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Introduction

Faithful genome transmission requires the association of several mechanisms including replication and recombination. Replication forks are routinely arrested by a broad variety of stresses (for review see [START_REF] Hyrien | Mechanisms and consequences of replication fork arrest[END_REF][START_REF] Rothstein | Replication fork pausing and recombination or `gimme a break[END_REF]. In bacteria, homologous recombination is an ef®cient process helping to reactivate a replication fork that has been blocked (for review see [START_REF] Kuzminov | Collapse and repair of replication forks in Escherichia coli[END_REF][START_REF] Cox | The importance of repairing stalled replication forks[END_REF]. Replication blocks have also been shown to induce DNA double-stranded breaks (DSBs) in recBC mutants [START_REF] Bierne | Deletions at stalled replication forks occur by two different pathways[END_REF][START_REF] Seigneur | RuvAB acts at arrested replication forks[END_REF]. In yeast, DNA polymerase mutants accumulate Holliday junctions at the rDNA locus, a molecular intermediate of homologous recombination [START_REF] Zou | Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism[END_REF]. Moreover, repair of lesions during replication often involves recombination between sister chromatids [START_REF] Fabre | Gene conversion at different points in the mitotic cycle of Saccharomyces cerevisiae[END_REF][START_REF] Kadyk | Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae[END_REF]. Replication fork pausing occurs from bacteria to humans, but very little is known of the relationships between replication and recombination in mammalian cells [START_REF] Cox | The importance of repairing stalled replication forks[END_REF][START_REF] Hyrien | Mechanisms and consequences of replication fork arrest[END_REF][START_REF] Rothstein | Replication fork pausing and recombination or `gimme a break[END_REF]. This link may be of crucial importance for genome stability and has been discussed in the case of cancer predisposition [START_REF] Scully | DNA polymerase stalling, sister chromatid recombination and the BRCA genes[END_REF]. However, the mechanisms and molecular characteristics of the connection between replication and recombination have yet to be elucidated in mammalian cells.

In order to study the precise impact of replication arrest on recombination, we used replication inhibitors to treat mammalian cell lines carrying intrachromosomal tandem repeat recombination substrates. We used a set of drugs that are well characterized and commonly used in cell synchronization experiments. These drugs speci®cally inhibit either the initiation (mimosine, ciclopirox olamine) or the elongation (hydroxyurea, aphidicolin) of replication [START_REF] Levenson | A general protocol for evaluating the speci®c effects of DNA replication inhibitors[END_REF]. Moreover, these replication inhibitors have been shown to induce DNA single-strand breaks and sister chromatid exchange (SCE) [START_REF] Ishii | Effects of inhibitors of DNA synthesis on spontaneous and ultraviolet light-induced sister-chromatid exchanges in Chinese hamster cells[END_REF][START_REF] Fram | DNA strand breaks caused by inhibitors of DNA synthesis: 1-b-D-arabinofuranosylcytosine and aphidicolin[END_REF][START_REF] Caligo | Time course of sister chromatid exchanges and gene ampli®cation induced by 1-b-D-arabinofuranosylcytosine in V79-AP4 Chinese hamster cells[END_REF]. Different pathways can promote SCE. In the transformed chicken DT40 B-cell line, RAD51 is involved in spontaneous SCE [START_REF] Sonoda | Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells[END_REF], whereas in mammalian cells, mRAD51 and the mouse RAD54 gene do not affect spontaneous SCE and partially control induced SCE [START_REF] Dronkert | Mouse RAD54 affects DNA doublestrand break repair and sister chromatid exchange[END_REF]S.Lambert and B.S.Lopez, submitted). This suggests that alternative pathways should exist. For instance, it has been suggested that topoisomerases are involved in SCE formation in mammalian cells [START_REF] Dillehay | DNA topoisomerases and models of sister-chromatid exchange[END_REF]. Thus, the effects of replication inhibition on homologous recombination and the pathways involved have yet to be clearly elucidated in mammalian cells.

In the present work, we measured and characterized molecular and genetic recombination events occurring in response to replication inhibition in mammalian cells.

Results

Replication inhibitors stall cell cycle progression in late G 1 and in S phases

Cells were treated with different drugs known to inhibit replication reversibly in mammalian cells. Two of them (mimosine and ciclopirox olamine) inhibit the initiation step of the replicons and two others (aphidicolin and hydroxyurea) inhibit elongation of the replicons [START_REF] Levenson | A general protocol for evaluating the speci®c effects of DNA replication inhibitors[END_REF].

The consequences for the cell cycle after different times of contact with two different concentrations of aphidicolin are shown in Figure 1A. Similar results were obtained with mouse L-cells as well as with hamster CHO cells (data not shown). After 6 h of contact with the drug, the peak of cells in the G 2 phase completely disappeared whilst a G 1like peak and the S plateau were still present. This result
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The EMBO Journal Vol. 20 No. 14 pp. 3861±3870, 2001 ã European Molecular Biology Organization shows that cells in the G 2 phase proceed through mitosis to reach the G 1 phase, but that cells in the S phase are blocked and can not reach the G 2 phase. This is consistent with the inhibition of replication leading to the arrest of the cell cycle in late G 1 , at the entry to the S phase, and in the S phase.

