritability estimate of cognitive performance37,38. The 
heritability estimates for the median reaction time (RT) were approximately 0.2. Furthermore, RT Story and RT 
Math were significantly correlated (phenotypic correlation: ρp = 0.34, genetic correlation: ρg = 0.45, Table S2). 
Regarding the accuracy and average difficulty level of the HCP language task, we observed that the MATH task 
variables have higher heritability estimates than those of the STORY task. This result might indicate a higher 
genetic influence on performance during simple arithmetic tasks than during language comprehension. However, 
this result needs to be considered in light of the different distribution patterns of MATH and STORY accuracies. 
The STORY accuracy reported by the HCP displays discrete values and might not be sufficiently informative 
(Fig. S2). Table S2 underlines a significant correlation between math and story accuracies (ρp = 0.15, ρg = 0.27). 
The discrete distribution of STORY accuracy likely occurs because each story lasted approximately 20–30 s, few 
story questions were presented to the subjects, and most subjects tended to choose the correct answer in the 
two-alternative forced-choice question.

Bivariate Genetic Analyses. We performed bivariate genetic analyses to quantify the shared genetic influ-
ence between intellectual performance, represented by the behavioral measures, and the neural activation in each 
areal. The genetic correlation estimates are usually subject to substantial sampling errors and therefore inaccu-
rate. The large sample size of the HCP offers the opportunity to reduce the standard errors. The distribution of 
STORY accuracy values is concentrated on a small number of values (Fig. S2), thus, we chose to use the average 
of the STORY and MATH accuracies as the behavioral score to characterize the individual performance. Thus, 
the results presented here concern the relationship between this average score and the activations or deactivations 
revealed by the contrast STORY-MATH (activation map shown in Fig. 1c). As a first step of our analysis and to 
filter out the areals for which the neural activation was not significantly correlated with the behavioral score, we 
computed the phenotypic correlation between these two variables in each areal of the HCP multi-modal parcel-
lation. Figure 3(a,b) summarizes the phenotypic correlation and associated p-values, for areals significant after 
Bonferroni correction (p < 0.05/360). The language network is clearly encompassed along the left superior tem-
poral sulcus (STS) and Broca’s area, as well as in the anterior part of the right STS. The activations in the angular 
gyrus (area PGp), supporting the manipulation of numbers in verbal form39, were also significantly correlated 
with the behavioral scores.

Among the 360 areals of the HCP multimodal parcellation, 39 (resp. 38) were significantly phenotypically 
correlated and were kept for the bivariate analysis in the right (resp. left) hemisphere. The shared genetic vari-
ance estimates for these areals are presented Fig. 3(c,d) (p < 0.05 without correction), and detailed values can be 
found in Tables S7 and S8. With stringent Bonferroni correction the p-value threshold for ρg is p < 0.05/(39 + 38) 
≈ 6.5·10−4. Among the areals with significant shared genetic variance, we found the left anterior ventral insular 
area (AVI, ρg = 0.61)and the right angular gyrus (PGp, ρg = −0.40). Noticeably, in the left hemisphere areals, 
parts of the language network in the posterior STS had activations that shared significant genetic variance with 
language accuracy. These include the posterior ventral (STSv posterior, ρg = 0.47) and dorsal (STSd posterior, 
ρg = 0.45) parts of the STS, adjacent to the auditory 5 complex area (A5, ρg = 0.54), the perisylvian language area 
(PSL, ρg = 0.47) and the temporo-intraparietal junction (PGi, ρg = 0.54). On the left hemisphere internal face, we 
also found the superior frontal language area (SFL, ρg = 0.61) and, adjacent to this areal the Brodmann 8 decom-
posed into medial (8Bm, ρg = 0.75) and lateral (8Bl, ρg = 0.73) parts. Additionally, we noted two right hemisphere 
regions implicated in language processing and significantly genetically correlated with the fMRI task average 
score: the temporal pole (area TG dorsal, TGd, ρg = 0.65) and the lateral part of Brodmann area 47 (47 l, ρg = 0.51). 

