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ABSTRACT
This paper deals with the online diagnosis for Polymer Electrolyte Membrane Fuel Cell (PEMFC)
systems. The pattern classification tool Support Vector Machine (SVM) is used to achieve fault
detection and isolation (FDI). The algorithm is integrated into an embedded system of the type
System in Package (SiP) and validated online in an experimental platform. Four concerned faults
are diagnosed successfully online. Additionally, a procedure is proposed to improve the performance
of robustness and raise the diagnosis accuracy.

1. INTRODUCTION
During the last decades, fault diagnosis devoted to improve the reliability and durability perfor-
mance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems has drawn the attention of
both academic and industrial communities. Through an efficient diagnosis strategy, more serious
faults can be avoided thanks to an early fault alarm. With the help of diagnosis results, the down-
time (repair time) can be reduced. Moreover, the precise diagnosis information can speed up the
development of new technologies [1].

Several fault diagnosis strategies have been studied during the last decade. Since the first principle
models of PEMFC systems are not evident to be found or estimated. The application of data-
driven fault diagnosis methodologies have been drawing the attention of researchers [2]. Within
the scope of data based fault diagnosis, a number of pattern classification techniques have been
widely used since fault detection and isolation (FDI) can be considered as a classification problem.
Thanks to the contributions from the computer science and information community, lots of mature
experiences can be utilized for fault diagnosis purpose. Generally, the classification based fault
diagnosis proceeds in two phases (i.e. offline phase and online phase). In the offline training phase,
the historical data which distribute in different health states are firstly collected. A classifier is
then trained based on the collected dataset. In the online performing phase, the real-time data are
classified into the known classes with the obtained classifier. Thus, the health state of real-time
data can be diagnosed.

Although some classification based diagnosis strategies have been proposed for PEMFC systems [3],
the online implementation results are announced rarely. Actually, for practical online applications,
such as fuel cell electric vehicles, the diagnosis strategy should be integrated into an embedded
system and run in real-time. Hence, the importance of online implementation cannot be over-
emphasized. Otherwise, the work will always stay in the step of ”academic research”.

In this paper, a classification tool Support Vector Machine (SVM) is employed for FDI of PEMFC
systems. The diagnosis algorithm is also integrated into a specially designed embedded system,
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which is of the type System in Package (SiP). The embedded system is installed into a PEMFC
system, and the diagnosis algorithm is verified in real-time. Besides, a procedure is proposed to
improve the robustness of the diagnosis algorithm.

2. SVM BASED DIAGNOSIS ALGORITHM
SVM is a classification method developed by V. Vapnik [4] and has been widely applied during
the last two decades. Good generalization performance, absence of local minima and sparse rep-
resentation of solution make SVM an attractive classification tool. The basic theory comes from
binary classification problem. As Fig. 1 shows, there are data samples distributed in two classes,
suppose we have some hyperplane which separates the points. Then, SVM looks for the optimal
hyperplane with the maximum distance from the nearest training samples. A subset of training
samples that lie on the margin are called support vectors.

Support 
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Class2

Maximum 

margin

The optimal 
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Figure 1: SVM schematic diagram

To explain the binary SVM mathematically and more specifically, take (N1 +N2) labeled samples
z1, z2, . . . , zN1+N2 from 1st and 2nd classes as training examples. gn ∈ {−1, 1} is defined as the
class label of sample zn (−1 for class 1, 1 for class 2). Without going to the detailed deducing
process which can be found in many materials on pattern recognition ([4] for instance), the training
problem can be converted to the following quadratic problem (QP)

minL(a) =
1

2

N1+N2∑
n=1

N1+N2∑
m=1

anamgngmk(zn, zm)−
N1+N2∑
n=1

an (1)

subject to 
N1+N2∑
n=1

angn = 0

0 ≤ an ≤ D n = 1, 2, . . . , N1 +N2

(2)

where {an|n = 1, . . . , N1 + N2} are Lagrange multipliers, which are expressed collectively as a =
[a1, . . . , aN1+N2 ]

T ; D is a parameter which need to be initialized; k(zn, zm) is kernel function
which is introduced to solve the nonlinear problem. A representative kernel function which named
Gaussian kernel is expressed as

k(zn, zm) = exp(−||zn − zm||2

σ
) (3)
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where σ is an author defined parameter.

In our study, a practical approach, namely Sequential Minimal Optimization (SMO), is used solve
the QP problem (1) [4]. After solving the QP problem, the Lagrange multipliers a1, a2, . . . ,
aN1+N2 are obtained. The samples corresponding to positive Lagrange multipliers are SVs, which
are denoted by zs

1, z
s
2, . . . , zs

S. S is the number of SVs. The corresponding an and gn of SV zs
n

are denoted by asn and gsn.
The class label g of an arbitrary data point z can be determined by the following equation:

g = sign

(
S∑

n=1

asng
s
nk(zs

n, z) + b

)
(4)

where the bias b is given

b =
1

S

S∑
j=1

(
gsj −

S∑
n=1

asng
s
nk(zs

n, z
s
j )

)
(5)

From (4), it could be observed that the determination of the class label is depended on the SVs,
and the corresponding parameters {asn} and {gsn}. Generally, the SVs account only a small part
of the training samples. This property is central to the online applicability of SVM. The training
process and the performing procedure can be synthetically summarized as Algorithm 1.