In the present work we used a set of different replication inhibitors. We checked the cell cycle pro®les after 24 h of contact with the different drugs (Figure 1B). The disappearance of G 2 -phase cells was observed with all the drugs, and is consistent with a block in late G 1 and S phases with all the replication inhibitors.

Thus, as expected, treatment with the different replication inhibitors blocked the progression in the S phase. Taking into account the DNA content, cells arrested in the S phase should have accumulated stalled replication intermediates. This strategy allowed us to address the question of whether the stalling of the replication forks actually results in DNA breaks and in stimulation of homologous recombination in mammalian cells.

Replication inhibitors induce DNA breaks

Arrest of replication fork progression should lead to the accumulation of single-strand nicks resulting from unsealed Okasaki fragments, or single-strand gaps between two replicons. Additionally, these nicks and single-strand gaps could also be processed into double-stranded breaks. First, we measured the induction of DNA breaks using the COMET assay under alkaline conditions, which allow detection of both single-and double-stranded breaks, in addition to alkali labile sites. The distribution of the classes of comet tail moments after treatment with either hydroxyurea or mimosine is shown in Figure 2A. Both hydroxyurea and mimosine induced DNA breaks, but hydroxyurea was much more ef®cient (Figure 2A). Other drugs such as aphidicolin also led to the accumulation of breaks in the DNA (data not shown).

DSBs induced by hydroxyurea treatment were specifically analyzed by pulsed-®eld gel electrophoresis (PFGE) (Figure 2B). The smears indicate an accumulation of DSBs as a function of the time of replication block. DSB smears were slightly detectable after 6 h of blockage and were then clearly visible for 12, 18 and 24 h of blockage. However, it is possible that low and undetectable amounts of DSB were produced during the 3 h treatment. Nevertheless, this result indicates that increasing the time of replication block leads to an accumulation of DSB.

Recombination is stimulated by replication elongation inhibitors in replicating S phase cells

We compared the ef®ciency of replication initiation inhibitors and elongation inhibitors for the stimulation of recombination. Recombination was measured in the CHO-DRA10 line [START_REF] Liang | Homologydirected repair is a major double-strand break repair pathway in mammalian cells[END_REF] using the strategy depicted in Figure 3A. Two different inhibitors of replicon initiation (mimosine and ciclopirox olamine) moderately induced homologous recombination. In contrast, two different replicon elongation inhibitors (aphidicolin and hydroxyurea) strongly stimulated homologous recombination (Figure 3B). In the CHO-DRA10 line, inhibition of replication elongation stimulates recombination 15-to 25-fold more ef®ciently than inhibition of replication initiation.

The inhibitors used here are generally considered to be highly speci®c for replication inhibition. Nevertheless, we veri®ed whether they act speci®cally on replicating cells in the S phase. We measured whether they actually act on a common pathway for stimulation of recombination, by treating the cells with a combination of two inhibitors. If they act on two different pathways, the combination of two drugs should stimulate recombination more ef®ciently than each drug alone. In contrast, if the two drugs act on the same pathway, the two-drugs combination should stimulate recombination as ef®ciently as one drug alone, in a kind of `pharmacological epistasis'. Figure 3B shows that hydroxyurea and aphidicolin in tandem stimulated recombination as ef®ciently as hydroxyurea or aphidicolin alone. Thus, they stimulate recombination by acting on a common pathway, i.e. the inhibition of replication elongation. Similarly the ciclopirox olamine/mimosine combination stimulated recombination to the same extent as ciclopirox olamine or mimosine alone. Finally, the combination of an initiation inhibitor (mimosine) with one elongation inhibitor (hydroxyurea or aphidicolin), on nonsynchronized cells, stimulated recombination as ef®ciently as hydroxyurea or aphidicolin alone, i.e. the most ef®cient inductor (Figure 3B). These results show that the drugs stimulate recombination by a pathway common to all of them; this pathway must be the inhibition of replication.

If the recombination stimulation is correlated with the block of the replication, it should speci®cally act on S phase cells. To verify this interpretation, we synchro-nized the hamster CHO-DRA10 line cells before treating them with hydroxyurea.

Synchronization by double thymidine block is shown in Figure 3C. An asynchronous population contains 30±40% of cells in the S phase. Synchronization resulted in 70±90% of cells in the S phase depending on the time after the thymidine block release, i.e. a 2-to 3-fold increase in the number of S phase cells (Figure 3D). Double thymidine block treatment only poorly induced recombination compared with treatment with hydroxyurea (Figure 3D). Hydroxyurea was then added at different times after the release of the thymidine block and maintained for 24 h. Hydroxyurea induced recombination 2±3 times more ef®ciently in cells synchronized in the S phase compared with non-synchronized cells. This factor corresponds to the increase in the frequency of cells in the S phase in a synchronized population (compare Figure 3C andD). Remarkably, the extent of recombination stimulation was linearly correlated with the percentage of cells in the S phase, i.e. the time between the block release and the hydroxyurea treatment (Figure 3E). These results suggest that the homologous recombination was more ef®cient during the progression in the S phase.

Taken together, the results show that the drugs stimulate homologous recombination via the inhibition of replication (mainly elongation) in mammalian cells.