Trait h² ± SE (p)

Age Age² Sex Age*Sex Age²*Sex Hispanic Educ h²cov%

p-val

Language Accuracy 0.34 ± 0.06 (2.3·10−8) 0.49 0.75 0.01 0.96 0.22 0.97 1.2·10−7 7.2

Language RT 0.22 ± 0.07 (8.4·10−4) 0.44 0.91 0.69 0.85 0.95 0.71 0.04 0.5

Math Accuracy 0.4 ± 0.06 (1.6·10−10) 0.5 0.96 9.2·10−4 0.81 0.39 0.76 1.9·10−6 7.2

Math Difficulty Level 0.33 ± 0.07 (1.0·10−6) 0.53 0.17 0.02 0.61 0.05 0.42 8.7·10−8 7.9

Math Median RT 0.17 ± 0.07 (7.4·10−3) 0.6 0.41 0.78 0.82 0.69 0.26 0.01 1.1

Story Accuracy 0.18 ± 0.06 (1.6·10−3) 0.78 0.48 0.86 0.76 0.23 0.61 2.2·10−3 1.4

Story Difficulty Level 0.33 ± 0.07 (1.3·10−6) 0.66 0.43 0.81 0.44 0.28 0.91 0.11 0.0

Story Median RT 0.2 ± 0.07 (1.4·10−3) 0.41 0.63 0.39 0.59 0.68 0.45 0.39 0.0

Table 1. Heritability estimates for the behavioral scores associated with the tasks. Language accuracy and 
reaction time (RT) correspond to the average of the respective MATH and STORY variables. The p-values 
associated with the covariates related to age and sex, ethnic group and education level are also displayed.
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The latter is adjacent to Brodmann areas 44 and 45 in the inferior frontal, which are connected through the arcu-
ate fasciculus with the language temporal regions.

Additionally, we extended our analysis to behavioral variables measured by the HCP following a standard-
ized NIH protocol. Among these, we selected the variables that are most likely to reflect cognitive performance. 
Then, we estimated their heritability (Table S1) and correlations with the behavioral scores measured during the 
fMRI task (Table S2). In this set of variables, fluid intelligence (heritability: h2 = 0.43, correlations with language 
accuracy: ρp = 0.36, ρg = 0.61), working memory (h2 = 0.52, ρp = 0.34, ρg = 0.50), vocabulary comprehension 
(h2 = 0.64, ρp = 0.40, ρg = 0.57) and oral reading decoding (h2 = 0.67, ρp = 0.46, ρg = 0.67) were the ones with the 
highest heritability estimates and correlations with the average accuracy of the two fMRI tasks. Thus, we per-
formed a bivariate genetic analysis between the STORY-MATH activations (difference between βSTORY and βMATH) 
and these four variables. Regardless of whether one considers the NIH scores or the ones directly related to the 
fMRI tasks, the study of shared genetic influence with the median activation yields approximately the same set of 
regions (Figs 4 and 5). This observation reinforces our claim that these regions have common genetic roots with 
the parts of general cognitive performance accounted for by the four cognitive variables under scrutiny, namely 
fluid intelligence, working memory, vocabulary comprehension and reading decoding.

Discussion
In this paper, we have shown that brain activation pattern in the language and math networks are heritable. 
Additionally, we highlighted a particular set of regions along the superior temporal sulcus and in the inferior 
frontal whose activations share a common genetic basis with some aspects of general cognitive ability, assessed 
through fMRI task accuracy and behavioral scores.

Previous studies that have estimated the heritability of fMRI task activation had low sample sizes for signif-
icantly estimating heritably values ranging from 25% to 50%. The previous samples included 30 subjects (10 
triplets of male monozygotic (MZ) twins with one additional brother)11, 64 subjects (19 MZ and 13 dizygotic 
(DZ) pairs)13,14 or 319 subjects (75 MZ and 66 DZ pairs, 37 unpaired)12. We must emphasize that these results 
correspond to fMRI activations associated with verbal math and semantic comprehension tasks. Thus, regions 
not recruited by the tasks cannot be found to be significantly correlated with cognitive ability in our case, because 
activations in these regions are incoherent across individuals. Notably, the visual word form area, related to liter-
acy, is not activated in our oral tasks because they did not require word reading.