Algorithm 1 Binary SVM

Training:
1: Collect (N1 +N2) labeled sample z1, z2, . . . , zN1+N2 from classes 1 and 2. gn ∈ {−1, 1}, is the class

label of the sample zn. Initial D and σ.
2: Solve the quadratic problem (1) by using SMO method.
3: Save support vectors: zs

1, z
s
2, . . . ,z

s
S and corresponding gn and an, which are denoted by {gsn} and

{asn}.
Performing:

For a new sample z, its class label is determined with respect to (4).

To extend the binary classifier to multi-classification situations, there are several ways. A method
named “One-Against-One” is adopted in this chapter. Actually, C(C − 1)/2 binary SVMs can
be constructed based on the training data in C classes. When an arbitrary sample comes, its
classification results of all the binary SVMs are firstly obtained. The final classification is obtained
by voting all binary classification results. The details can be found in [5].

3. DIAGNOSIS STRATEGY DEVELOPING PLATFORM
As Fig. 2 shows, the developing platform dedicated to online implementation of the diagnosis
strategy consists the following parts:

� PEMFC system: A 64-cell PEMFC stack, which was fabricated by the French research
organization CEA specially for automotive application1, is concerned. The nominal operat-
ing condition of the stack is summarized in Table 1. In the system, a number of physical
parameters impacting or expressing stack performances can be regulated flexibly and moni-
tored. Stack temperature, pressures and stoichiometries of hydrogen and air at inlets, relative
humidity of the inlet air can be regulated. This could help causing different health states.
The stack voltage and single cell voltages, as well as the above mentioned variables can all
be measured with the sample time of 1 s.

1CEA: Alternative Energies and Atomic Energy Commission
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Figure 2: Overview of the developing platform

Table 1: Nominal conditions of the stacks

Parameter Value

Stoichiometry H2 1.5
Stoichiometry Air 2
Pressure at H2 inlet 150 kPa
Pressure at Air inlet 150 kPa
Differential of anode pressure and cathode pressure 30 kPa
Temperature (exit of cooling circuit) 65-70 ◦C
Anode relative humidity 50%
Cathode relative humidity 50%
Current 90 A
Voltage per cell 0.7 V
Electrical power 4032 W

� Electronics load: The load current can be flexibly varied through an electronic load.
� Measuring and computing unit: The core of the measuring and computing board is

the specially-designed SiP (yellow square component shown in Fig. 2). Fig. 3 shows the
structure of the SiP. The upper layer is equipped with Smartfusion on-chip system developed
by Microsemi company. The device integrates a FPGA fabric, ARM Cortex-M3 Processor,
and programmable analog circuitry which fulfill the A/D and D/A functions [6]. Up to 512
KB flash, 64 KB of SRAM and another two chips of 16 M memory are equipped to this SiP.
With the abundant connecting ports, kinds of communications can be realized with other
devices. The other two layers, which are equipped with Giant magnetoresistance (GMR)
sensors, are used for measuring the voltage signals precisely.

� Diagnosis interface: The measurements and the calculation results obtained from the
measuring and computing unit are exported to a general computer equipped with Labview
software. With the help of Labview, the real-time cell voltage signals, the diagnosis results
can be visualized on the screen. The real-time data can also be saved for advanced analysis.

4. ONLINE IMPLEMENTATION OF THE DIAGNOSIS STRATEGY
4.1 Offline training and algorithm integration

Knowing that classification based diagnosis belongs to supervised learning methods, the data from
various classes are needed for training. To prepare the training dataset, several faults were deduced
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Figure 3: SiP designed for PEMFC system diagnosis [7]

deliberately. Table 2 summarizes the operations in the experiment of training data preparation.
In this study, the individual cell voltages are considered as the variables for diagnosis. From our
previous study, individual cell voltages show different magnitudes and distributions in different
health states. This feature is utilized for FDI. Constrained by the measuring capability of the 1st
version SiP. The voltages of 14 cells which located near to one side of the stack can be measured
and used as the variables for diagnosis. The evolutions of individual cell voltages of training data
are shown in Fig. 4(a).