Stimulation of homologous recombination by aphidicolin as a function of the time of blockage

We then analyzed the recombination stimulation at different times of contact with aphidicolin, i.e. different times of replication inhibition. We ®rst measured recombination induced by replication inhibitors (RIRI) in mouse L-cells (i) to verify the phenomenon in another cell line type and (ii) because a couple of mouse L-cells provided the opportunity to measure the RIRI with direct or inverted repeat recombination substrates (Figure 4A). Direct repeats and inverted repeats do not monitor exactly the same recombination pathways (for review see [START_REF] Klein | Genetic control of intrachromosomal recombination[END_REF]: direct repeats monitor gene conversion as well as single-strand annealing (SSA) events. Inverted repeats can not measure SSA but mainly monitor gene conversion plus non-SSA alternative pathways. As observed for the cell cycle arrest, the two different concentrations of aphidicolin stimulate recombination in a similar range (Figure 4B andC). Aphidicolin stimulated recombination as a function of the duration of the treatment, i.e. of replication inhibition. But two phases of stimulation were observable: the recombination increase was linear but modest for times of contact between 6 and 18 h, even though (i) ¯uorescence-activated cell sorting (FACS) analysis indicated a replication block for these times of treatment and (ii) PFGE showed the appearance of DSB at 6 h. Recombination was then strongly stimulated for times of contact with aphidicolin comprised between 18 and 24 h (Figure 4B). Similar results were obtained with direct repeats (Figure 4B) and with inverted repeat recombination substrates (Figure 4C). Interestingly, the kinetic of the recombination process per se was correlated with the kinetics of DSB accumulation (compare Figures 2B and4). Moreover, comparison of these two kinetics highlights the fact that a huge amount of DSBs is required to stimulate homologous recombination ef®ciently. This may The cell line used is hamster CHO-DRA10 containing the recombination substrate drawn and described elsewhere [START_REF] Liang | Homologydirected repair is a major double-strand break repair pathway in mammalian cells[END_REF]. This substrate contains a direct repeat of two inactive neomycin-resistant (NEO) genes; parental cells are sensitive to G418. Recombination restores a functional NEO gene; recombinants are resistant to G418. The frequency of spontaneous recombination is 6 Q 10 ±7 . (B) Induced recombinant corresponds to the number of G418-resistant clones for 10 7 viable treated cells subtracted from the number of G418-resistant clones in 10 7 non-treated viable cells. Cells were treated for 24 h with the drugs or the combinations indicated below the bars. Concentrations were: 200 mM mimosine; 1 mM hydroxyurea; 20 mM ciclopirox olamine; 0.6 mM aphidicolin. (C) Synchronization (indicated as `synchro' in the ®gure) by double thymidine block. The DNA content is measured by FACS at different times after the release of the second thymidine block. H+0h: 0 h after the thymidine block release; H+1h: 1 h after the thymidine block release; H+2h: 2 h after the thymidine block release; H+3h: 3 h after the thymidine block release. The percentage of cells in the S phase is indicated on the histogram. (D) Induced recombinant under the different conditions. Synchro: synchronization by double thymidine block; HU: treatment with hydroxyurea for 24 h. H+ 0, 1, 2 or 3 h indicates the moment of hydroxyurea addition after the thymidine block release. (E) HU-induced recombinant as a function of the percentage of cells in the S phase at the beginning of the HU treatment. These values correspond to the progression in S phase (see Figure 3C).

Experiments with the inverted repeat substrate suggest that gene conversion (which is an important pathway with such a substrate) may arise. With direct repeats, gene conversion, without associated crossing over, should lead to a double HAT R /G418 R -resistant clone. Deletion events resulting from either gene conversion associated with crossing over or SSA lead to clones that are resistant to HAT R but sensitive to G418 (Figure 4C). After 24 h of treatment with aphidicolin, 50% of the recombinant clones were HAT R /G418 R , suggesting a high proportion of gene conversion events. To demonstrate the occurrence of gene conversion events, we studied the molecular structure of double HAT R /G418 R -resistant recombinants by Southern blotting. Figure 4C shows an example of six double HAT R / G418 R clones, demonstrating the existence of the two predicted classes of gene conversion events. Thus, inhib-ition of replication by aphidicolin results in a high proportion (at least 50%) of gene conversion stimulation.

Role of RAD51 in RIRI

The mammalian Rad51 protein is homologous to the yeast recombination protein ScRad51 [START_REF] Morita | A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes[END_REF][START_REF] Shinohara | Cloning of human, mouse and ®ssion yeast recombination genes homologous to RAD51 and recA[END_REF] and is involved in gene conversion associated with DSB repair [START_REF] Lambert | Characterization of mammalian RAD51 double strand break repair using non lethal dominant negative forms[END_REF]. Since replication inhibitors stimulate gene conversion, we tested whether RIRI was affected by RAD51.

