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Abstract 

Transporter systems involved in the permeation of drugs and solutes across biological membranes 

are recognized as key determinants of pharmacokinetics. Typically, the action of membrane 

transporters on drug exposure to tissues in living organisms is inferred from invasive procedures, 

which cannot be applied in humans. In recent years, imaging methods have greatly progressed in 

terms of instruments, synthesis of novel imaging probes as well as tools for data analysis. Imaging 

allows pharmacokinetic parameters in different tissues and organs to be obtained in a non-

invasive or minimally invasive way. The aim of this overview is to summarize the current status in 

the field of molecular imaging of drug transporters. The overview is focused on human studies, 

both for the characterization of transport systems for imaging agents as well as for the 

determination of drug pharmacokinetics, and makes reference to animal studies where necessary. 

We conclude that despite certain methodological limitations, imaging has a great potential to study 

transporters at work in humans and that imaging will become an important tool, not only in drug 

development but also in medicine. Imaging allows the mechanistic aspects of transport proteins 

to be studied, as well as elucidating the influence of genetic background, pathophysiological states 

and drug-drug interactions on the function of transporters involved in the disposition of drugs. 
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; MATE, multidrug and toxin extrusion protein ; MDR, multidrug resistance; MRI, magnetic 

resonance imaging ; MRP, multidrug resistance-associated protein ; OAT, organic anion 
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OCTN, organic cation / carnitine transporter ; P-gp, P-glycoprotein ; PBPK, physiologically based 
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1. Introduction 

The pharmacologic effect of drugs is directly dependent on the local concentration of the drug at 

its respective target and hence critically depends on the pharmacokinetics (PK) of the drug (Fung 

& Jusko, 2015; Levy, 1966). PK includes determining the absorption, distribution, metabolism and 

excretion (ADME) of a drug or xenobiotic, and describes the concentration-time profile, typically 

determined in the circulation (Fan & de Lannoy, 2014). It is evident that sampling drugs in blood 

plasma does not give direct and accurate information on the concentration of a drug at its target, 

which very often is located in tissues, outside of the circulation. Current clinical pharmacokinetic 

studies do not provide information on the penetration of drugs into tissues or across barriers, e.g. 

the blood-brain barrier (BBB), placenta or tumor barriers, to name a few. 

ADME of drugs and xenobiotics is governed by many factors. Crossing of plasma membranes or 

other biological membranes by drugs and other solutes requires in general proteins, i.e. transport 

systems (Kell, 2015). (Drug) transporters can be divided very generally into systems mediating 

the uptake of substances into cells and systems mediating the efflux of substances from cells 

(Hediger et al., 2013). Uptake of solutes into cells is largely mediated by members of the solute 

carrier (SLC) gene series (Hediger et al., 2013). Export may be mediated by SLC transporters or, 

if against steep concentration gradients, by members of the group of adenosine triphosphate 

(ATP)-binding cassette (ABC) transporters. Once in a cell, many drugs and solutes are 

metabolized. Metabolism will affect both the total and intracellular concentration of transporter 

substrates. The interplay of transport into cells and intracellular metabolism generates a dilemma 

in the elucidation of molecular mechanisms involved in drug metabolism and elimination (Benet, 

2009).  

Current methodology for measuring drug concentrations in tissues requires invasive procedures 

(Chu et al., 2013). In such situations, imaging methods come into play, as they allow molecules in 

the body to be visualized in a non-invasive manner and even more so as they allow detailed 

information to be obtained on time-dependent changes in drug concentrations in organs or tissues.  
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In parallel to the acceptance of transporters as the key protein systems allowing the crossing of 

solutes over biological membranes (Giacomini et al., 2010; Hillgren et al., 2013; Suzuki & 

Sugiyama, 2000; van Montfoort et al., 2003), the role of drug transporters in imaging is increasingly 

being appreciated (Kannan et al., 2009; Kilbourn, 2017; Kusuhara, 2013; Langer, 2016; Mann et 

al., 2016; Marie et al., 2017; Stieger et al., 2012; Testa et al., 2015; Van Beers et al., 2012). Non-

invasive imaging methods have therefore been developed to reveal and quantify drug transporter 

function in clearance and non-clearance organs, as a prerequisite to the local 

pharmacologic/toxicological effect, metabolism and elimination. The aim of this review is to provide 

an overview of the application of imaging methods dedicated to the study of drug transporter 

function in vivo.  

2. Imaging methods for in vivo pharmacokinetics 

2.1 In vivo imaging modalities 

Current research in the field of translational imaging of drug transporters is predominantly based 

on clinically feasible imaging approaches. This includes nuclear imaging such as single photon 

emission computed tomography (SPECT) or positron emission tomography (PET) as well as 

magnetic resonance imaging (MRI). All of these approaches rely on the use of drug transporter 

substrates, which are detected using appropriate imaging modalities. The main advantage of 

these imaging techniques is their non-invasive or minimally-invasive nature. This allows a 

repetitive study of the same living subject, including humans, in identical or comparative conditions 

at different time points, thus harnessing the statistical power of longitudinal studies and reducing 

the number of individuals required (Willmann et al., 2008). This contrasts with the more 

conventional destructive biodistribution approaches, in which animals are sacrificed at predefined 

time points. In this framework, molecular imaging benefits from suitable temporal resolution to 

address the impact of carrier-mediated transport systems on the kinetics of drug disposition in vivo 

(Cunha et al., 2014). 
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Scintigraphy captures emitted radiation from administered gamma-emitting radioisotopes to 

create two-dimensional and poorly quantitative “planar” acquisitions. Tomographic acquisitions 

and computed tomography reconstruction (i.e. SPECT) aim at overcoming this limitation by 

providing 3D images of the distribution of the signal. Usually one, two or three detectors are slowly 

rotated around the body, leading to a considerable loss in time-resolution (Frey et al., 2012). 

SPECT has traditionally been considered as a non-quantitative imaging method, but recent 

advances in medical physics have now made SPECT a quantitative method due to coupling with 

a computed tomography (CT) scan in hybrid SPECT/CT scanners. Quantification with clinical 

SPECT/CT scanners, however, remains of slightly lower performance than with PET, especially 

in small volume regions, due to marginally poorer image spatial resolution (typically ~7-10 mm for 

SPECT versus ~5-8 mm for PET) (Bailey & Willowson, 2013). SPECT benefits from good 

sensitivity for the detection of radioactivity, allowing for the use of imaging agents at tracer doses 

with a limited risk of toxicity. Despite its technical limitations, SPECT represents a relevant and 

cost-effective tool for the study of transporter function in a conventional hospital environment (Fig. 

1) (Willmann et al., 2008).  

PET uses radioactive isotopes emitting positrons (ß+ decay), which collide with electrons in the 

tissue. Subsequent annihilation of these particles releases two photons, which can be detected 

and allow calculation of the point where the positron and the electron collided. Today, numerous 

PET tracers are used in medical practice (Vallabhajosula et al., 2011). PET imaging has also been 

used for decades in drug development (Willmann et al., 2008). The advantages of PET over 

SPECT include higher sensitivity (detection efficiency) and better temporal and spatial resolution. 

PET imaging benefits from straightforward 3D quantifiable recordings. Owing to the high sensitivity 

of PET scanners, radiopharmaceutical agents used for PET imaging can be administered at tracer 

doses, usually in the range of a few micrograms (Fig. 1). PET is a functional imaging technique 

which only gives limited anatomical information. For the delineation of organ substructures on PET 

images, anatomical information is often required. This can be obtained either by performing 
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additional scans on stand-alone MRI or CT scanners and co-registration of the data from the two 

imaging modalities, or by using integrated imaging systems (PET/CT, PET/MRI), which provide 

both functional and anatomical information in a single scanning session (Beyer et al., 2000, 2017). 

Compared with nuclear imaging techniques, MRI is a non-irradiant imaging modality. MRI 

measures the energy released in the form of a radiofrequency of atoms, which realign to a strong 

magnetic field after being forced out of this alignment, and requires atomic nuclei with an odd 

number of protons and/or neutrons. MRI produces pictures of anatomy and of physiological 

processes with high spatial resolution and excellent soft tissue contrast. Several MRI contrast 

agents are now available, including paramagnetic gadolinium compounds (Xiao et al., 2016). 

Compared with nuclear imaging, which can be performed using tracer doses of 

radiopharmaceutical agents, the contrast agents used for MRI must be administered at 

pharmacologic doses in order to be detected. The sensitivity is thus limited (micro- to millimolar) 

and quantification of the absolute concentration of the contrast agent is challenging (Sinharay & 

Pagel, 2016). MRI is nonetheless able to capture the rapid temporal signal changes (contrast 

enhancement) associated with the presence of a contrast agent in tissues. MRI thus offers semi-

quantitative data derived from high temporal and spatial resolution images that are of interest for 

studying transporter function in vivo (Georgiou et al., 2017) (Fig. 1).  

2.2 Chemistry of imaging probes 

To date, transporter imaging probes are usually not molecules designed de novo, but are mostly 

derived from known drug molecules, drug metabolites or from endogenous compounds (e.g. bile 

acids) (Kusuhara, 2013; Mairinger et al., 2011; Testa et al., 2015). The classical positron-emitting 

radionuclides for PET imaging are carbon-11 (11C, half-life: 20.4 min) and fluorine-18 (18F, half-

life: 109.7 min). These radionuclides are produced in a cyclotron, and the synthesis of PET 

radiotracers is typically performed immediately before administration in dedicated lead-shielded 

automated synthesis modules. Today, the number of specialized PET centers is limited, which 

limits the applicability of this technique (Willmann et al., 2008) (Fig. 1).  
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11C is the preferred PET radionuclide as it allows radiolabeling of drugs without structural 

modifications. Due to the versatility of PET radiochemistry, PET imaging benefits from a large 

portfolio of available radiotracers when compared with other clinical imaging modalities (Fig. 1). 

11C-labeling is most commonly performed by 11C-methylation of phenolic hydroxyl, carboxylic acid 

or amino groups (Fig. 2). Recent alternative approaches to 11C-labeling have been developed, 

thus giving the possibility of labeling a wider range of chemical structures with 11C (Li & Conti, 

2010). For drugs which contain fluorine, 18F may be employed for radiolabeling (Wuest, 2007). 

