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Abstract. We introduce an iterative optimization scheme for convex objectives
consisting of a linear loss and a non-separable penalty, based on the expectation-
consistent approximation and the vector approximate message-passing (VAMP) algorithm.
Specifically, the penalties we approach are convex on a linear transformation of the variable
to be determined, a notable example being total variation (TV). We describe the connection
between message-passing algorithms – typically used for approximate inference – and
proximal methods for optimization, and show that our scheme is, as VAMP, similar in nature
to the Peaceman-Rachford splitting, with the important difference that stepsizes are set
adaptively. Finally, we benchmark the performance of our VAMP-like iteration in problems
where TV penalties are useful, namely classification in task fMRI and reconstruction in
tomography, and show faster convergence than that of state-of-the-art approaches such as
FISTA and ADMM in most settings.

1. Introduction

Proximal algorithms such as FISTA [1] and ADMM [2, 3] form these days a large part of
the standard convex optimization toolbox, mostly due to the fact that they provide different
sorts of theoretical guarantees, such as the convergence to a global minimum of the problem.
However, their use is not so interesting in some cases. In particular, for non-separable
penalties such as total variation (TV), FISTA requires an inner loop for evaluating the
proximal operator, which takes longer and longer to run as the outer loop iterations go
by. While variable-splitting algorithms such as ADMM provide a way around this, they are
typically very sensitive to the choice of stepsize, and determining an optimal stepsize remains
an open problem.

An alternative comes from approximate message-passing (AMP) algorithms [4, 5, 6],
extensions to the belief propagation algorithm [7] that are capable of dealing with high-
dimensional inference problems. They have shown remarkable success in applications
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to compressed sensing, denoising and sparse regression [8, 9, 10, 11], but despite that
remain disfavored compared to classic optimization approaches, most prominently due to
convergence issues [12, 13]. The recently proposed vector approximate message-passing
(VAMP) algorithm [14] offers a promising, more robust alternative to AMP. For a given class
of statistical models, notably generalized linear models (GLMs), different formulations of the
VAMP algorithm are capable of approximating both the maximum a posteriori (MAP) and
minimum mean-squared error (MMSE) estimates. Moreover, these estimates are conjectured
to be asymptotically Bayes-optimal for certain random matrices, and proven to be in specific
cases [15, 16, 17].

Here, we are interested in the evaluation of the MAP estimate, which is also the solution
to a given optimization problem. In particular, we would like to determine whether VAMP-
like algorithms can provide a fast alternative to classic optimization approaches in solving a
given class of convex optimization problems. VAMP has been typically considered for the
minimization of functions consisting of a quadratic loss and a separable penalty, a setting
in which coordinate descent algorithms are usually much faster than the alternatives, as
discussed in Section 2. We thus look at the more interesting (and challenging) case of
penalties that are non-separable—more specifically, separable on disjoint subsets of a linear
transformation of the variable being optimized, a notable example being total variation
(TV) [18, 19]. For such penalties, proximal algorithms [20] such as FISTA and ADMM are
considered state-of-the-art.

While VAMP has already been combined with non-separable denoisers [21, 22], there
have been no attempts so far to modify the algorithm to better fit specific types of non-
separable penalties. Moreover, evidence that VAMP has a good performance in real-world
applications is still limited. The current work addresses these two issues. In Section 3, we
rederive VAMP for a specific class of non-separable penalties, by considering the expectation-
consistent (EC) approximation [23] not on the distribution of the variable of interest, but
on that of a linear transform. Moreover, in Section 4, experiments with total variation
penalties are performed on benchmark datasets, revealing that the adaptation we propose is
competitive with state-of-the-art algorithms.

2. Motivation and background

2.1. Approximate message-passing

In what follows, we consider a typical regression problem and denote by y ∈ χn the response
vector (which can represent e.g. labels, χ = {0, 1}, or continuous value χ = R) and by
A ∈ Rn×p the feature matrix. Then, given a regularization parameter λ ∈ R and a convex
function f , we look at solving

x̂ = arg min
x

1
2‖y −Ax‖2

2 + λ
∑
j

f(xj), (1)
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The approximate message-passing (AMP) algorithm in [4] aims at solving (1) by means of
the following iteration

xt+1 = ηλσt(xt + ATzt), (2)

zt = y −Axt + 1
α

zt−1
〈
∇ηλσt(xt + ATzt)

〉
, (3)

where α = n/p, σt is an empirical estimate on the variance of x, 〈a〉 = 1
na

∑na
i=1 ai is the

empirical average over the elements of a ∈ Rna , and

ηλσt(v) = proxλσtf (v) = arg min
x

{
λσtf(x) + 1

2(x− v)2
}
, (4)

is a function applied elementwise. In practice, the variance estimate is updated using [24]
σt+1 = 1 + σt〈∇ηλσt〉/α.

AMP’s form is close to that of a proximal gradient descent [20], being in fact very similar
to the iterative soft thresholding algorithm (ISTA), with, however, an additional term. The
extra term in (3), known as Onsager reaction term, comes from a second order correction
derived using statistical physics techniques [25, 26], and has been shown to improve the
iteration in synthetic data experiments. An instance of this can be seen in the example of
subsection 2.1.1.