The Rad51 protein has been described as re-localizing in nuclear foci after a genotoxic stress [START_REF] Haaf | Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes[END_REF]. These foci are generally interpreted as DNA repair foci. We analyzed the kinetic of Rad51 foci formation during treatment with hydroxyurea (Figure 5A andB). A moderate increase in foci formation was observed for The recombination substrates are depicted on the ®gure and have been described elsewhere [START_REF] Liskay | Homologous recombination between repeated chromosomal sequences in mouse cells[END_REF]. The cell line pJS3-10 contains direct repeat recombination substrates (on the left). The cell line pJS4-7-1 contains inverted repeat recombination substrates (on the right). (B) Induction of recombination between direct repeats (pJS3-10, on the left) or between inverted repeats (pJS4-7-1, on the right). The duration of treatment and the aphidicolin concentrations are indicated in the ®gure. (C) Example of Southern blotting of recombinant clones (probed with a TK sequence). On the left panel is the restriction map of the direct repeats substrate. After triple digestion (HindIII, BamHI, XhoI), a deletion event will produce a 6 kb (HindIII±BamHI) fragment. Gene conversion will produce either 5, 1.8 and 1 kb bands or 6, 1.3 and 0.5 kb bands; however, the 0.5 kb bands are usually hard to detect in these kinds of gels [START_REF] Liskay | Homologous recombination between repeated chromosomal sequences in mouse cells[END_REF]. On the right is one example of Southern blotting for gene conversion events. The numbers on the top correspond to different clones double-resistant HAT R (Tk + )/G418 R (Neo); nr: non-recombinant parental line (pJS3-10). The sizes of the restriction fragments are indicated on the left side of the panel. 6 h of treatment, then a strong accumulation of Rad51 foci was recorded for times of contact of 12 and 18 h. These foci do not correspond to S phase foci because the frequency of cells with Rad51 foci varies greatly, even though the percentage of S phase cells is comparable in each condition. In addition, the kinetics of Rad51 foci formation are superimposable on the kinetics of DSB accumulation. Moreover, the kinetics of DSB and foci accumulation are strongly consistent with the kinetics of recombination stimulation. Taken together, these results argue for an involvement of Rad51 in the cellular response to replication inhibition, but at a late stage.

We then tested genetically the involvement of RAD51 in the RIRI and whether this pathway was essential for cell viability. We have devised CHO-DRA10 derivative lines expressing either the mouse MmRAD51 cDNA or a chimera SMRAD51 corresponding to the fusion of the 55 N-terminal amino acids from the yeast ScRAD51 to MmRAD51. MmRAD51 stimulates recombination, whereas SMRAD51 inhibits spontaneous as well as DSBinduced (g-rays, I-SceI) recombination in CHO-DRA10 lines, without affecting cell viability [START_REF] Lambert | Analysis of intrachromosomal homologous recombination in mammalian cell, using tandem repeat sequences[END_REF]. Thus, we tested whether the expression of these different forms of RAD51 affects the RIRI.

The expression of the different RAD51 forms affected the two recombination phases of the RIRI differently (Figure 5C). RAD51 has no effect on the early phase but speci®cally affected the second phase of recombination stimulation. For replication block lower than 12 h no signi®cant differences were observed between the lines expressing the different RAD51 forms. When replication inhibition was prolonged for longer than 12 h, recombination was strongly increased. These times of blockage correspond to the accumulation of DSB (Figure 2) and of Rad51 foci (Figure 5B). The recombination increase was 4-to 5-fold stimulated by the expression of the wild-type MmRAD51, whilst expression of the dominant-negative SMRAD51 inhibited the RIRI 6-to 8-fold, for 24 h of replication inhibition (Figure 5C). Thus, RAD51 especially affects the second phase of the cell response to replication inhibition. This second phase corresponds to the accumulation of DSBs and to the actual stimulation of recombination. However, treatment with hydroxyurea led to the same toxicity in the different lines, showing that the expression of the different RAD51 forms does not affect cellular sensitivity to replication inhibition (Figure 5D). These results also show that it is possible to decrease the ef®ciency of this pathway compared with control cell lines, without affecting cell viability compared with control cell lines.

NHEJ is involved in resistance to replication inhibitors in the early response

The treatment with replication inhibitors was toxic in the early cell response, but induced DSB formation and stimulated homologous recombination in the late cell response. One hypothesis is that an alternative DSB repair pathway acts in the early response. NHEJ is a good candidate for such an early pathway [START_REF] Siede | The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination[END_REF][START_REF] Takata | Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells[END_REF][START_REF] Essers | Homologous and nonhomologous recombination differentially affect DNA damage repair in mice[END_REF]. We used two mutant cell lines affected in two different genes involved in NHEJ: xrs6 is mutated in ku86, and XR-1 is mutated in xrcc4. These mutant cell lines derive from different parental lines (CHO-K1 for xrs6 and 4364 for XR-1) and they are maintained in different media (see Materials and methods). Thus, they should be compared with their respective controls.

A signi®cantly higher sensitivity to hydroxyurea was observed in the NHEJ-defective cell lines (both in xrs6 and in XR-1) during the early response (Figure 6A andB). Differences in sensitivity were still measurable after 6, 12 and 18 h of treatment, but increasing the time of contact with hydroxyurea reduced these differences. Ku86 protein is involved in DNA ends recognition, whereas Xrcc4 protein is a cofactor of the ligase 4 and is thus involved in a late step of NHEJ. To verify that the sensitivity to hydroxyurea, observed in the early step, corresponds to an actual defect in NHEJ, we complemented the XR-1 line with the XRCC4 cDNA. In two independent complemented cell lines (namely X4C and X4V) the expression of the XRCC4 cDNA restored the sensitivity to the level of the control 4364 line (Figure 6C).