The latter offers the advantage of a longer radioactive half-life than that of 11C, thereby enabling 

the measurement of drug tissue PK over several hours (Brunner et al., 2004). A typical 18F-labeling 

reaction is the nucleophilic substitution reaction with [18F]fluoride of suitable leaving groups (Fig. 

2). PET radiochemistry is usually performed at high molar activity (molar activity = ratio of 

radioactivity to mass, given for instance as GBq/µmol). Therefore, the chemical mass of unlabeled 

drug contained in a typically injected amount of a PET tracer (approximately 400 MBq) is very low 

(< 100 µg). This satisfies the definition of a microdose set forth by regulatory authorities, which 

requires less extensive preclinical toxicology testing for applications in humans than is required 

for standard phase one clinical trials, thereby facilitating first-in-human studies (ICH Expert 

Working Group, 2009). 

For SPECT radiochemistry, typical radionuclides for the radiolabeling of small molecules are 

technetium-99m (99mTc, half-life, 6.1 h) and iodine-123 (123I, half-life: 13.3 h). 99mTc allows for 

clinical grade and kit-based preparation of radiopharmaceutical agents for human use and often 

provides labels with suitable metabolic stability in vivo. Several 99mTc-labeled imaging agents used 

in the clinics have been re-purposed as probes for molecular imaging of drug transporters 

(Kusuhara, 2013).  

The variety of available contrast agents for MRI is very limited. MRI contrast agents predominantly 

contain metals (mostly the transition metal gadolinium) associated by complex chemistry. MRI is 

increasingly considered as a molecular imaging method owing to the availability of contrast agents 
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to detect molecular processes at the tissue level (Sinharay & Pagel, 2016). Gadoxetate 

(gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid, Gd-EOB-DTPA, Fig. 2) is a MRI 

contrast agent which induces liver-specific contrast enhancement due to transporter-mediated 

uptake into hepatocytes and biliary secretion of gadoxetate (van Montfoort et al., 1999). This 

contrast agent benefits from a suitable complex stability in vivo without any apparent 

biotransformation, making it suitable to study liver transporter function in vivo. 

2.3 Modeling transporter function in vivo 

Of the available imaging techniques, PET is the preferred modality for kinetic modeling purposes 

as it provides fully quantitative tissue concentrations of radioactivity (Fig. 1). For dynamic contrast-

enhanced MRI, conversion of contrast enhancement in tissue into absolute concentration levels 

of contrast agent is feasible but challenging (Ingrisch & Sourbron, 2013; Sourbron & Buckley, 

2013). When the time course of radiotracer in arterial blood (the so-called arterial input function) 

is also known, compartmental modeling approaches can be employed to derive pharmacokinetic 

parameters describing the tissue distribution of radiotracer. The modeling approaches used for 

analysis of imaging data are conceptually similar to modeling approaches used in the 

pharmaceutical sciences, but they employ different terminology (Innis et al., 2007). The gold 

standard to measure the arterial input function is arterial blood sampling. Pharmacokinetic 

modeling of imaging data can, for instance, provide the exchange rate constants of radiotracer 

between plasma and tissue compartments as outcome parameters (Innis et al., 2007). As ABC 

and SLC transporters are localized at blood-tissue interfaces, these exchange rate constants have 

been identified as the key parameters reflecting transporter activities. For example, the activity of 

efflux transporters at the BBB, such as P-glycoprotein (P-gp, ABCB1) or breast cancer resistance 

protein (BCRP, ABCG2), was shown to mainly affect the transfer rate constant of radiotracer from 

plasma into brain (K1). A reduction in efflux transporter activity at the BBB (e.g. by administration 

of a transporter inhibitor) was shown to increase the K1 value (Muzi et al., 2009; Wagner et al., 

2009). Conceptually, efflux transporters at the BBB should also affect the efflux rate constant from 
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brain to plasma (k2) (Syvänen et al., 2006), which was indeed observed for certain compounds 

(Pottier et al., 2016). Inhibition of an uptake transporter in the sinusoidal membrane of hepatocytes 

will lead to a reduction in the transfer rate constant or in the uptake clearance from blood into liver 

(CLuptake,liver), which may be determined with graphical analysis approaches (integration plot 

analysis) (Takashima et al., 2012). Integration plot analysis has also been used to obtain intrinsic 

efflux clearances of radiotracers from liver into bile (CLint,bile) or from kidney into urine (CLint,urine) to 

measure the activities of efflux transporters located at the canalicular membrane of hepatocytes 

or at the brush border membrane of kidney proximal tubule cells, respectively (Shingaki et al., 

2015; Takashima et al., 2013; Traxl et al., 2017).  

Depending on the organ investigated, modeling approaches can become very complex. For 

instance, the modeling of liver data is complicated by the fact that the liver receives dual blood 

supply, via the hepatic artery (~ 25%) and via the portal vein (~ 75%). Portal blood cannot be 

directly sampled in humans. Therefore, modeling approaches either have to rely on image-derived 

portal blood curves, which may be prone to imaging artefacts due to the small size of the 

investigated structures, or on data acquired in preclinical species (e.g. pigs) in which portal blood 

can be sampled (Ørntoft et al., 2017; Sørensen et al., 2016). Figure 3 shows a kinetic model used 

for quantification of hepatic disposition of the radiolabeled bile acid [11C]cholylsarcosine in humans 

(Ørntoft et al., 2017). Similar kinetic modeling approaches to those used for the analysis of PET 

data have also been applied to SPECT data (Pfeifer et al., 2013; Neyt et al., 2013) and to MRI 

data (Sourbron et al., 2012; Saito et al., 2013).  

2.4 Metabolism of imaging probes 

Like most xenobiotics, imaging probes may often undergo significant in vivo biotransformation. 

Paradoxically, “molecular imaging” techniques are devoid of “molecular resolution”. Nuclear 

imaging techniques (PET, SPECT) can only measure total radioactivity in tissues. Radioactivity 

originating from radiolabeled parent drug cannot be distinguished from radioactivity originating 

from radiolabeled metabolites (Pike, 2009). While metal chelates used as probes to study drug 
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transporters with SPECT and MRI often benefit from good in vivo stability, 11C- and 18F-labeled 

small, drug-like molecules used in PET studies often undergo extensive metabolism (Pike, 2009).  

The study of drug transporters with radiotracers which are extensively metabolized can provide 

misleading results, in that changes in radiotracer metabolism can be erroneously interpreted as 

changes in transporter activity. If circulating radiolabeled metabolites are present in blood, total 

radioactivity counts in blood samples can be corrected for these radiolabeled metabolites using 

ex vivo chromatographic methods. On the other hand, radiolabeled metabolites in tissues cannot 

be corrected for and will inevitably contribute to the imaging signal. During radiotracer 

development, tissue-penetrant radiometabolites can be detected and identified in tissue lysates 

obtained from terminal experiments in rodents (Pike, 2009). However, species differences in 

radiotracer metabolism may lead to the presence of tissue-penetrant radiolabeled metabolites in 

humans where not observed in rodents, or vice versa. The contribution of radiolabeled metabolites 

to the tissue PET signal in humans can only be indirectly inferred, for instance by the observation 

that pharmacokinetic modeling yields results which are inconsistent with the presence of a single 

radioactive species. The best approach to assess the contribution of radiolabeled metabolites to 

the PET signal in humans would be to directly radiolabel the metabolite of interest for PET imaging 

experiments, which is, however, very labor intensive and therefore rarely done. However, 

according to the authors’ own experience, PET tracers based on known drug molecules which are 

mainly excreted in the form of metabolites may undergo a relatively low degree of metabolism 

over the short duration of an imaging experiment (e.g. 60-90 min for [11C]radiotracers), so that 

they may still be useful to study transporter function. One such example is erlotinib, for which 

mass balance studies in humans indicated that only < 2% of total radioactivity excreted into feces 

was composed of unmetabolized parent compound (Ling et al., 2006). PET experiments with 

[11C]erlotinib in mice, on the other hand, indicated that at 25 min after radiotracer injection the 

majority of radioactivity in plasma and different tissues and fluids was in the form of unmetabolized 

[11C]erlotinib (Traxl et al., 2015), suggesting that this radiotracer can be used to study transporter 
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function. One approach to overcome the limitation of radiotracer metabolism may be the 

radiolabeling of drug metabolites and their use as transporter imaging probes with better metabolic 

stability, as exemplified by the P-gp imaging probe [11C]N-desmethyl-loperamide (Lazarova et al., 

2008) or by the BCRP imaging probe [11C]SC-62807 (Takashima et al., 2013). Moreover, the 

problem of radiolabeled metabolites can be overcome by performing data analysis over a short 

and early time window after radiotracer injection in which radiotracer metabolism is negligible. For 

instance, the P-gp probe substrate [11C]verapamil is extensively metabolized in vivo, generating 

radiolabeled metabolites which are also P-gp substrates and which are taken up from periphery 

into the brain (Luurtsema et al., 2005). Some investigators have therefore used data from the first 

few minutes after radiotracer injection only, when [11C]verapamil accounts for more than 80% of 

the plasma radioactivity, to determine K1 as a parameter of P-gp function at the BBB (Ikoma et al., 

2006) (Muzi et al., 2009). Similarly, integration plot analysis to determine the uptake clearance of 

radiotracers from blood into the liver usually relies exclusively on data from the first few minutes 

after radiotracer injection, where the contribution of radiolabeled metabolites can often be 

neglected (Kaneko et al., 2018). For the analysis of apical ABC efflux transporters in the liver or 

kidney, on the other hand, good metabolic stability of the PET tracer is mandatory as metabolism 

may otherwise confound the determination of CLint,bile or CLint,urine values. 