Furthermore, combining data from various cohorts is unfeasible, because neural activations from different tasks 
are not comparable when estimating inter-individual variance. This highlights the necessity of utilizing large cohorts 
with standardized fMRI protocols to perform such genetic analyses. To our knowledge, this is the first study to address 
the heritability of fMRI activation cortex-wise on a multimodal parcellation of the human cerebral cortex. Our results 
confirm the genetic influence on the formation of neural circuits implicated in language40 and math13. Using the HCP 

Figure 3. Bivariate genetic analysis results between HCP LANGUAGE task accuracy and activation for 
the STORY-MATH contrast in each areal. (a) After strict Bonferroni correction (p < 0.05/360), significant 
phenotypic correlations between the language task accuracy (average of story and math accuracies) and the 
median activation of the contrast STORY-MATH in each areal (b) with their associated p-values. (c) Proportion 
of variability due to shared genetic effects with (d) their associated uncorrected p-values < 0.05.
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Figure 4. Significant phenotypic correlations between the grayordinate activations of the STORY-MATH 
contrast and the NIH behavioral scores. (a) Fluid intelligence (PMAT24_A_CR). (b) Working memory 
(ListSort). (c) Vocabulary comprehension (PicVocab). (c) Reading decoding (ReadEng). Associated p-values 
(p < 0.05/360, Bonferroni correction) can be found Fig. S3.

Figure 5. Shared genetic variance (absolute value) between the grayordinate activations of the STORY-MATH 
contrast and the NIH behavioral scores. (a) Fluid intelligence (PMAT24_A_CR). (b) Working memory 
(ListSort). (c) Vocabulary comprehension (PicVocab). (c) Reading decoding (ReadEng). Associated p-values 
(p < 0.05, uncorrected) can be found in Fig. S4. Genetic correlation was investigated only for areals that were 
significantly phenotypically correlated (Fig. 4).
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fine scale parcellation17 allowed us, for instance, to distinguish the genetic effects on the temporo-parietal junction 
implicated in language30 (area PGi) and on the adjacent angular gyrus (area PGp), which is particularly involved in 
the manipulation of numbers in verbal form39. Indeed, these two areas, part of BA 39, present different cytoarchitec-
tonic properties, such as a slightly broader layer II for PGi41, which might explain their involvement in different tasks. 
In a previous work, Pinel and Dehaene also found the left angular gyrus and the posterior superior parietal lobule 
bilaterally to be heritable13. Adding to these observations, our results underline a left hemisphere intraparietal sulcus 
specificity, with more heritable areals and slightly higher heritability compared to the right for the MATH task. This 
finding is consistent with results reported by Vogel and colleagues demonstrating a correlation of activations in the 
left intraparietal sulcus modulated by age, which was not observed in the right intraparietal sulcus42. Heritability 
represents the proportion of observed inter-individual phenotypic variance that is explained by genetics. Thus, it 
might be that inter-individual variance is not sufficiently pronounced in the right hemisphere, whereas activations 
have evolved over one’s lifetime in the left hemisphere. Overall, the heritability maps for the STORY and MATH tasks 
pinpoint regions known to be disrupted in neurodevelopmental disorders. For instance, the inferior frontal area and 
the temporo-parietal junction activations are impaired in developmental dyslexia3,43, and the intraparietal region 
activations are less modulated by the numerical distance between two numbers being compared in developmen-
tal dyscalculia4,44,45. Highlighted areas might provide new insights into brain regions where normal gene expression 
might be disrupted, leading to brain dysfunction and neurodevelopmental disorders. Frequently replicated genes 
associated with neurobehavioral disorders, such as developmental dyslexia or SLI, likely play such a role in structural 
brain maturation by interfering with neuronal migration and neurite growth6.

Several studies have already described some phenotypic correlations between cognitive abilities and neural 
activations in language46–48 and math19,20,49,50. Our study replicates these observations, notably the correlation 
with language processing regions, including Broca’s area and the posterior superior temporal gyrus46. Moreover, 
we estimated the genetic proportion in these phenotypic correlations. Hence, we demonstrated a shared genetic 
etiology between brain activations and cognitive performance, assessed in our study by the following tests: fluid 
intelligence, working memory, vocabulary comprehension and reading decoding. Interestingly, in the right hemi-
sphere, mainly the anterior STS was found to be genetically correlated with the language task accuracy. This result 
seems consistent with the hypothesized role of the right anterior STS in the processing of figurative language, 
likely involved in the Aesop’s fable metaphors presented to the subjects51.

The observed genetic correlations shed light on the genetic links between cognitive performance and acti-
vation level in cognitive task-related fMRI. These links might be related to the development and maturation of 
myelin, enhancing brain connectivity. In children with difficulties processing syntactically complex sentences, 
arcuate fasciculus maturation was incomplete compared to adults52,53. Thus, we could look for additive genetic 
effects implicated in the various levels of fiber tract maturation, which improves brain connectivity and efficiency. 
Indeed, Skeide and colleagues reported an example of such a genetic risk variant for dyslexia. They showed that 
this variant is related to the functional connectivity of left fronto-temporal phonological processing areas during 
the resting state54. Similarly, children with higher arithmetic scores present a more mature response modulation 
in their left intraparietal lobe49. Our study suggests that a proportion of the observed inter-individual variance in 
cognitive performance partly results from the same additive genetic effects as those contributing to brain activa-
tion variance. The moderate shared genetic basis suggests that a crucial interaction occurs between the environ-
ment and gene networks to enable the brain to develop to its full potential.