Taken together, these results suggest that following replication inhibition, DSBs are accumulated. NHEJ would take place ®rst, then when NHEJ became overwhelmed by DSB accumulation, homologous recombina-tion would act ef®ciently in the late stage. To test this interpretation, we measured the kinetics of Rad51 foci formation after treatment with hydroxyurea in the xrs6 and the XR-1 mutant cell lines compared with their respective control cell lines and with XR-1 deriving lines complemented with XRCC4 cDNA (Figure 7). The kinetics show that the maximum of foci accumulation was reached between 9 and 12 h after the beginning of treatment in the xrs6. The plateau of Rad51 foci accumulation was delayed for several hours in the corresponding CHO-K1 control line (Figure 7A). It could be argued that the difference in the kinetics could be due not to a defect in NHEJ but to an abnormal high level of Ku86 protein in the CHO-K1 cell line, resulting in competition on the DSB and in a delay of Rad51 foci formation. Thus, we tested the kinetics of Rad51 foci formation induced by hydroxyurea in the xrcc4-defective line. Similarly to the xrs6 line, the plateau level of Rad51 foci was reached between 9 and 12 h of treatment in the XR-1 line, whereas this plateau was delayed in the wild-type 4364 control line (Figure 7B). Interestingly, in two independent clones complemented with the XRCC4 cDNA, the kinetic of Rad51 foci formation became similar to that of the wild-type 4364 control cell line (Figure 7B). Thus, the functional NHEJ delays the occurrence of Rad51 foci induced by replication inhibitors.

After treatment with hydroxyurea, a defect in NHEJ, either due to Ku86 protein inactivation or XRCC4 mutation, results in an increased sensitivity in the early steps associated with an accelerated kinetic of Rad51 foci formation.

Discussion

In the present report, we show that replication inhibitors stimulate recombination of cells in the replicating S phase. Prolonged treatments with replication inhibitors result in accumulation of DSBs. The strategy used here gave us the opportunity to compare the kinetics of DSB accumulation, Rad51 foci formation, and stimulation of the homologous recombination process per se. We observed a striking correlation between these three kinetics. In addition, these data afford additional evidence on the putative role of Rad51 foci in DSB repair.

The extent of RIRI is directly correlated with progression in S phase. This result is consistent with the expression pattern of Rad51 protein in the S and G 2 phases [START_REF] Yamamoto | Cell cycle-dependent expression of the mouse Rad51 gene in proliferating cells[END_REF][START_REF] Chen | Cell cycle-dependent protein expression of mammalian homologs of yeast DNA double-strand break repair genes Rad51 and Rad52[END_REF][START_REF] Vispe | Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation[END_REF]. In addition, the combination of different inhibitors stimulates recombination as ef®ciently as treatment with only one inhibitor in a kind of `pharmacological epistasis'. These results show that the different inhibitors act on recombination via a common target, i.e. replication inhibition.

We used two categories of well characterized drugs known to inhibit either replicon initiation or elongation. In each category, the results are extremely homogeneous since the two drugs of each category provoke the same effect: the two elongation inhibitors strongly stimulate recombination whereas the two initiation inhibitors show moderate effects on recombination. These results are consistent with the fact that elongation inhibitors produce more DNA breaks than initiation inhibitors. The results are also consistent with the synchronization experiments showing that cells in late S phase, which should present more elongated replicons, are more pro®cient for the RIRI.

Replication inhibition stimulates recombination between both direct repeats and inverted repeat recombination substrates. Recombination between direct repeats uses gene conversion as well as RAD51-independent SSA pathways; inverted repeat recombination mainly uses the gene conversion pathway plus alternative non-SSA pathways (for review see [START_REF] Klein | Genetic control of intrachromosomal recombination[END_REF][START_REF] Rattray | Multiple pathways for homologous recombination in Saccharomyces cerevisiae[END_REF]. Since RIRI acts on both types of substrate, these results indicate that RIRI involves a common pathway, i.e. the gene conversion pathway. We con®rm molecularly by Southern blotting the occurrence of gene conversion events. Moreover, treatment with hydroxyurea leads to Rad51 foci formation with kinetics consistent with those of DSB accumulation and recombination stimulation. Finally, over-expression of the wild-type MmRAD51 stimulates RIRI, whereas expression of the trans-dominant-negative SMRAD51 impairs RIRI. Taken together, these results demonstrate the involvement of RAD51 in RIRI. RAD51 is an essential gene in vertebrates [START_REF] Tsuzuki | Targeted disruption of the Rad51 gene leads to lethality in embryonic mice[END_REF][START_REF] Sonoda | Rad51-de®cient vertebrate cells accumulate chromosomal breaks prior to cell death[END_REF]. In chicken DT40 transformed cell line, it has been suggested that the essential role of RAD51 is to repair spontaneous lesion during replication by using the sister chromatid [START_REF] Sonoda | Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells[END_REF]. Since RAD51 is also essential in mammalian cells, the hypothesis is commonly extrapolated from chicken to mammalian cells. Our results show that RAD51-dependent recombination is stimulated by replication arrest but in the late response to replication inhibitors. Moreover, the use of a trans-dominant-negative form of RAD51 has shown that it is possible to substantially decrease spontaneous as well as DSB-induced recombination without affecting viability of the hamster CHO cells [START_REF] Lambert | Characterization of mammalian RAD51 double strand break repair using non lethal dominant negative forms[END_REF]. In addition, we show here that the RAD51 trans-dominant-negative form also signi®cantly inhibits the RIRI without affecting cell viability. However, it can not be excluded that a low level of recombination could be suf®cient to ensure cell viability. Nevertheless, it is possible to substantially decrease RIRI without affecting cell viability.