 

3 Imaging probes to study transporter function 

3.1 Liver transporters 

The liver is a key organ involved in the metabolism and excretion of xenobiotics. Consequently, 

the expression of a large variety of transporters has been observed in this organ and the role of 

some of these transporters is well established in pharmacokinetic drug-drug interactions (DDIs) 

and in adverse drug actions in the liver. Organic anion-transporting polypeptides (OATPs) have a 

very broad substrate specificity and are key transporters for drugs entering hepatocytes 

(Hagenbuch & Stieger, 2013). In addition, OATPs are known to mediate the transmembrane 
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transport of a considerable number of imaging agents (Marie et al., 2017). The founding members 

of the SLCO gene superfamily encoding OATPs were shown to transport the MRI contrast agent 

gadoxetate (van Montfoort et al., 1999) (Fig. 2). The SPECT tracer [99mTc]mebrofenin (Fig. 2) is 

likewise taken up into the liver via OATPs and can be used for hepatobiliary imaging (de Graaf et 

al., 2011; Ghibellini et al., 2008). However, transport of most hepatic imaging agents is not 

restricted to OATPs but may also include organic anion transporters (OATs), organic cation 

transporters (OCTs) and ABC transporters (Kilbourn, 2017; Mairinger et al., 2011; Stieger et al., 

2014; Testa et al., 2015).  

The transporters for bile salts in hepatocytes have been identified and characterized at the 

molecular level (Hagenbuch & Stieger, 2013; Stieger, 2011). Bile salt derivatives are excellent 

target molecules for developing imaging agents to study liver transporters of importance in PK. 

For example, cholylsarcosine is a synthetic bile acid which is resistant to deconjugation and 

dehydroxylation (Schmassmann et al., 1990). A 11C-labeled version of this bile acid was 

successfully used to visualize in vivo the kinetics of bile acid secretion in pigs (Frisch et al., 2012; 

Sørensen et al., 2016). In a recent proof-of-concept study, this bile acid was found to be a suitable 

probe to non-invasively assess bile flow in humans with liver disease (Ørntoft et al., 2017). In 

addition, the successful synthesis of 11C-labeled derivatives of taurocholic acid, 

taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid and 

taurolithocholic acid was reported (Schacht et al., 2016). All derivatives display comparable 

biodistribution in pigs, and enterohepatic circulation of the taurocholate derivative could be 

observed. Using a different synthetic strategy, an 18F-labeled chenodeoxycholic derivative was 

developed and demonstrated by PET imaging to be concentrated in the liver of mice in a time-

dependent manner (Jia et al., 2014b). However, as the click chemistry-based 18F-labeling reaction 

led to modification of the carboxyl group, some concerns were raised as to whether this tracer was 

handled by the same hepatic transporters as endogenous bile acids (Frisch & Sørensen, 2014). 

Recently, an 18F-labeled derivative of unconjugated cholic acid (3E-[18F]fluorocholic acid, Fig. 2) 
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was shown to be a substrate of Na+-taurocholate co-transporting polypeptide (NTCP, SLC10A1), 

OATP1B1 (SLCO1B1) and OATP1B3 (SLCO1B3) (De Lombaerde et al., 2017), all of which are 

known to be involved in hepatocellular bile acid and bile salt uptake (Stieger, 2011). Furthermore, 

this bile acid derivative inhibited bile salt export pump (BSEP, ABCB11)-mediated taurocholate 

and MRP2-mediated estradiol-17ß-glucuronide transport. In mice, pretreatment with rifampicin or 

bosentan (Fattinger et al., 2000, 2001; Stieger et al., 2000) was shown to interfere with 

hepatocellular transport of 3E-[18F]fluorocholic acid (De Lombaerde et al., 2017).  

In addition to studying the function of bile acid transporters, PET has been used to study ABC 

efflux transporter function in the canalicular membrane of hepatocytes. For instance, the 

radiolabeled metabolite of the COX-2 inhibitor celecoxib [11C]SC-62807 was shown to undergo 

biliary secretion mediated by mBCRP and should thus allow measurement of BCRP function in 

the liver (Takashima et al., 2013). PET imaging with [11C]dehydropravastatin allows assessment 

of the transport activities of OATPs and MRP2 (ABCC2) in the rat and human liver (Kaneko et al., 

2018; Shingaki et al., 2013).  

MRI is one of the methods used to examine patients for presence of focal liver lesions (Pastor et 

al., 2014). MRI contrast agents are typically negatively charged (Xiao et al., 2016) and are 

substrates of transport systems for organic anions (Marie et al., 2017). Gadoxetate was found to 

be transported by human OATPB1 and OATP1B3, but not by OATP2B1 (SLCO2B1) (Leonhardt 

et al., 2010). In addition, gadoxetate is a weak substrate of NTCP, which may further contribute to 

its liver uptake (Leonhardt et al., 2010). Gadoxetate was also shown to be transported by MRP2 

(Jia et al., 2014a), which mediates its biliary secretion in rats (Jia et al., 2014a). In one study, 

gadoxetate was found not to be transported by OATP1A2 (SLCO1A2) (van Montfoort et al., 1999), 

while others identified gadoxetate as a substrate of OATP1A2 and MRP3 but not of the apical 

sodium-dependent bile acid transporter (ABST, SLC10A2) and OCT3 (SLC22A3) (Jia et al., 

2014a). Lagadec and coworkers recently reported a correlation between the hepatic extraction 

fraction of gadoxetate and the expression of rOATP1A1 in a rat model of advanced liver fibrosis 
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(Lagadec et al., 2015). BOPTA (gadolinium benzyl-oxypropionictetraacetate) is another MRI 

contrast agent labeled with gadolinium. In situ perfusion of rat livers suggested that BOPTA uptake 

is mediated by rodent OATP transporters. In vitro experiments revealed that BOPTA was 

transported by rOATP1A1, rOATP1A4, rOATP1B2 and by rMRP2 (Planchamp et al., 2007). 

3.2 Kidney transporters 

Renal clearance is a major pathway of drug elimination, which is the result of three concurrent 

processes occurring in the nephron, including glomerular filtration, tubular secretion and tubular 

reabsorption. Glomerular filtration is a passive process, while tubular secretion and reabsorption 

involve drug transporters located in the basolateral and luminal membranes of the tubular 

epithelium (Yin & Wang, 2016). In humans, the major transporters involved in tubular secretion of 

drugs include OCT2 (SLC22A2), OAT1 (SLC22A6), OAT3 (SLC22A8) and OATP4C1 (SLCO4C1) 

in the basolateral membrane and the multidrug and toxin extrusion (MATE) proteins MATE1 

(SLC47A1) and MATE2-K (SLC47A2), P-gp, MRP2 and MRP4 (ABCC4) in the apical membrane 

(Giacomini et al., 2010). Several other related transporters are present in the proximal tubules and 

may also play a role in the renal elimination of drugs and drug metabolites (Yin & Wang, 2016).  

Radionuclide imaging of the kidneys aims at detecting the pathophysiology of the diseased 

kidneys and at achieving an early and sensitive diagnosis (Szabo et al., 2011). Hippurate is a toxic 

urate uremic toxin that accumulates during chronic renal failure. In the past, the renal secretion of 

the exogenous aryl amine derivatives para-aminohippurate and the radiolabeled O-

[131I]iodohippurate were used as markers of tubular function in patients (Lowenstein & Grantham, 

2016). OAT1 was shown to be the main transporter for para-aminohippurate at the proximal tubule 

(Vallon et al., 2008). Radiolabeled derivatives of hippurate such as p-[18F]fluorohippurate have 

been proposed as PET radioligands with improved imaging performance (Awasthi et al., 2011). 

Today, [99mTc]MAG3 (mercaptoacetyltriglycine) clearance from kidneys is used in clinics to 

investigate tubular function in patients (Taylor, 2014). [99mTc]MAG3 is highly protein-bound and 

was shown to be cleared from plasma primarily by OAT1 in the kidneys (Shikano et al., 2004). 
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Furosemide, probenecid and ibuprofen were shown to be competitive inhibitors of renal OAT1 

which impact [99mTc]MAG3 renography (Szabo et al., 2011). Renal secretion of the P-gp substrate 

[99mTc]sestamibi was shown to be inhibited by PSC833, a cyclosporine A derivative developed as 

a P-gp inhibitor (Luker et al., 1997). 

Several PET radiotracers have been developed to investigate other specific transport systems in 

the kidneys. In the kidney, metformin is transported into the proximal tubule via OCT2 and 

excreted into the urine via MATE1 and MATE2-K (Hume et al., 2013). Pedersen et al. performed 

[11C]metformin PET imaging in a mouse model of chronic kidney disease and suggested a 

contribution of mOCT2 in controlling the influx rate constant of [11C]metformin into the renal cortex 

(Pedersen et al., 2016). In pigs, renal clearance of [11C]metformin was approximately 3 times the 

glomerular filtration rate, demonstrating tubular secretion (Jakobsen et al., 2016). Takano and co-

workers showed that sulpriride is a substrate of OCT1 (SLC22A1), OCT2, MATE1, and MATE2-K 

and proposed [11C]sulpiride as a PET probe to study renal OCT function in humans (Takano et 

al., 2017).  

3.3 Brain transporters 

ABC and SLC transporters are expressed in the luminal and abluminal membranes of brain 

capillary endothelial cells forming the BBB, where they control access of exogenous and 

endogenous molecules from blood into brain parenchyma (Abbott et al., 2010; Stieger & Gao, 

2015). Among different ABC and SLC transporters expressed at the BBB, P-gp is the most widely 

studied transporter. Previous review articles have given detailed overviews of radiotracers for 

imaging of P-gp at the BBB (Luurtsema et al., 2016; Mairinger et al., 2011; Raaphorst et al., 2015; 

Wanek et al., 2013). The applicability of the SPECT radioligand [99mTc]sestamibi for imaging P-gp 

function at the BBB is limited due to its very low BBB permeability, even in the absence of P-gp 

function (Cattelotte et al., 2009). Racemic [11C]verapamil, (R)-[11C]verapamil (Fig. 2) and [11C]N-

desmethyl-loperamide are PET tracers which are transported by P-gp and not by BCRP (Kannan 

et al., 2010; Luurtsema et al., 2003; Römermann et al., 2013) and which have been used to 
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visualize P-gp function at the rodent and human BBB in various settings. These radiotracers were 

very useful in measuring the effects of P-gp inhibition at the BBB with inhibitors such as 

cyclosporine A and tariquidar (Bauer et al., 2012; Damont et al., 2016; Kreisl et al., 2015; 

Sasongko et al., 2005). Figure 4 shows PET data on the effect of the third-generation P-gp inhibitor 

tariquidar on brain distribution of (R)-[11C]verapamil in rats and in humans.  