Table 2: Experimental procedure for the preparation of training dataset

Starting time Ending time Operation Health state

0 879 Nominal condition Normal state (Nl)
880 1675 Pressure at 1.3 bar at each side Low pressure fault (F1)
1676 2618 Back to nominal condition Normal state (Nl)
2619 3499 Pressure at 1.7 bar at each side High pressure fault (F2)
3500 4892 Back to nominal condition Normal state (Nl)
4893 6288 Lower relative humidity Drying fault (F3)
6289 7518 Back to nominal condition Normal state (Nl)
7519 8287 St. Air 1.5 Low air stoichiometry fault (F4)
8288 8955 Back to nominal condition Normal state (Nl)

Table 3: Confusion matrix for training data

Diagnosed classes
Nl F1 F2 F3 F4

Actual classes

Nl 4762 29 25 68 11
F1 406 373 0 0 17
F2 300 0 800 0 0
F3 157 11 0 1228 0
F4 239 82 0 0 448

With the training dataset, the SVM classifier is trained. Classifying the training data with the
trained SVM, the diagnosis accuracy rate is 84.98%. More detailed diagnosis results can be sum-
marized as a confusion matrix shown quantitatively in Table 3 and visually in Fig. 4(b). It could
be observed that the false alarm rate, i.e. the rate of the samples in normal state are wrongly
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(a) Evolutions of cell voltages: training data
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(b) Diagnsois results: training data

Figure 4: Training data and diagnosis results

diagnosed into the fault classes, is relatively low. The diagnosis accuracy for the data in F3 is
high, while a considerable part of data in classes F1, F2, and F4 are wrongly classified into the
normal class.

The trained SVM classifier was coded into the memory of SiP. When the diagnosis algorithm
was carried out using the training dataset respectively in MATLAB environment and the SiP, the
accordant results could be obtained. Besides, the diagnosis algorithm could be calculated within
a sampling cycle (i.e. 1s) using the SiP. That is to say the diagnosis algorithm is successfully
integrated into the embedded system.

4.2 Online validation

To realize online validation, the embedded system was tested online with the real-time data during
another experiment. The operations of this experiment are summarized in Table 4, and the mea-
sured cell voltages (i.e. the variables for diagnosis) are plotted in Fig. 5(a). The diagnosis accuracy
of the online implementation is 85.93%. Similarly, the online diagnosis results were recorded and
summarized visually in Fig. 5(b) and quantitatively in Table 5. A similar observation as the case
for training could be obtained when the confusion matrix (i.e. Table 5(b)) of test data is analyzed.

Table 4: Experimental procedure for online validation

Starting time Ending time Operation Health state

0 3660 Nominal condition Normal state (Nl)
3661 4543 Pressure at 1.3 bar at each side Low pressure fault (F1)
4544 5374 Back to nominal condition Normal state (Nl)
5375 6541 Pressure at 1.7 bar at each side High pressure fault (F2)
6542 8128 Back to nominal condition Normal state (Nl)
9842 11909 St. Air 1.5 Low air stoichiometry fault (F4)
8910 9841 Back to nominal condition Normal state (Nl)
8129 8909 Lower relative humidity Drying fault (F3)
11910 12459 Back to nominal condition Normal state (Nl)
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(a) Evolutions of cell voltages: test data
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(b) Diagnosis results: test data

Figure 5: Test data and diagnosis results

4.3 Improvement of the robustness and accuracy

When the faults F1, F2, and F4 are concerned, it can be observed from the Fig. 5(b) that the
diagnosis results vibrate between the corresponding fault and normal classes. The performance of
robustness is not satisfying. Here we propose to use a lagged results to improve the robustness
and accuracy of the diagnosis results. Specifically, at time k, the diagnosis results of last Nlag are
taken into account (i.e. from k − Nlag + 1 to k). Concerning these Nlag data, if fault degree (i.e.
the rate of one fault diagnosed) is above the pre-defined threshold, the fault occurs at time k.

Here we set Nlag = 100 and threshold as 0.4. The fault degrees of the concerned four faults are
shown in Fig. 6(a). The diagnosis results are shown in Fig. 6(b) and Table 6. Comparing Fig.
6(b) to Fig. 5(b), more consistent and robust results can be obtained when fault degree is used as
the indicator of the faults. Considering diagnosis accuracy, the global diagnosis accuracy is 93.54%
which is significantly improved. Notice that sensitivity and robustness are two conflicting factors,
the performance of sensitivity is certainly alleviated when the procedure is employed.

Table 5: Confusion matrix for test data

Diagnosed classes
Nl F1 F2 F3 F4

Actual classes

Nl 7302 31 220 0 10
F1 446 432 0 1 4
F2 477 0 690 0 0
F3 142 28 5 1880 8
F4 363 14 14 0 390

5. CONCLUSION
In this paper, classification method SVM is used to realized fault diagnosis for PEMFC systems.
The algorithm was successfully integrated into a specially designed embedded system. The inte-
grated system was installed into a PEMFC system and tested online. Four faults can be detected
and isolated. The robustness and diagnosis accuracy performances are improved by introducing
the concept of fault degree. The total diagnosis accuracy can arrive at 93.54%.
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Figure 6: Improved diagnosis results

Table 6: Confusion matrix for test data: improved results

Diagnosed classes
Nl F1 F2 F3 F4

Actual classes

Nl 7413 0 62 48 40
F1 215 668 0 0 0
F2 88 0 1079 0 0
F3 202 0 0 1861 0
F4 150 0 0 0 631
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