The time-course of replication elongation inhibition shows two steps in the cell response. The ®rst step corresponds to the time of blockage between 0 and 12 h. During this period the toxicity is correlated with the time of contact with the drug, but homologous recombination is only moderately increased. Two different NHEJ-defective cell lines, affected in two different genes (ku86 or xrcc4), show an enhanced sensitivity to elongation inhibitors during this early step. These results suggest that NHEJ preferentially acts during this step, compared with homologous recombination. The second step corresponds to prolonged arrest (>12 h). During this step DSBs accumulate, the toxicity reaches a maximum and the sensitivity of the NHEJ-defective cells reaches that of the control line. Moreover, Rad51 foci accumulate during this phase. In addition, homologous recombination is strongly stimulated during this second step and this pathway is affected by the status of the exogenous RAD51 expressed. These results indicate that the second step corresponds to a RAD51-dependent pathway and that a huge amount of DSBs is required to stimulate homologous recombination. Remarkably, in the present experiments we observed a good correlation between the kinetics of DSB production, Rad51 foci formation and recombination. Taken together, these results suggest that NHEJ and RAD51 recombination act in a temporal sequence. One model could be proposed (Figure 8): (i) in the early phase, replication arrest leads to DSB formation. NHEJ and homologous recombination could compete for the DSBs [START_REF] Haber | DNA repair. Gatekeepers of recombination[END_REF][START_REF] Van Dyck | Binding of double-strand breaks in DNA by human Rad52 protein[END_REF], but NHEJ would be much more ef®cient. A defect in NHEJ results in an increased sensitivity to replication inhibitors. (ii) In the late phase, DSBs are accumulated and could saturate the NHEJ machinery, resulting in DSBs accessible to the homologous recombination machinery. The fact that stimulating or inhibiting the RAD51 recombination pathway does not modify the cell sensitivity agrees with the hypothesis of NHEJ saturation. Alternatively, NHEJ and homologous recombination would not compete, but their action would be regulated and coordinated by the cell in a temporal sequence: (1) NHEJ for most of the damage to ensure cell viability, then (2) homologous recombination for the residual damage. These models are supported by the fact that in the absence of a functional NHEJ pathway (defect of either Ku86 or Xrcc4), Rad51 foci accumulate faster compared with control cell lines or XR-1 lines complemented with the XRCC4 cDNA.

The processes described here may have various important biological consequences. The control of genome integrity is essential to prevent neoplastic development. The data presented here detail the genetic and molecular connections between two essential processes of genome maintenance in mammalian cells: replication and homologous recombination.

Materials and methods

DNA manipulations

All DNA manipulations were performed as described [START_REF] Sambrook | Molecular Cloning: A Laboratory Manual[END_REF]Ausubel et al., 1999).

Cells and Rad51 foci CHO-DRA10, mouse pJS3-10 and pJS4-7-1 cell lines were cultured at 37°C with 5% CO 2 in Dulbecco's modi®ed Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS). xrs6 (ku86 mutant cell line) and CHO-K1 (the corresponding wild-type cell line) were cultured in a-MEM supplemented with 10% FBS. XR-1 (xrcc4 mutant cell line) and 4364 (the corresponding wild type) were cultured in DMEM without pyruvate sodium. The Rad51 foci were analyzed as described [START_REF] Haaf | Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes[END_REF] using an anti-Rad51 antibody (Oncogene research).

Measurement of recombination

Strategies and cell lines used to measure recombination. The pJS3-10 and pJS4.7.1 lines are sensitive to the HAT selective medium. Recombinant TK + clones were selected in HAT medium (100 mM hypoxanthine, 2 mM aminopterin, 15 mM thymidine) as described [START_REF] Liskay | Homologous recombination between repeated chromosomal sequences in mouse cells[END_REF]. CHO-DRA10 and lines Rm2, Rm4, F1-4.1, F1-4.2 derived from CHO-K1, contain a recombination substrate [START_REF] Liang | Homologydirected repair is a major double-strand break repair pathway in mammalian cells[END_REF] and express different Rad51 forms [START_REF] Lambert | Characterization of mammalian RAD51 double strand break repair using non lethal dominant negative forms[END_REF]. NEO R recombinants were selected with 500 mg/ml G418. The frequency of recombination is given by the ratio of the number of HAT-resistant clones or G418 (NEO R )-resistant clones to the total number of viable cells.

Recombination frequency after replication inhibitors. Cells were incubated at the concentration and for the time indicated, and were then trypsinized and divided into two fractions. The ®rst fraction was used to calculate the viability by measuring the plating ef®ciency. The second fraction was plated under HAT or G418 selection to measure the frequency of TK + or NEO R clones. The recombination frequency was estimated by the ratio: number of TK + or NEO R clones to the total number of surviving clones.