Beside the imaging of P-gp, efforts have also been directed towards the development of PET 

tracers for other ABC transporters at the BBB. Quantitative targeted absolute proteomics work 

indicated that BCRP is the most abundant ABC transporter at the human BBB (Uchida et al., 

2011). The development of BCRP-selective PET tracers is hindered by the overlapping substrate 

specificities between BCRP and P-gp. The few BCRP-selective compounds tested as PET tracers 

to date all possessed similar brain kinetics in wild-type and BCRP knockout mice or rats, 

suggesting lack of suitability to measure BCRP function at the BBB (Hosten et al., 2013; Mairinger 

et al., 2010; Sivapackiam et al., 2016; Takashima et al., 2013). Wanek and co-workers developed 

a PET protocol for visualization of BCRP function at the BBB based on PET scans with the dual 

P-gp/BCRP substrate [11C]tariquidar, in which unlabeled tariquidar is co-administered to inhibit P-

gp at the BBB (Wanek et al., 2012). Okamura et al. developed 6-bromo-7-[11C]methylpurine as a 

PET tracer to measure the function of multidrug resistance-associated protein (MRP1, ABCC1) in 

the brain. The PET tracer crosses the BBB, presumably by passive diffusion, and is converted 

inside the brain by glutathione-S-transferases into its glutathione conjugate, which leaves the brain 

by MRP1 efflux (Okamura et al., 2009). While this radiotracer showed great differences in brain 

clearance between wild-type and Abcc1(-/-) mice, the exact site in the brain at which MRP1 

contributes to radioactivity elimination (e.g. choroid plexus, glia cells or brain capillary endothelial 

cells) has not yet been fully established. Galante and colleagues recently synthesized a 18F-

labeled version of this MRP1 tracer (Galante et al., 2014) for which brain clearance was also 

shown to be dependent on mMRP1 function.  
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In addition to efflux transporters, uptake transporters are also expressed at the BBB. Several 

studies have provided evidence of a novel and molecularly unknown drug/proton (H+)-antiporter 

that controls the permeation of many CNS-targeted drugs across the BBB (e.g. cocaine, clonidine, 

nicotine, oxycodone and diphenhydramine). Two studies have attempted to measure the function 

of this novel transporter by PET imaging. Auvity et al. used the radiolabeled histamine H1-receptor 

antagonist [11C]diphenhydramine to image this transporter at the rat BBB (Auvity et al., 2017). An 

evaluation of radiotracers for the H+-antiporter is complicated by a lack of suitable inhibitors for in 

vivo use. Auvity et al. therefore demonstrated with in situ brain perfusion that uptake transport of 

[14C]diphenhydramine into rat brain can be inhibited by a large excess of unlabeled 

diphenhydramine (10 mM). In addition, they demonstrated poor brain penetration of radiolabeled 

metabolites, allowing for accurate quantification of CLuptake from blood into brain from early PET 

data. Gustafsson et al. performed combined PET imaging and microdialysis in rats with 

[11C]oxycodone, which is also a substrate of the H+-antiporter (Gustafsson et al., 2017). However, 

the utility of this radiotracer for transporter imaging is most likely limited due to extensive 

metabolism and brain uptake of radiolabeled metabolites. To our knowledge, no attempts have so 

far been made to image OATP1A2 and OATP2B1 at the BBB, the latter being considered as target 

transporters for facilitating brain entry of therapeutic drugs (Stieger & Gao, 2015). A potential 

complication in the development of PET tracers for these uptake transporters may be the fact that 

known transporter substrates are also recognized by efflux transporters at the BBB, which may 

mask the effect of the uptake transporters (Taskar et al., 2017; Tournier et al., 2013).  

3.4 Retina transporters 

Drug distribution to the retina after systemic administration is controlled by the blood-ocular 

barriers, i.e. the blood-aqueous humor barrier and the blood-retinal barrier (BRB) (Hosoya et al., 

2011). The BRB is composed of retinal capillary endothelial cells (inner BRB) and retinal pigmental 

epithelial cells (outer BRB) (Mannermaa et al., 2006). Similar to brain capillary endothelial cells, 

these cells are linked by tight junctions, which may limit paracellular diffusion of drugs. The cells 
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comprising the BRB express SLC and ABC transporters, which may control the delivery of drugs 

from blood to the retina (Hosoya et al., 2011; Mannermaa et al., 2006; Stieger & Gao, 2015). P-

gp was shown to be localized at both the luminal membrane of retinal capillary endothelial cells 

and at the apical and basolateral membranes of retinal pigmental epithelial cells (Hosoya et al., 

2011; Mannermaa et al., 2006).  

Invasive experiments in rodents have revealed the functional impact of P-gp at this specific barrier 

(Chapy et al., 2016). Compared with the BBB, mBCRP-mediated efflux was shown to be less 

involved at the BRB, whereas mMRPs were involved to a similar degree at both barriers (Chapy 

et al., 2016). Using (R)-[11C]verapamil PET imaging in healthy volunteers, Bauer et al. reported a 

significant increase in radiotracer distribution to the retina during P-gp inhibition, which provided 

first in vivo evidence for P-gp transport activity at the human BRB. Interestingly, the increase in 

retinal distribution was quantitatively less pronounced than for the brain (Bauer et al., 2017a), 

which correlated well with preclinical data obtained in rodents (Chapy et al., 2016). 

3.5 Lung transporters 

Oral inhalation of therapeutic aerosols is used as a modality for local treatment of respiratory 

diseases (i.e. asthma and chronic obstructive pulmonary disease), but also as a route for systemic 

delivery of small molecule drugs and biologicals. The pharmacokinetic behavior of inhaled drugs 

is much more complicated than that of traditional routes of administration, with several sources of 

variability. There is accumulating evidence that membrane transporters belonging to the SLC and 

ABC families (e.g. organic cation / carnitine transporter 1 and 2 (OCTN1/2, SLC22A4/5), OCT1-

3, MRP1, P-gp and BCRP) are expressed in bronchial, bronchiolar and alveolar epithelial cells 

forming the air-blood barrier (Nickel et al., 2016; Sakamoto et al., 2013). Drug transporters may 

be a source of variability in pulmonary PK of inhaled drugs and thus contribute to heterogeneity in 

treatment response and occurrence of systemic side effects (Nickel et al., 2016). PET and SPECT 

can be used to assess pulmonary disposition of inhaled radiopharmaceuticals (Dolovich & Labiris, 

2004) and may thus also be of use to study the function of pulmonary transporters when 
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radiolabeled transporter substrates are employed. So far, only very few studies have used SPECT 

or PET imaging to investigate pulmonary transporters. Okamura and colleagues reported that 

pulmonary elimination of radioactivity following intravenous injection of 6-bromo-7-

[11C]methylpurine is markedly reduced in Abcc1(-/-) mice as compared with wild-type mice, 

suggesting that this radiotracer can be used to measure pulmonary mMRP1 function (Okamura et 

al., 2013). Two other studies used SPECT imaging to assess pulmonary disposition of inhaled 

[99mTc]sestamibi, a substrate of P-gp and MRP1, in humans (Perek et al., 2000; Piwnica-Worms 

et al., 1993). Ruparelia et al. reported delayed pulmonary elimination of inhaled [99mTc]sestamibi 

in smokers versus non-smokers and hypothesized that this was due to a smoke-induced up-

regulation of pulmonary P-gp (Ruparelia et al., 2008). Mohan et al. confirmed delayed 

[99mTc]sestamibi elimination from the lungs of smokers versus non-smokers and more importantly 

found a correlation between [99mTc]sestamibi elimination and a semi-quantitative measure of 

MRP1 expression in surgically resected lung tissue (Mohan et al., 2016).  

3.6 Placenta transporters 

High expression levels of several ABC and SLC transporters have been reported in the placenta. 

These transporters may play a role in controlling the distribution of drugs across the placental 

barrier (Nishimura & Naito, 2005, 2008). The use of nuclear imaging during pregnancy is restricted 

due to the lack of knowledge regarding the impact of ionizing radiation exposure on the developing 

fetus. However, PET imaging has been proposed to investigate drug exposure to the fetus in 

gestating non-human primates (Benveniste et al., 2003). Eyal and coworkers used [11C]verapamil 

PET imaging in gestating macaques to study the role of P-gp at the placental barrier (Eyal et al., 

2009a). Inhibition of P-gp using cyclosporine A dose-dependently increased [11C]verapamil uptake 

by the fetal brain and liver (Ke et al., 2013). These studies convincingly demonstrated the role of 

P-gp in limiting the placental permeation of its substrates in vivo.  
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3.7 Imaging transporter function in cancer tissues 

Imaging techniques have provided convincing evidence for transporter-mediated multidrug 

resistance (MDR) in cancer tissues. The widespread availability of [99mTc]sestamibi as a SPECT 

tracer in clinical routine allowed for its straightforward application in cancer patients to measure 

P-gp overexpression in tumors in vivo and predict MDR (Derebek et al., 1996). In patients, P-gp 

inhibition resulted in a significant increase in the uptake (Agrawal et al., 2003; Chen et al., 1997) 

and, more importantly, a decrease in the wash-out rate of [99mTc]sestamibi in tumors (Taki et al., 

1998), thus highlighting the functional impact of this transporter on the distribution of its substrates 

to cancer tissues. [99mTc]tetrofosmin, another cationic cardiac imaging agent, has been evaluated 

as an alternative P-gp substrate to predict MDR in cancer (Kao et al., 2001). [99mTc]sestamibi and 

[99mTc]tetrofosmin are not transported by BCRP (Tournier et al., 2009) but are both substrates of 

MRP1, which limits their utility as P-gp specific imaging agents in cancer (Perek et al., 2000). P-

gp substrates radiolabeled with positron emitting isotopes have been further proposed to study 

MDR using PET (Mann et al., 2015). [11C]Verapamil PET imaging has been performed in cancer 

patients, but failed to provide clinical utility (Eary et al., 2011; Hendrikse & Vaalburg, 2002). 