In this study, we could not accurately model the share environment between siblings because HCP did not 
provide household information to model the shared environment. However, we pinpointed in the method section 
that we used the education level to model environmental differences in family socioeconomic status to mitigate 
the absence of common environment information. This choice is likely conservative and our heritability estimates 
and shared genetic are likely underestimated. Indeed, this model is conservative because the number of year of 
education shares genetic roots with the general cognitive ability55. In addition, the genotyping material from HCP 
was not available at the time of our study, thus we did not study gene×environment interaction.

Recently, with the emergence of large cohorts, such as UK Biobank, new loci and genes influencing human 
cognitive ability have been discovered25–27. However, little is known about how these genes contribute to this 
human-specific trait. Our study pinpoints brain regions where activations genetically correlate with global cog-
nition scores. These regions might help elucidate the mechanism in which these genes are implicated. When the 
HCP genotyping data are released, a polygenic score of these newly discovered variants could be used to deter-
mine the explained proportion of the neural activation variance in these regions.

Material and Methods
Subjects. This study utilized the dataset of the Human Connectome Project (HCP). The HCP scans and data 
were released in April 2017 (humanconnectome.org). The details of the release are available in the HCP reference 
manual. In this project, 1046 subjects aged between 22 and 37 years old (µ ± σ = 28.8 ± 3.7 years) completed the 
fMRI language task in the HCP S1200 release. To avoid population stratification, we only included the 785 Caucasian 
individuals (372/413 M/F) that were classified as race = “White” by the HCP; among these, the ethnicity of 69 was 
“Hispanic/Latino”. This subgroup of the HCP contains 178 twin pairs (117 monozygotic twins (MZ) with 103 sib-
lings and 61 dizygotic twins (DZ) with 61 siblings and 1 half sibling), 203 siblings, 1 half sibling and 60 unpaired 
individuals. The unpaired individuals did not contribute to the genetic parameter estimation but allowed a more 
accurate estimation of mean and variance effects. Subjects were chosen by the HCP consortium to represent healthy 
adults beyond the age of major neurodevelopmental changes and before the onset of neurodegenerative changes56. 
They underwent a battery of tests to determine if they met the inclusion/exclusion criteria of the HCP56. All subjects 
provided written informed consent on forms approved by the Institutional Review Board of Washington University. 
All of the following methods were carried out in accordance with relevant guidelines and regulations. All experi-
mental MRI protocols were approved by the Institutional Review Board of Washington University.
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Image acquisition and processing. MR images were acquired using a 3 T Connectome Scanner, adapted 
from Siemens Skyra, housed at Washington University in St Louis, using a 32-channel head coil. T1-weighted 
images with 256 slices per slab were acquired with the three-dimensional magnetization-prepared rapid gradient 
echo (3D-MPRAGE) sequence: TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8°, FOV = 224 × 224 mm, 
and resolution 0.7 mm isotropic. T2-weighted images, 256 slices per slab, were acquired with a 3D-T2SPACE 
sequence: TR = 3200 ms, TE = 565 ms, variable flip angle, FOV = 224 × 224 mm, and resolution 0.7 mm isotropic. 
fMRI data acquisition parameters were as follows: TR = 720 ms, TE = 33.1 ms, flip angle = 52 deg, BW = 2290 Hz/
Px, in-plane FOV = 208 × 180 mm, 72 slices, and 2.0 mm isotropic voxels, with a multi-band acceleration factor 
of 8. Two runs of each task were acquired, one with right-to-left and the other with left-to-right phase encoding 2; 
each run interleaved 4 blocks of a story task with 4 blocks of a math task. The lengths of the blocks varied (average 
of approximately 30 seconds), but the task was designed so that the math task blocks matched the length of the 
story task blocks, with some additional math trials at the end of the task to complete the 3:57 (min:sec) run.