COMET assay

The protocol for the alkaline COMET assay was adapted from that initially reported [START_REF] Singh | A simple technique for quantitation of low levels of DNA damage in individual cells[END_REF]. Cells were suspended in Ca 2+ -and Mg 2+ -free phosphate-buffered saline (PBS), then mixed with lowmelting-point agarose (Type VII; Sigma) maintained at 37°C, in order to obtain a ®nal concentration of 0.5% agarose and ~5 Q 10 5 cells/ml. One hundred and ®fty microlitres of this cell suspension were loaded on a non-frosted slide pre-coated with 0.5% air-dried agarose. After 5 min over ice, the slides were placed in freshly prepared lysis buffer for 1 h 30 min at 4°C [2.5 M NaCl, 100 mM Na 2 EDTA, 10 mM Tris pH 10, 1% sodium sarcosinate, 1% Triton X-100, 1% dimethylsulfoxide (DMSO)]. Slides were then transferred to a horizontal electrophoresis unit ®lled with fresh alkaline buffer (300 mM NaOH, 1 mM Na 2 EDTA pH 13) at room temperature. The slides were left for 25 min to allow the DNA to unwind and then electrophoresis was conducted for 25 min at 21 V and 300 mA. After electrophoresis, the slides were drained, rinsed twice for 5 min with 0.4 mM Tris pH 7.5 and once with double-distilled water. The slides were dried for 30 min at 40°C, dehydrated in a 100% ethanol bath, dried thoroughly at 37°C and stored at room temperature until the analysis. Before analysis, the slides were re-hydrated and stained for 30 min in a 5 mg/ml propidium iodide solution and covered with a coverslip for immediate analysis. A total of 800 cells on three slides were observed at 200Q magni®cation using an epi¯uorescence microscope (LEICA DMLB) equipped with an excitation ®lter of 515±560 nm, a 50 W mercury lamp, and a barrier ®lter at 590 nm. Comets were captured and analyzed with the fully automated system Morphostar Comet (IMSTAR s.a.). Tail moment [START_REF] Olive | Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the `comet' assay[END_REF] was measured.

Pulsed-®eld gel electrophoresis

Cells were prepared for PFGE as described [START_REF] Gunderson | Pulsed-®eld electrophoresis of megabase-sized DNA[END_REF][START_REF] Dhermain | Induction of double-strand breaks in Chinese hamster ovary cells at two different dose rates of g-irradiation[END_REF]. For PFGE, we used a CHEF Mapper Ô with a cooling Module (Mini Chiller Model 1000) (Bio-Rad Hercules, CA 94547) containing permanently circulating 1Q TAE buffer [4.84 g Trisbase (Sigma Chemical Co., St Louis, MO), 1.14 ml glacial acetic acid and 2 ml 0.5 M EDTA in 1 l deionized water]. We included molecular weight markers of chromosomal DNA of Hansenula wingei and Schizosaccharomyces pombe (Bio-Rad) in the PFGE agarose gel. CHEF electrophoresis was continued for a total migration time of 74 h at 2 V/cm with an angle of reorientation of T53°(106°) and a pulse time of 35 min. The temperature was maintained at 14°C by a minichiller (Bio-Rad).

Flow cytometry analysis

For each point, 10 6 cells were plated in DMEM and incubated for 48 h at 37°C. Cells were then incubated with replication inhibitors under the indicated conditions, in DMEM + 10% FCS at 37°C. Cells were then trypsinized, collected by centrifugation (5 min at 2000 g), re-suspended in 500 ml of PBS and ®xed by adding 1.5 ml of cold ethanol. The DNA content was estimated by propidium iodide ¯uorescence and DNA ¯ow cytometry (Becton FACScalibur).

Fig. 1 .

 1 Fig. 1. Arrest of cell cycle progression by replication inhibitors, measured by ¯ow cytometry analysis. The cell cycle phases are determined by the DNA content measured by ¯ow cytometry [5-bromo-2-deoxyuridine (BrdU) incorporation being inhibited by the drug]. (A) Effect of different times of contact with two different concentrations of aphidicolin. The aphidicolin concentrations are indicated on the left and the different times of contact are indicated at the top of the ®gure. (B) Cell cycle distribution after 24 h of treatment with the different drugs. Concentrations were: 200 mM mimosine; 1 mM hydroxyurea; 20 mM ciclopirox olamine; 6 mM aphidicolin.

Fig. 2 .

 2 Fig. 2. DNA breaks induced by replication inhibitors. (A) The COMET assay measures single-and double-strand breaks. The amount of breaks is estimated by the tail moment: fraction of the DNA in the tail Q distance between the mass center of the head and the mass center of the tail. The histograms correspond to the tail moments after 24 h of treatment with the replication inhibitors (indicated on the tops of the histograms). The bars correspond to the number of cells with the value of tail moment. The amount of breaks is correlated with the tail moment values. The curves (gray squares) indicate the cumulative percentage of cells. (B) PFGE detects the DSBs. The different times of contact with hydroxyurea are indicated on the top of the gel.

Fig. 3 .