Radiolabeled analogs or derivatives of taxanes such as [11C]docetaxel and [18F]fluoropaclitaxel 

have been evaluated in cancer patients as predictors of successful therapy (Kurdziel et al., 2011; 

van der Veldt et al., 2013a, 2013b).  

Dysregulation of SLC transporters appears to be a common feature in many tumors (El-Gebali et 

al., 2013). In hepatocellular carcinoma, the expression of OATP1B3 decreases in parallel with 

tumor differentiation (Kitao et al., 2011; Miura et al., 2015; Yoneda et al., 2013). This decreased 

expression was found to be paralleled by a reduced gadoxetate-induced signal enhancement in 

the tumor (Tsuboyama et al., 2010). A correlation has been found between the expression of 

OATP1B1 and/or OATP1B3 in pathologic liver cells and signal enhancement (Tsuboyama et al., 

2010). Focal nodular hyperplasia and hepatocellular adenoma are usually difficult to distinguish 

in the absence of contrast enhancement. This distinction is, however, highly important clinically 
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(Pastor et al., 2014). Again, a correlation between OATP1B3 expression and intensity of the 

enhancement was found (Doi et al., 2011; Yoneda et al., 2016). The same tumors may, however, 

also express an efflux system for the contrast agent, e.g. MRP2 or MRP3 (Kitao et al., 2010; Thian 

et al., 2013; Tsuboyama et al., 2010; Vilgrain et al., 2016). These examples highlight the limitations 

of determining in vivo transporter expression/function using imaging agents which are not specific 

to an individual transporter. An alternative approach to distinguish between these two lesions may 

be PET imaging with [18F]fluorocholine. Three patients with hepatocellular adenoma were found 

to show reduced [18F]fluorocholine uptake into the lesion, which correlated with a reduced 

expression of OCT1 and OCT3 (Visentin et al., 2017).  

4 Discoveries and perspectives enabled by transporter imaging 

4.1 Implications of the interplay between transporters and metabolism for imaging 

As the liver is a central organ in drug metabolism and elimination, defining the transport systems 

involved in these processes as well as understanding the role of these transporters in the PK of 

drugs is a very active field of research (Burt et al., 2015; Hillyar et al., 2015; Testa et al., 2015). 

The interplay between transport and metabolism is termed metabolic channeling (Srere & Ovadi, 

1990). The channeling of drugs via transporters into metabolism has been known of at the 

phenomenological level in clinics for quite some time and demonstrated by means of 

pharmacokinetic DDI studies (Benet, 2009; Custodio et al., 2008). One study tested the interaction 

of rifampicin with glyburide disposition in two settings: a single dose of rifampicin led to an increase 

of systemic glyburide exposure, while multiple dosing of rifampicin led to a considerable reduction 

of glyburide exposure (Zheng et al., 2009). Tournier et al. mimicked this glyburide-rifampicin 

interaction using [11C]glyburide PET imaging in non-human primates. Single dose rifampicin 

resulted in a 14-fold decrease in [11C]glyburide uptake by the liver. Reduced liver uptake was 

associated with a pronounced 5-fold increase in [11C]glyburide exposure in plasma. Interestingly, 

radiolabeled metabolites, which accounted for ~30% of total radioactivity in plasma, could not be 

detected in plasma after OATP inhibition (Tournier et al., 2013) (Fig. 5). Imaging may thus be 
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useful to investigate the interplay between transporter-mediated liver uptake and metabolic 

enzymes in controlling the liver metabolism of drugs. Metabolic channeling is gaining attention in 

the drug development and pharmacokinetic community (Varma et al., 2015; Varma & El-Kattan, 

2016). An additional level of complexity is added by the fact that drug metabolites may also interact 

with (efflux) transporters, as exemplified for bosentan (Fattinger et al., 2001) and troglitazone 

(Funk et al., 2001). The issues of metabolic flux and transporter-metabolism interplay have, to our 

knowledge, not been specifically addressed at the mechanistic level with imaging probes in 

different organs. 

4.2 Imaging disease-induced changes in transporter expression at the BBB 

Several PET studies have been conducted using racemic [11C]verapamil or (R)-[11C]verapamil to 

investigate cerebral P-gp function in different patient groups. However, due to the low sensitivity 

of [11C]verapamil to measure moderate changes in P-gp expression/function at the BBB (Wanek 

et al., 2015), most studies found only small differences between patients and control groups. A 

pilot PET study with (R)-[11C]verapamil in seven patients with unilateral temporal lobe epilepsy 

failed to reveal significant differences in (R)-[11C]verapamil distribution between epileptic brain 

tissue and contralateral healthy brain tissue (Langer et al., 2007). Van Assema et al. found no 

differences in (R)-[11C]verapamil volume of distribution (VT) and K1 values, which were shown in 

previous studies to be the key parameters associated with P-gp function at the BBB (Muzi et al., 

2009; Wagner et al., 2009) between Alzheimer’s disease (AD) patients and age-matched control 

subjects (van Assema et al., 2012a). On the other hand, the authors found a significantly higher 

non-displaceable binding potential (BPND) of (R)-[11C]verapamil in AD patients, which they 

hypothesized to reflect a decrease in cerebral P-gp function (van Assema et al., 2012a). In a study 

by Deo et al., differences in brain distribution of [11C]verapamil between AD patients and control 

subjects could only be detected when regional [11C]verapamil K1 values were normalized to 

regional cerebral blood flow, which was lower in AD patients than in control subjects (Deo et al., 

2014). These data suggest that brain distribution of [11C]verapamil depends on cerebral blood 
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flow, as shown before for [11C]N-desmethyl-loperamide (Kreisl et al., 2010; Liow et al., 2009). A 

series of studies used statistical parametrical mapping (SPM) analysis to investigate regional 

differences in brain distribution of racemic [11C]verapamil in Parkinson’s disease and depression 

and schizophrenia patients (Bartels et al., 2008; de Klerk et al., 2009, 2010; Kortekaas et al., 

2005). These studies found small regional differences in [11C]verapamil brain distribution, which 

were attributed to regional differences in P-gp function. There is evidence that P-gp expression at 

the BBB not only changes in the course of different neurological diseases, but also during healthy 

ageing. This could be of therapeutic relevance, as elderly people often take many different drugs 

which could show altered brain distribution if their brain distribution were limited by P-gp. A few 

studies used racemic [11C]verapamil or (R)-[11C]verapamil to compare cerebral P-gp function 

between elderly and young volunteers (Bartels et al., 2009; Bauer et al., 2009; Toornvliet et al., 

2006; van Assema et al., 2012b). These studies consistently found small increases in radiotracer 

brain distribution, both on a global and regional level, in elderly versus young subjects, which 

pointed to an age-related, moderate decline in P-gp function at the BBB. A few studies employed 

a partial P-gp inhibition protocol, which showed improved sensitivity to measure moderate 

changes in P-gp expression/function at the BBB than baseline PET scans (Bankstahl et al., 2011). 

Feldmann et al. demonstrated that patients with pharmacoresistant unilateral temporal lobe 

epilepsy had a lower increase in (R)-[11C]verapamil uptake in the ipsilateral hippocampus in 

response to tariquidar administration than healthy control subjects (24.5% vs. 65% increase in 

(R)-[11C]verapamil K1) (Feldmann et al., 2013). This attenuated response to tariquidar was 

consistent with increased P-gp expression in the hippocampus of pharmacoresistant epilepsy 

patients. Another study used cyclosporine A for partial P-gp inhibition at the BBB and found a 

significantly higher asymmetry in (R)-[11C]verapamil brain concentrations between ipsilateral and 

contralateral temporal lobe brain regions of drug-resistant temporal lobe epilepsy patients as 

compared with drug-sensitive epilepsy patients and healthy control subjects (Shin et al., 2016). 

Bauer et al. demonstrated that the partial P-gp inhibition protocol can also be used to visualize a 
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reduction of P-gp at the BBB as occurs during healthy ageing (Bauer et al., 2017c). They found a 

significantly higher increase in (R)-[11C]verapamil whole-brain VT in elderly versus young subjects 

(+40% vs. + 2%) in response to tariquidar administration. However, the partial P-gp inhibition 

protocol is difficult to use in patients due to safety concerns associated with P-gp inhibition and 

the concomitant use of medication. Clearly, to measure P-gp function at the BBB there is still a 

need for more sensitive PET tracers which do not require administration of a P-gp inhibitor and 

which lack brain-penetrant radiolabeled metabolites.  

4.3 Imaging drug-drug interactions at the tissue level 

Beside drug metabolizing enzymes, transporters may also be implicated in DDIs. In transporter-

mediated DDIs, concomitant administration of two drugs which interact with the same transporters 

may lead to changes in the PK of the drugs as compared to when these drugs are dosed alone, 

due to mutual inhibition or saturation of ABC and SLC transporters controlling drug tissue 

distribution or excretion (Giacomini et al., 2010; Lee et al., 2017). Such DDIs can seriously affect 

drug safety and efficacy (König et al., 2013), and regulatory authorities therefore require 

assessment of the DDI risk of new drug candidates (EMA, 2013; FDA, 2017). In many cases, 

transporter-mediated DDIs lead to changes in drug plasma PK and can therefore be detected by 

monitoring plasma concentrations of drugs. In some cases, however, inhibition of transporters 

may predominantly affect drug tissue concentrations (Kusuhara & Sugiyama, 2009; Patilea-Vrana 

& Unadkat, 2016). For instance, inhibition of efflux transporters in the canalicular membrane of 

hepatocytes or in the brush border membrane of kidney proximal tubule cells may lead to changes 

in liver and kidney concentrations of drugs. Nuclear imaging methods allow assessment of tissue 

concentrations of radiolabeled drugs and have therefore been proposed as a tool to investigate 

such silent DDIs (Kusuhara, 2013; Langer, 2016; Wulkersdorfer et al., 2014). Consequently, 

several groups have developed radiolabeled probe substrates for measuring the activities of ABC 

and SLC transporters in different organs with PET (e.g. brain, liver and kidney) (Langer, 2016; 
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Marie et al., 2017; Testa et al., 2015). Most of these probes lack selectivity for a single ABC or 

SLC transporter.  