The details of the HCP data analysis pipelines are described elsewhere15,57. Briefly, they are primarily built 
using tools from FSL58 and Freesurfer59. The HCP fMRIVolume pipeline generates “minimally preprocessed” 
4D time series that include gradient unwarping, motion correction, fieldmap-based EPI distortion correction, 
brain-boundary- based registration of EPI to structural T1-weighted scans, non-linear (FNIRT) registration into 
MNI152 space, and grand-mean intensity normalization57. For the S500 release, two smoothing approaches were 
chosen by the HCP: volume-based smoothing or smoothing constrained to the cortical surface and subcortical 
gray-matter parcels. For the former, standard FSL tools can be applied for analysis, while for the latter, the HCP 
adapted these tools to this the ‘grayordinate’ approach15,57. The grayordinate approach refers to fMRI analyses per-
formed on the cortical surfacen, as opposed to a volume-based approach. This is more accurate spatially because 
activation occurs in gray, not white, matter. Unconstrained volume-based smoothing causes blurring effects by 
mixing signals from cortex regions adjacent in volume but not on the surface. For these reasons, our study analy-
ses were carried out on the surface of the cortex.

The HCP fMRISurface pipeline brings the time series from the volume into the CIFTI grayordinate standard 
space. This is accomplished by mapping the voxels within the cortical gray matter ribbon onto the native cortical 
surface, transforming them according to the surface registration onto the 32k Conte69 mesh, and mapping the 
set of subcortical gray matter voxels from each subcortical parcel in each individual to a standard set of voxels in 
each atlas parcel. The result is a standard set of grayordinates in every subject (i.e., the same number in each sub-
ject, with spatial correspondence) with 2 mm average surface vertex and subcortical volume voxel spacing. These 
data are smoothed with surface and parcel constrained smoothing of 2 mm FWHM (full width half maximum) 
to regularize the mapping process57.

The language task. The HCP language task was developed by Binder and colleagues36. In the story blocks, 
participants were presented with brief auditory stories adapted from Aesop’s fables, followed by a 2-alternative 
forced-choice question to check the participants’ understanding of the story topic. The example provided in the 
original paper is “For example, after a story about an eagle that saves a man who had done him a favor, participants 
were asked, “Was that about revenge or reciprocity?””. In the math blocks, participants were also presented auditory 
series of addition and subtraction (e.g., “fourteen plus twelve”), followed by “equals” and then two choices (e.g., 
“twenty-nine or twenty-six”). To ensure similar level of difficulty across participants, math trials automatically 
adapted to the participants responses. As shown by Binder and colleagues36, the story and math trials were well 
matched in terms of duration, auditory and phonological input, and attention demand. Furthermore, they were 
likely to elicit distinct brain activation – on the one hand, anterior temporal lobes classically involved in semantic 
processing, and parietal cortex on the other hand, classically involved in numerical processing, thus spanning a 
broad set of regions involved in conceptual semantic processing.

HCP task fMRI analysis. The analysis of fMRI data was carried out by the HCP consortium and we describe 
briefly their pipeline15. The Story predictor covered the variable duration of a short story, question, and response 
period (~30 s). The Math predictor covered the duration of a set of math questions designed to roughly match the 
duration of the story blocks. The grayordinate data for individual task runs were processed in a level 1 analysis. 
Activity estimates were computed for the preprocessed functional time series from each run using a general linear 
model (GLM) implemented in FSL’s FILM (FMRIB’s Improved Linear Model with autocorrelation correction)60. 
Predictors were convolved with a double gamma “canonical” hemodynamic response function61 to generate the 
main model regressors. The two runs for each task and subject were then combined in a level 2 fixed-effects analy-
sis15, which we used as our phenotype. Fixed-effects analyses were conducted using FEAT (fMRI Expert Analysis 
Tool) to estimate the average effects across runs within-subjects, and then mixed-effects analyses treating subjects 
as random effects were conducted using FLAME (FMRIB’s Local Analysis of Mixed Effects) to estimate the aver-
age effects of interest for the group third-level analysis.

Phenotype definitions. To define our phenotypes, we consider separately the regression analyses on 
STORY and MATH tasks, and the contrast STORY-MATH. We used the beta values (pe1.dtseries.nii files) of the 
results of the level 2 analysis, which essentially average the level 1, i.e., the individual, runs. The contrasts were 
defined by the HCP in level 1 and averaged for level 2: thus, the grayordinate values of the beta and contrast val-
ues (cope1.dtseries.nii) are identical in this case, as they did not define any “new” contrasts specifically at level 2. 
Therefore, we could have used the cope1.dtseries.nii.files with no difference in results. We used the MSMAll reg-
istered the functional analysis results from HCP and the HCP multimodal parcellation17. We analyzed each of the 
180 areals separately. We computed the median beta values in each areal for both hemispheres. These phenotypes 
constitute our proxy to estimate the activation in each part of the brain.
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Moreover, we also included in our phenotypes the accuracy, reaction time and average difficulty level for the 
MATH and STORY tasks. We called these “behavioral scores”, as opposed to the grayordinate activation pheno-
types previously defined.