 3 Fig. 3. Induction of recombination by elongation inhibitors in S phase. (A)The cell line used is hamster CHO-DRA10 containing the recombination substrate drawn and described elsewhere[START_REF] Liang | Homologydirected repair is a major double-strand break repair pathway in mammalian cells[END_REF]. This substrate contains a direct repeat of two inactive neomycin-resistant (NEO) genes; parental cells are sensitive to G418. Recombination restores a functional NEO gene; recombinants are resistant to G418. The frequency of spontaneous recombination is 6 Q 10 ±7 . (B) Induced recombinant corresponds to the number of G418-resistant clones for 10 7 viable treated cells subtracted from the number of G418-resistant clones in 10 7 non-treated viable cells. Cells were treated for 24 h with the drugs or the combinations indicated below the bars. Concentrations were: 200 mM mimosine; 1 mM hydroxyurea; 20 mM ciclopirox olamine; 0.6 mM aphidicolin. (C) Synchronization (indicated as `synchro' in the ®gure) by double thymidine block. The DNA content is measured by FACS at different times after the release of the second thymidine block. H+0h: 0 h after the thymidine block release; H+1h: 1 h after the thymidine block release; H+2h: 2 h after the thymidine block release; H+3h: 3 h after the thymidine block release. The percentage of cells in the S phase is indicated on the histogram. (D) Induced recombinant under the different conditions. Synchro: synchronization by double thymidine block; HU: treatment with hydroxyurea for 24 h. H+ 0, 1, 2 or 3 h indicates the moment of hydroxyurea addition after the thymidine block release. (E) HU-induced recombinant as a function of the percentage of cells in the S phase at the beginning of the HU treatment. These values correspond to the progression in S phase (see Figure3C).

Fig. 4 .

 4 Fig. 4. Treatment with aphidicolin induces recombination as a function of the time of contact with the drug. (A) The cell lines derive from mouse L-cells.The recombination substrates are depicted on the ®gure and have been described elsewhere[START_REF] Liskay | Homologous recombination between repeated chromosomal sequences in mouse cells[END_REF]. The cell line pJS3-10 contains direct repeat recombination substrates (on the left). The cell line pJS4-7-1 contains inverted repeat recombination substrates (on the right). (B) Induction of recombination between direct repeats (pJS3-10, on the left) or between inverted repeats (pJS4-7-1, on the right). The duration of treatment and the aphidicolin concentrations are indicated in the ®gure. (C) Example of Southern blotting of recombinant clones (probed with a TK sequence). On the left panel is the restriction map of the direct repeats substrate. After triple digestion (HindIII, BamHI, XhoI), a deletion event will produce a 6 kb (HindIII±BamHI) fragment. Gene conversion will produce either 5, 1.8 and 1 kb bands or 6, 1.3 and 0.5 kb bands; however, the 0.5 kb bands are usually hard to detect in these kinds of gels[START_REF] Liskay | Homologous recombination between repeated chromosomal sequences in mouse cells[END_REF]. On the right is one example of Southern blotting for gene conversion events. The numbers on the top correspond to different clones double-resistant HAT R (Tk + )/G418 R (Neo); nr: non-recombinant parental line (pJS3-10). The sizes of the restriction fragments are indicated on the left side of the panel.

Fig. 5 .

 5 Fig. 5. Role of RAD51 in the induction of recombination by hydroxyurea. (A) and (B) Rad51 foci accumulation during hydroxyurea treatment. (A) Example of Rad51 foci. (B) Percentage of cells with Rad51 foci as a function of the time of contact (h) with hydroxyurea. The percentage of cells in the S phase for each time of contact with hydroxyurea is indicated in the ®gure. (C) and (D) Effect of the status of RAD51 on the RIRI. (C) Recombination induction as a function of the duration of treatment. (D) Survival (cloning ef®ciency) as a function of the duration of treatment. The duration of treatment is indicated in the ®gure. The names of the cell lines are indicated in the ®gure. The values correspond to the mean of three independent experiments. Error bars are omitted to avoid overloading the ®gure since the percentages of survival are not signi®cantly different. CHO-DRA10 is the parental cell line; C2 is CHO-DRA10 transfected with the empty vector. These two lines are control lines. F1.4.1 and F1.4.2 are two independent lines expressing the RAD51 dominant-negative form (hypo-rec). Rm2 and Rm4 are two independent lines over-expressing MmRAD51 (hyper-rec).

Fig. 6 .

 6 Fig. 6. Sensitivity of the ku86 ± mutant xrs6 line (A) and of the xrcc4 ± mutant XR-1 line (B), or the XR-1 line complemented with the XRCC4 cDNA (C), as a function of the duration of treatment with hydroxyurea. The names and phenotypes of the cell lines are indicated in the ®gure. X4C and X4V are two independent XR-1 deriving clones, complemented with the XRCC4 cDNA.

Fig. 7 .

 7 Fig. 7. Kinetics of Rad51 foci accumulation in the ku86 ± xrs6 line (A) or the xrcc4 ± XR-1 line and its derivatives (B). The values indicate the percentage of cells with Rad51 foci, as a function of the time of contact with hydroxyurea. At least 300 cells were counted per point. The names and phenotypes of the cell lines are indicated in the ®gure. X4C and X4V are two independent XR-1 deriving clones, complemented with the XRCC4 cDNA.

Fig. 8 .

 8 Fig. 8. NHEJ and homologous recombination on DSB induced by replication inhibitors. Replication arrest creates DSBs. In the early response, DSBs are mainly processed by NHEJ and homologous recombination is marginally involved. A defect in NHEJ leads to hypersensitivity to replication inhibitors. Prolonged arrest (late response) leads to the accumulation of DSBs. NHEJ would be overwhelmed and homologous recombination can act ef®ciently.
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