Japanese researchers around Prof. Yuichi Sugiyama developed several PET probe substrates to 

measure the activities of sinusoidal uptake transporters in hepatocytes ((15R)-[11C]TIC-Me, 

[11C]telmisartan, [11C]dehydropravastatin) (Kusuhara, 2013). (15R)-[11C]TIC-Me is rapidly 

converted into (15R)-[11C]TIC in vivo. In one study it was shown that CLuptake,liver and CLint,bile of 

(15R)-[11C]TIC-associated radioactivity were reduced in healthy human subjects after oral 

treatment with rifampicin, which was attributed to inhibition of sinusoidal OATPs (OATP1B1, 

OATP1B3) and possibly canalicular MRP2 (Takashima et al., 2012). Similar results were obtained 

with [11C]dehydropravastatin after rifampicin treatment in humans (Kaneko et al., 2018). Metformin 

is a widely used oral antidiabetic drug. PET studies with [11C]metformin revealed pronounced 

changes in liver and kidney distribution of [11C]metformin in rodents when uptake transporters 

(mOCT1 and mOCT2) and efflux transporters (mMATE) were pharmacologically inhibited with 

cimetidine and pyrimethamine, respectively (Shingaki et al., 2015; Jensen et al., 2016). The 

radiolabeled epidermal growth factor receptor-targeting tyrosine kinase inhibitor (TKI) [11C]erlotinib 

was found to be transported in vitro at low concentrations as used for PET imaging by OATP2B1, 

but not by OATP1B1 and OATP1B3, whereas OATP2B1 transport was saturated at 

pharmacologic erlotinib concentrations. In vivo, liver uptake of [11C]erlotinib was markedly lower 

after pre-treatment of healthy volunteers with a therapeutic erlotinib dose as compared with 

administration of a microdose of [11C]erlotinib, which appeared to be caused by saturation of 

OATP2B1 transport (Bauer et al., 2017b) (Fig. 6). These data suggested that erlotinib may be a 

perpetrator of OATP2B1-mediated DDIs when combined with drugs which are mainly taken up 

into the liver by OATP2B1. Moreover, [11C]erlotinib may be useful as an OATP2B1-specific probe 

substrate for PET studies. 

The SPECT tracer [99mTc]mebrofenin is a substrate of OATP1B1, OATP1B3, MRP2 and MRP3 

(de Graaf et al., 2011; Ghibellini et al., 2008). Pfeifer et al. demonstrated in a SPECT study in 
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healthy volunteers that oral pretreatment with ritonavir decreased CLuptake,liver of [99mTc]mebrofenin 

by 46%, which was attributed to inhibition of OATP1B1 and OATP1B3 (Pfeifer et al., 2013).  

The entry of gadoxetate and BOPTA into hepatocytes is mediated by OATP1B1 and OATP1B3, 

and they are secreted into bile in unchanged form through MRP2. Kato et al. investigated the 

interaction between gadoxetate and 11 clinically used drugs in rats using MRI (Kato et al., 2002). 

They found a significant decrease in contrast enhancement of the liver when rats were pre-treated 

with rifampicin, but concluded that a combination of gadoxetate and rifampicin is unlikely to occur 

in the clinic. One study in healthy volunteers investigated the interaction between gadoxetate and 

the macrolide antibiotic erythromycin, which inhibits OATP1B1 and OATP1B3 in vitro (Seithel et 

al., 2007), and failed to detect a significant effect of erythromycin on liver enhancement (Huppertz 

et al., 2011).  

PET imaging has been useful in evaluating the risk for DDIs at the level of ABC transporters 

expressed at the BBB, which may lead to increased brain distribution of drugs and CNS side 

effects (Eyal et al., 2009b). In a seminal position paper, Kalvass and colleagues argued that 

transporter-mediated DDIs at the BBB are unlikely to occur in clinical practice as most marketed 

drugs do not achieve high enough unbound plasma concentrations to lead to significant efflux 

transporter inhibition at the BBB (Kalvass et al., 2013). Exceptions are the immunosuppressant 

drug cyclosporine A, which was shown to increase brain exposure of [11C]verapamil 1.8-fold when 

administered as an intravenous infusion concurrent with the PET scan (Sasongko et al., 2005). 

The antiarrhythmic agent quinidine was also shown to exert a small P-gp inhibitory effect at the 

human BBB at clinically relevant plasma concentrations (Liu et al., 2015). In contrast to the 

majority of marketed drugs, several non-marketed, experimental P-gp inhibitors which were 

originally developed as MDR reversal agents (e.g. elacridar, tariquidar and valspodar) (Szakács 

et al., 2006) were shown to lead to significant increases in brain distribution of P-gp substrates. 

For instance, up to 4- to 5-fold increases in brain distribution of (R)-[11C]verapamil or [11C]N-

desmethyl-loperamide were observed in healthy volunteers when tariquidar was intravenously 
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infused during the PET scan (Bauer et al., 2015; Kreisl et al., 2015). These studies do not 

represent realistic scenarios for clinically relevant transporter-mediated DDIs at the BBB as they 

employed non-marketed drugs dosed intravenously at rather high doses. Nevertheless, these data 

suggest that efflux transporter inhibition at the human BBB is in principle feasible and may be 

exploited to enhance brain distribution of drugs targeted to the brain.  

4.4 Imaging the impact of transporter gene polymorphisms on transporter function 

Polymorphisms in the genes encoding transport proteins were shown to be associated with 

alterations in transporter activity and expression, leading to inter-individual variability in drug 

disposition and drug response (Ieiri, 2012; König et al., 2006; Maeda & Sugiyama, 2008; Niemi et 

al., 2011). Imaging with radiolabeled transporter substrates is an obvious way to assess the 

functional impact of these genetic variants in different tissues, and a handful of clinical studies 

have so far been published.  

Two studies assessed the impact of a combination of three different ABCB1 SNPs on brain 

distribution of racemic [11C]verapamil (Brunner et al., 2005; Takano et al., 2006). Both studies 

failed to detect differences in [11C]verapamil brain distribution between healthy homozygous 

carriers of the TTT haplotype (c.3435T, c.2677T, and c.1236T) and homozygous carriers 

(controls) of the CGC haplotype (c.3435C, c.2677G, and c.1236C). Interestingly, a study in AD 

patients by van Assema found an association between T dose in the c.C1236T, c.G2677T and 

c.C3435T SNPs and BPND of (R)-[11C]verapamil (van Assema et al., 2012c). Carriers of the variant 

alleles had a higher BPND than non-carriers, which was interpreted by the authors as decreased 

P-gp function at the BBB. The same study found no effect of these ABCB1 SNPs on brain 

distribution of (R)-[11C]verapamil in healthy control subjects, which confirmed the results obtained 

by Brunner and Takano (Brunner et al., 2005; Takano et al., 2006) and suggested that genetic 

variations in the ABCB1 gene might affect P-gp function or expression at the BBB only when P-

gp function is already compromised. The most important SNP in the ABCG2 gene is c.421C>A. 

This non-synonymous SNP has been associated with diminished expression of BCRP in various 
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tissues, such as the liver, placenta and intestine (Kobayashi et al., 2005; Prasad et al., 2013) and 

with changes in plasma PK of BCRP substrate drugs, such as sulfasalazine and rosuvastatin 

(Keskitalo et al., 2009; Yamasaki et al., 2008). Bauer et al. used a newly developed PET protocol 

(Wanek et al., 2012) to measure the impact of this ABCG2 SNP on the function of BCRP at the 

BBB (Bauer et al., 2016). This PET protocol is based on PET scans with the dual P-gp/BCRP 

substrate [11C]tariquidar, in which unlabeled tariquidar is co-administered to inhibit P-gp and 

eliminate the contribution of P-gp to brain distribution of the dual substrate. Bauer reported 1.7-

fold higher [11C]tariquidar VT values in heterozygous SNP carriers (c.421CA) as compared with 

non-carriers (c.421CC), which was consistent with reduced BCRP transport activity at the BBB of 

SNP carriers (Bauer et al., 2016). Interestingly, no difference in [11C]tariquidar brain distribution 

was observed between carriers and non-carriers in PET scans without tariquidar co-

administration, which indicated that the effect of the ABCG2 SNP was masked in presence of 

functional P-gp. Variants in the SLC22A1 gene, which encodes OCT1, were shown to affect OCT1 

function and expression and have been associated with altered response to the oral antidiabetic 

drug metformin compared with carriers of the reference allele, without affecting metformin 

systemic exposure (Zamek-Gliszczynski et al., 2017). This is because the liver is the target organ 

of metformin distribution and pharmacologic activity, but the drug is ultimately eliminated by the 

kidney. Sundelin et al. showed that exposure of [11C]metformin in the liver was significantly lower 

in carriers of p.M420del and p.R61C variants in SLC22A1 after both oral and intravenous 

administration of the PET tracer (Sundelin et al., 2017). This supported the notion that genetic 

SLC22A1 variants may affect metformin response. Two studies found diminished liver 

enhancement with gadoxetate in carriers of SLCO1B1 SNPs without changes in plasma PK of 

gadoxetate, suggesting that genetic transporter variants may be signal confounders in 

gadoxetate-enhanced diagnostic liver MRI (Nassif et al., 2012; Okubo et al., 2013). One study 

examined liver distribution of [99mTc]mebrofenin in healthy volunteers and patients with 

nonalcoholic steatohepatitis and found a diminished CLuptake,liver of [99mTc]mebrofenin in healthy 
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volunteers who were carriers of low/intermediate function SLCO1B1 genetic variants (Ali et al., 

2017). It can be expected that transporter polymorphisms will also affect tissue uptake of other 

clinically used diagnostic radiotracers or contrast agents and should therefore be considered in 

the interpretation of imaging data.  

4.5 Animal to clinical extrapolation 

Species differences have been reported in the substrate recognition and transport efficacy of ABC 

and SLC transporters (Kim et al., 2008; Li et al., 2008; Xia et al., 2006; Yamazaki et al., 2001). 