The STORY-MATH contrast allows to cancel out: (i) the mean of the residual BOLD signal, which reflects 
the mean of the random error, (ii) signal in areas activated by both tasks, for example the primary auditory 
area. In addition, as emphasized by Binder and colleagues in the paper introducing this contrast36, the story and 
math tasks activate complementary networks. In particular, the math task deactivates the semantic and episodic 
memory processes, known as the default mode network, which remains active in resting or passive states. The 
STORY task activates regions traditionally involved in the semantic comprehension of phrases along the superior 
temporal sulcus, including Wernicke’s area, and in the inferior frontal region, including Broca’s area62. This set of 
activation is often left lateralized as observed here (Fig. 1). The MATH task involves brain regions in the intrapa-
rietal, middle and inferior frontal regions, as well as the angular gyrus, when the math task is performed orally39.

In the STORY-MATH contrast positive (respectively negative) beta weights reflect brain regions more acti-
vated by the STORY task than the MATH task, or deactivated by the MATH task (respectively more activated by 
the MATH task than the STORY task, or deactivated by the STORY task). Brain regions that are jointly activated 
by the STORY and MATH tasks have approximately null beta weights.

Univariate analysis of additive genetic variance. The variance components method, as implemented 
in the Sequential Oligogenic Linkage Analysis Routines (SOLAR) software package63, was used for the herita-
bility estimations of the phenotypes under analysis, such as the median activation in each areal17. The SOLAR 
algorithms use maximum variance decomposition methods derived from the strategy developed by Amos64. The 
covariance matrix Ω for a pedigree of individuals is given by:

Ω = 2·Φ·σg
2 + I · σe

2, where σg
2 is the genetic variance due to the additive genetic factors, Φ is the kinship matrix 

representing the pair-wise kinship coefficients among all individuals, σe² is the variance due to individual-specific 
environmental effects, and I is the identity matrix.

Narrow sense heritability is defined as the fraction of the phenotype variance σp
2 attributable to additive 

genetic factors: h² = σg
2/σp

2.
The significance of the heritability is tested by comparing the likelihood of the model in which σg² is con-

strained to zero with that of the model in which σg² is estimated. Before testing for the significance of heritability, 
phenotype values for each individual within the HCP cohort were adjusted for the following covariates: sex, 
age, age², age·sex interaction, age²·sex interaction, ethnicity (Hispanic or not) and education level. We used the 
number of years of education as a proxy for the education level to account for environmental differences in family 
socioeconomic status. This is a conservative approach because the number of years of education was shown to be 
associated not only with the family socioeconomic status (7%) but also with the general cognitive ability (3.5%)55. 
Thus, it likely has shared environmental ground with the former and shared genetic origin with the latter. HCP 
data do not contain the information that would disentangle this issue. Following this last remark, one should note 
that the heritability estimates and shared genetic variances, described in the next section, were underestimated.

Bivariate genetic analyses. To assess the relationship between math dexterity/language comprehension 
and activation in brain areas, we computed the Pearson correlation between the median activation in each of the 
180 areals of both hemispheres, and the behavioral scores.

Furthermore, we assessed the degree of shared genetic variance in the areals for which activation was signif-
icantly correlated with the behavioral scores; we performed a genetic correlation analysis using SOLAR, relying 
on the following model:

ρ ρ ρ= ⋅ + − − ⋅h h h h1 1p a b g a b e
2 2 2 2 , where Pearson’s phenotypic correlation ρp is decomposed into 

ρg and ρe. ρg is the proportion of variability due to shared genetic effects and ρe that due to the environment, while 
ha

2 and hb
2 correspond to the previously defined narrow sense heritability for phenotypes a and b, respectively. In 

our case, one corresponds to the heritability of fMRI activation in one areal, while the second is the heritability of 
one of our behavioral scores.

Data Availability statement
HCP (https://db.humanconnectome.org) is a publicly available dataset. Investigators need to apply to be granted 
access to restricted data.
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