For instance, it has been shown that antiseizure drugs are good substrates of mouse P-gp 

(mABCB1A), whereas they are only weakly transported by human P-gp (Baltes et al., 2007; Luna-

Tortós et al., 2008). The PET tracer [18F]MPPF (4-(2'-methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p-

[18F]fluorobenzamido]ethylpiperazine) was shown to be transported by mABCB1A, but not by 

human P-gp (Tournier et al., 2011, 2012). Direct murine orthologues do not exist for some drug 

transporters. For example, in the sinusoidal membrane of human hepatocytes the SLCO 

transporters OATP1B1, OATP1B3 and OATP2B1 are expressed, whereas in mouse hepatocytes 

mOATP1B2, mOATP2B1, mOATP1A1 and mOATP1A4 are expressed (Durmus et al., 2016). 

mOATP1B2 is the mouse orthologue of human OATP1B1 and OATP1B3. mOATP1A1 and 

mOATP1A4 are mouse orthologues of human OATP1A2, which in the human liver is not 

expressed in the sinusoidal hepatocyte membrane but in epithelial cells of the bile duct. Owing to 

these differences, preclinical data on OATP-mediated transport in rodent liver is notoriously 

difficult to extrapolate to humans (Durmus et al., 2016) (Fig. 6). The advent of quantitative targeted 

absolute proteomics has provided a tool to quantify absolute expression levels of transport 

proteins in different organs and tissues (Ohtsuki et al., 2011). These studies, too, revealed 

pronounced species differences in transporter expression. For instance, while BCRP was shown 

to be the most abundant ABC transporter at the human BBB, P-gp (mABCB1A) was found to be 

more abundant at the mouse BBB than mBCRP (Shawahna et al., 2011; Uchida et al., 2011). 

While mMRP4 was detected as the third most abundant ABC transporter at the mouse BBB, it has 
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not yet been detected at the human BBB (Uchida et al., 2011). Such species differences are 

expected to lead to species differences in tissue distribution and excretion of PET/SPECT 

radiotracers and MRI contrast agents which are transporter substrates. Owing to the availability 

of dedicated small-animal PET, SPECT and MRI systems, differences between rodents and 

humans can be directly investigated in a translational approach using the same technology. 

However, several caveats have to be kept in mind. One important issue is the fact that imaging 

studies in rodents are usually performed under anaesthesia (e.g. isoflurane), while this is not the 

case in humans. Second, it is well known that species differences also exist in metabolism 

pathways of xenobiotics (Martignoni et al., 2006). Therefore, species differences in radiotracer 

metabolism may mask species differences in drug transporters. Third, several key physiological 

parameters differ between rodents and humans (e.g. organ blood flow) (Davies & Morris, 1993), 

which may also exert an influence on tissue distribution of radiotracers. Some imaging studies 

have attempted to address these issues specifically. Syvänen et al. assessed differences between 

rats, monkeys and humans in brain distribution of three radiolabeled P-gp substrates 

([11C]verapamil, [11C]GR205171 and [18F]altanserin). These authors found higher brain-to-plasma 

ratios of radioactivity in monkeys or humans as compared with rats, and higher increases in brain 

distribution of these radiotracers following cyclosporine A treatment in rats than in monkeys 

(Syvänen et al., 2009). Similarly, P-gp inhibition with tariquidar at comparable tariquidar plasma 

concentrations produced a higher increase in brain uptake of (R)-[11C]verapamil in rats than in 

humans (Kuntner et al., 2010; Bauer et al., 2012; Wagner et al., 2009) (Fig. 4). In accordance with 

this, in vivo half-maximum inhibitory concentrations for enhancement of brain uptake of (R)-

[11C]verapamil by tariquidar were determined to be lower in rats (873 nM) than in humans (2,248 

nM) (Bauer et al., 2015; Kuntner et al., 2010) (Fig. 4). This stands in contrast with data for 

cyclosporine A, for which increases in brain uptake of [3H]verapamil achieved in rats were found 

to predict increases in brain uptake of [11C]verapamil in humans (Hsiao et al., 2006). Wanek et al. 

systematically assessed possible reasons for species differences in brain distribution of (R)-
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[11C]verapamil and [11C]N-desmethyl-loperamide (Wanek et al., 2015). They concluded that 

species differences in metabolism along with brain uptake of radiolabeled metabolites precluded 

an assessment of species differences in P-gp transport activity at the BBB with these two 

radiotracers. Consequently, for an assessment of species differences in ABC and SLC transporter 

activities, the availability of radiotracers that are not metabolized over the duration of a PET scan 

in all investigated species is mandatory.  

No general recommendations can be made as to which preclinical species better predicts the 

pharmacokinetic disposition of an imaging probe in humans. For instance, with respect to P-

gp/BCRP activity at the BBB, non-human primates have been identified as a more appropriate 

model of the human BBB than rodents (Ito et al., 2011; Uchida et al., 2011). In recent years, efforts 

have been directed toward the development of mouse models humanized for certain ABC or SLC 

transporters or metabolizing enzymes (Choo & Salphati, 2018). These mouse models still suffer 

from certain limitations. In most cases, for instance, the models are only humanized for a single 

transporter gene and compensatory up-/down-regulation of other transporters or enzymes may 

occur. Nevertheless, these animal models may ultimately allow a better translation of transporter 

imaging results from mice to humans. Finally, it should be emphasized that PET and SPECT use 

sub-pharmacological doses (microdoses) of imaging probes, so that toxicity issues are not usually 

of concern in imaging experiments in humans. In many cases, transporter imaging probes are 

derived from known drugs or drug metabolites, and regulatory hurdles preventing rapid translation 

of PET tracers from preclinical species into humans are much smaller than in conventional drug 

development (ICH Expert Working Group, 2009). Consequently, while rodent experiments may be 

very useful in developing and improving methodological aspects and addressing certain 

questions, such as the tissue content of radiolabeled metabolites, small pilot studies in healthy 

human volunteers may be the best way to assess the suitability of a novel transporter imaging 

probe for clinical use. 
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4.6 Pharmacokinetic imaging to study the fate of drugs at the site of action 

The study of drug transporters with imaging modalities most commonly relies on the use of 

prototypical probe substrates. These are ideally designed to be specific to one transporter with 

high transport capacity, in order to generate substantial “contrast” between conditions where 

transporter activity is absent or present (Kannan et al., 2009; Wanek et al., 2015). However, 

quantitative data obtained with one prototypical probe substrate for one transporter might not be 

readily translated to other substrates of this transporter. Indeed, xenobiotics have different 

affinities for transporters, and scaling factors and suitable models have to be considered to 

extrapolate the in vivo impact of transporters on the tissue permeation of drugs of interest (Kalvass 

et al., 2013; Matsuda et al., 2017). Moreover, most drugs are often substrates of multiple 

transporters and considerable overlap between ABC and SLC substrates is commonly observed 

(Gui et al., 2010; Matsson et al., 2009). Substrates of influx transporters may also undergo efflux 

transport at the same interface. In this situation, the overall net flux of the drug results from the 

competition between the influx and efflux component, which is difficult to predict in the real-life 

situation (Chapy et al., 2016; Taskar et al., 2017). 

As an alternative to the use of prototypical probe substrates, direct isotopic labeling of the drug of 

interest may be employed. Theoretically, the study of drug distribution in selected organs and 

exposure to target/vulnerable tissues is feasible. However, careful interpretation of PET data is 

required to avoid any misinterpretation regarding drug exposure to investigated tissues. In most 

situations, radioactivity in tissues cannot be straightforwardly converted into local drug 

concentrations at the sites of action (Pike, 2009). Conventional pharmacokinetic studies 

accurately measure the free ligand in plasma and are able to detect the presence of metabolites 

using analytical chemistry methods. However, PET-based kinetic imaging does not distinguish 

between radioactivity associated with the vascular content, the free, bound, and parent 

compounds, and radiolabeled metabolites in tissues (Pike, 2009).  
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So far, pharmacologic imaging has predominantly focused on the interaction of drugs with their 

respective molecular targets in tissue through receptor occupancy (now named target 

engagement) studies (Willmann et al., 2008). Advances in PET data acquisition and modeling 

have considerably enhanced the applicability of imaging biodistribution studies and paved the way 

for what could be named pharmacokinetic imaging. When drugs are amenable to radiolabeling, it 

is now possible to investigate the interplay of membrane transporters in controlling the clearance 

and tissue distribution of drugs. Using this approach, the impact of SLC and ABC transporters has 

been revealed in a dynamic fashion for glyburide (Tournier et al., 2013), metformin (Jensen et al., 

2016), sulpiride (Takano et al., 2017), metoclopramide (Pottier et al., 2016), ciprofloxacin (Wanek 

et al., 2016) and erlotinib (Bauer et al., 2017b; Traxl et al., 2015), to cite a few examples. This 

emerging approach is increasingly regarded as a means to elucidate the overall impact of 

membrane transporters on drug distribution to tissues in animals and humans (Giacomini et al., 

2010). A step forward in modern pharmacology will be to investigate transporter-mediated drug 

uptake by tissues as a mediator of local drug exposure to tissues, and ultimately to assess or 

predict the contribution of membrane transporters to pharmacodynamics and toxicity. This 

approach is gaining attention for the study of drug delivery to sanctuary tissues, mainly in cancer. 

For instance, the poor CNS permeation of TKIs is now accepted as a determinant of the poor 

response of CNS malignancies, including brain metastasis, to this class of molecularly targeted 

therapy (Holohan et al., 2013; Camidge et al., 2014). PET using radiolabeled analogs of TKIs can 

be regarded as a useful method to compare their CNS penetration in humans (Verheijen et al., 

2017) and non-human primates, a relevant animal model of the human BBB (Ballard et al., 2016; 

Collier et al., 2017a, 2017b). Virtually all members of the clinically important class of TKIs were 

identified as dual P-gp/BCRP substrates, which provides a mechanistic explanation for their low 

brain penetration (Agarwal et al., 2011; Durmus et al., 2015). Recent studies used [11C]erlotinib 

PET imaging to evaluate strategies to improve the brain delivery of erlotinib. P-gp/BCRP-mediated 

efflux of erlotinib at the BBB was inhibited using an intravenous infusion of high-dose elacridar in 
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non-human primates (Tournier et al., 2017). However, P-gp/BCRP inhibition could not be achieved 

using an oral formulation of elacridar in humans, most likely due to the low oral bioavailability of 

this inhibitor (Verheijen et al., 2017).  

Despite its methodological limitations, pharmacokinetic imaging is a potentially powerful approach 

to evaluating transporter-based strategies to improve the local delivery and/or tissue selectivity of 

drugs at their sites of action. Applications may not only be restricted to research in cancer therapy, 

but may also be extended to neurological or infectious diseases for which sanctuary sites are 

suspected to account for poor or incomplete therapeutic response in patients (Rizk ML et al., 

2017). Moreover, radiolabeled drugs may find use in evaluating protective pharmacologic 

strategies to mitigate organ toxicities of certain drugs (e.g. nephrotoxicity) (Manohar & Leung, 

2017; Reichart et al., 2017).  

5 Expert opinion and perspectives 
Imaging methods are increasingly regarded as innovative means to explore drug transporters in 

vivo. Advances in the development of imaging probes dedicated to the study of drug transporter 

function has provided new insights into the role of drug transporters at several blood-tissue 

interfaces. However, imaging techniques still suffer from several technical and methodological 

limitations, which restrict their applicability to transporter studies. Limitations related to the inability 

of nuclear imaging methods to distinguish parent compound from radiolabeled metabolites have 

been discussed in this review article. Therefore, metabolically stable probe substrates are clearly 

preferred for transporter imaging studies. Regulatory authorities request that pharmaceutical 

companies examine the interaction of new drug candidates and their metabolites with ABC and 

SLC transporters to assess the risk for the occurrence of DDIs (EMA, 2013; FDA, 2017). Hence, 

it can be assumed that a wealth of unpublished data are available on new chemical entities which 

never reached the market but which may prove suitable for the development of transporter imaging 

probes. Clearly, the field may benefit considerably from public-private partnerships between 

academic researchers and pharmaceutical companies in order to advance transporter imaging. A 
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major challenge in the imaging of transporters is related to the broadly overlapping substrate 

specificities of most ABC and SLC transporters, so that true transporter selectivity may be difficult 

to achieve in practice. However, the introduction of carefully matched, clinically feasible 

combinations of radiolabeled probe substrates with prototypical transporter inhibitors may prove 

beneficial in revealing the role played by specific ABC and SLC transporters in certain organ 

systems. For instance, lack of selectivity of a radiolabeled probe substrate for a given ABC or SLC 

transporter may be mitigated by combining it with a transporter inhibitor which inhibits only one of 

the ABC and SLC transporters by which the probe substrate is transported. Therefore, the 

screening of currently available, clinically applicable inhibitors with respect to their transporter 

selectivity profiles should be encouraged in order to yield effective substrate-inhibitor pairs for 

transporter imaging. In this framework, imaging of drug transporters may also clearly benefit from 

medicinal chemistry and structure-activity relationship studies aimed at improving the selectivity 

of transporter substrates and inhibitors (Ekins et al., 2012). It should also be noted that probe 

substrates which lack transporter selectivity in one organ may still prove suitable to selectively 

study a certain transporter in another organ. Therefore, available radiotracers should be further 

evaluated in organs and at blood-tissue interfaces which have not yet been the major focus of 

transporter studies (e.g. BRB, placenta and lungs). Another limitation in the development of 

transporter imaging probes is related to difficulties in extrapolating preclinical results to humans. 

In other words, imaging probes which were identified as suitable for transporter imaging in rodents 

may fail to perform in humans. This is a general problem which is also encountered in drug 

development. This risk may be mitigated by the introduction of more refined and better 

standardized preclinical assessment approaches, such as humanized mouse models, or more 

advanced cell culture experiments, such as sandwich-cultured hepatocytes. However, the key 

strength of imaging methods is that owing to their non-invasive or minimally invasive nature and 

the administration of very low, sub-pharmacological doses of the imaging probes, they are highly 

translational. Given the existence of sometimes pronounced species differences in transporters 
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or metabolizing enzymes, and given the current availability of several prototypical transporter 

inhibitors for clinical use, the best way to characterize the clinical suitability of new imaging probes 

may ultimately be the performance of small pilot studies in healthy human volunteers. This 

approach may also be very useful in the assessment of transporter-mediated DDIs of new drug 

candidates in early clinical drug development. However, further studies with radiolabeled probe 

substrates based on marketed model drugs and prototypical inhibitors are needed to refine 

currently available analytical methodology, such as pharmacokinetic modeling approaches, taking 

into account the inherent limitations of imaging approaches, and to highlight the power of this 

approach in drug development. Another limitation of imaging tools is their high costs and the 

requirement for specialized research infrastructure, in particular for PET imaging. This is where 

less cost-intensive imaging approaches which are better suited to a hospital environment come 

into play. The discovery that MRI contrast agents or SPECT tracers interact with ABC and SLC 

transporters was mostly serendipitous, and so far hardly any systematic efforts have been made 

to develop transporter-specific MRI contrast agents or SPECT tracers. Examples with re-purposed 

SPECT tracers such as [99mTc]mebrofenin have illustrated the power of SPECT to study 

transporters in vivo, particularly in view of recent advances in SPECT methodology. Further 

research should be therefore directed toward the development of SPECT tracers as innovative 

transporter imaging probes with a broader clinical applicability. To establish the clinical benefit of 

transporter imaging, further studies in various disease settings with currently available or newly 

developed imaging probes are required.  
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Figure legends 

Fig. 1. Relative performances of clinical imaging modalities for the study of drug transporter 

function in vivo. The diagram includes positron emission tomography (PET, blue), single photon 

emission computed tomography (SPECT, purple) and magnetic resonance imaging (MRI, 

orange). Scales of the individual axes are proposed for illustrative purposes only. Data and 

corresponding references are reported in the main text for sensitivity, quantification, temporal 

resolution, spatial resolution and availability. Size of the imaging probe portfolio has been 

estimated for each modality from the number of different agents described in the present review.  
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Fig. 2. Chemical structures of selected imaging agents used to study drug transporters, including 

the SPECT tracer [99mTc]mebrofenin (a) and the MRI contrast agent Gd-EOB-DTPA (gadoxetate) 

(b). Chemistry schemes for the synthesis of (R)-[11C]verapamil by N-methylation of N-desmethyl 

verapamil using [11C]methyl triflate (c) and 3E-[18F]fluorocholic acid by nucleophilic 18F-fluorination 

of a protected mesylated precursor (d) are reported.  

 

Fig. 3. Kinetic model of the transport of [11C]cholylsarcosine (11C-CSar) from blood to bile. The 

exchange of 11C-CSar between the compartments is described by fitted parameters: K1 (mL 

blood/min/mL liver tissue), k2 (min-1), k3 (min-1), and k5 (min-1). The amount of 11C-CSar in the blood 

compartment at time t is Cin(t) multiplied by Vblood (the fraction of blood in the liver tissue, mL 

blood/mL liver tissue). Cin(t) is the flow-weighted mixed input of 11C-CSar to the liver from the 

hepatic artery and the portal vein, which was calculated from the arterial blood concentrations 

measured by arterial blood sampling. The amount of 11C-CSar in the hepatocyte compartment at 

time t is Chep(t) (concentration of 11C-CSar in hepatocytes, kBq/mL hepatocytes) multiplied by Vhep 

(the fraction of hepatocytes in the liver tissue, mL hepatocytes/mL liver tissue). The amount of 11C-

CSar at time t in the intrahepatic bile ducts is Cbile(t) (concentration of 11C-CSar in intrahepatic bile 

ducts; kBq/mL bile) multiplied by Vbile (the fraction of intrahepatic bile ducts in the liver tissue, mL 

bile ducts/mL liver tissue) (reproduced with permission from (Ørntoft et al., 2017)).  

 

Fig. 4. PET summation images of rat (a) and human (b) brain obtained with the P-gp substrate 

radiotracer (R)-[11C]verapamil at baseline and after administration of increasing doses of the third-

generation P-gp inhibitor tariquidar. Radioactivity concentration is normalized to injected 

radioactivity amount per body weight and expressed as standardized uptake value (SUV). 

Concentration-response curves in rats (c) and humans (d) for enhancement of brain uptake of 

(R)-[11C]verapamil (expressed as volume of distribution, VT). Half-maximum inhibitory 
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concentrations (IC50) of tariquidar were lower in rats than in humans. Adapted from Bauer et al., 

2012, 2015 and Kuntner et al., 2010. 

 

Fig. 5. Representative [11C]glyburide PET data obtained in the liver of one non-human primate. 

Pre-treatment with the OATP inhibitor rifampicin resulted in a pronounced decrease in 

[11C]glyburide uptake by the liver (a, b). This resulted is a marked increase in [11C]glyburide plasma 

concentrations (c) and the recovery of parent (unmetabolized) [11C]glyburide in plasma (d). 

Radioactivity concentration is normalized to injected radioactivity amount per body weight and 

expressed as standardized uptake value (SUV). Adapted from Tournier et al., 2013.  

 

Fig. 6. Serial abdominal PET images recorded in mice (a) and humans (b) after intravenous 

injection of a microdose of [11C]erlotinib (scan 1) and after injection of a microdose of [11C]erlotinib 

mixed with a pharmacologic dose of unlabeled erlotinib (10 mg/kg) (mice) or after pre-treatment 

with an oral therapeutic dose of erlotinib (300 mg) (humans) (scan 2). Anatomical structures are 

labeled with arrows (L, liver; GB, gall bladder; C, colon; D, duodenum; BD, bile duct). Radioactivity 

concentration is normalized to injected radioactivity amount per body weight and expressed as 

standardized uptake value (SUV). Concentration-time curves of [11C]erlotinib in the liver of mice 

(c) and humans (d) for scan 1 and scan 2. The effect of unlabeled erlotinib on liver distribution of 

[11C]erlotinib is more pronounced in humans than in mice. Adapted from Bauer et al., 2017 and 

Traxl et al., 2015. 
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