An important assumption is made in deriving AMP: that the entries of A are i.i.d., have
zero mean, and variance that scales as 1/n. The iteration typically fails to converge whenever
this assumption is not met [12, 13]. A series of works have tried to improve the convergence
properties of AMP by means of heuristic modifications [27, 28], typically resulting in slower
algorithms that provide few theoretical guarantees.

A promising alternative is the vector AMP (VAMP) algorithm, recently introduced by
[14, 29] as a more robust message-passing scheme. It is shown to converge, in the large
n limit, for a wider class of matrices A – namely that of rotationally-invariant random
matrices. As AMP, VAMP provides an iteration which upon convergence returns a solution
to (1); it uses, however, a different framework than AMP, known as expectation-consistent
(EC) approximation [23], which is briefly described in Appendix A. For problem (1), the
VAMP iteration reads

xt = (ATA + ρtIn)−1(ATy + ut), zt = ηλσtx/(1−σtxρt)

(
xt − σtxut

1− σtxρt

)
, (5)

ut+1 = ut + (zt/σtz − xt/σtx), ρt+1 = ρt + (1/σtz − 1/σtx). (6)

While AMP is close to ISTA, the iteration above resembles that of another popular
optimization algorithm, the alternating directions method of multipliers (ADMM) [2]. This
connection is discussed in subsection 2.2.
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Figure 1. Comparison between AMP and VAMP for sparse regression on synthetic data,
with n = 600, p = 2000 and ρ = 0.1, σ = 10−5, λ = 1. Objectives are relative to that of
scikit-learn’s coordinate descent [30], which runs in a much shorter time (around 5 · 10−4s).
Left: for Gaussian i.i.d. matrices, VAMP performs worse than AMP, both in terms of
convergence rate and preprocessing time. Right: for a matrix which is not Gaussian i.i.d.,
but instead the product of two Gaussian i.i.d. matrices A = UV T , AMP quickly diverges,
as shown in the inset, while VAMP keeps providing a good performance. In this example,
both U and V have r = 600 columns.

The σtx and σtz are estimates of the variance of x and of the split variable z, and are
obtained from

σtx = 1
n

Tr(ATA + ρtIn)−1, σtz = σtx
1− σtxρt

〈
∇ηλσtx/(1−σtxρt)

(
xt − σtxut

1− σtxρt

)〉
. (7)

Iterations (5) and (7) can be seen as evaluating the means and variances of two distinct
distributions, commonly referred to as tilted distributions in the context of EC. By forcing
these distributions to concentrate around their modes, the means become proximal operators,
whereas the variances come from the curvature of Moreau envelopes of the loss and the
penalty. This is detailed in Appendix A.

The matrix inversion in (5) and (7) can be quite costly; however, the iteration can be
modified to use the SVD decomposition of A = UΣV [14], in which case σtx = 1

n

∑n
i=1

1
Σ2
ii+ρt

.
In particular, if n � p, the Woodbury formula can be combined with the SVD to provide
an efficient iteration, which is used in our experiments (see Appendix C for more details).

Unless otherwise mentioned, we shall always assume that x0, z0 and u0 are initialized
to all-zero vectors, while ρ0 = 1 and σ0

x = σ0
z = 1/2.

2.1.1. Example: `1 regularization on synthetic data In order to compare the AMP iteration
(2)-(3) to the VAMP one, (5)-(6), we perform a simple experiment on synthetic sparse
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data. We first sample x from a Bernoulli-Gaussian distribution, PX(x) = ∏
j[ρN (xj; 0, 1) +

(1 − ρ) δ(xj)], then generate a matrix A by doing Aij ∼ N (Aij; 0, 1/n), to finally obtain
measurements as y ∼ N (y; Ax, σ2In).

We try to recover x by using a `1 penalty, f(xj) = |xj|. In that case‡, ηλσt(x) =(
1− λσt

|x|

)
+
x, also known as the soft thresholding operator. In Figure 1 (left), we study how

fast each of the schemes performs this task. We look at three different schemes: iterative
soft thresholding (ISTA) [31], the original AMP iteration (2)-(3), and the VAMP iteration
(5)-(7). Compared to AMP and ISTA, VAMP has a larger preprocessing time, since it relies
on the eigendecomposition of AAT , as detailed in Appendix C. Moreover, in this artificial
setting, its convergence rate is smaller than that of AMP.

Yet, such Gaussian matrices are precisely those assumed in the derivation of AMP. If
a different matrix is used, say A = UV T with both U and V Gaussian, then the AMP
iteration quickly diverges, whereas VAMP continues to work (see Figure 1, right). One
verifies in practice that VAMP converges for a broad class of matrices, and is actually proven
to converge, in the large n limit, for right orthogonally-invariant random matrices [14]. This
motivates us to perform more detailed experiments with VAMP, as well as to adapt it to our
needs.

Also notably, all schemes used in Figure 1 are much slower than coordinate descent,
which is currently considered the state-of-the-art for optimization with separable penalties.
For this reason, we shall consider the more interesting case of non-separable penalties in
Section 3.

2.2. Variable splitting methods

We now turn to a class of optimization algorithms known as variable splitting methods. The
main very basic idea is to minimize a sum of two functions such as (1) by writing each of
them as a function of a different variable, and then enforcing these variables to assume the
same value. This is done by means of the following augmented Lagrangian

L(x, z,u) = 1
2‖y −Ax‖2

2 + λ
∑
j

f(zj)−uT (x− z) + ρ

2‖x− z‖2
2︸ ︷︷ ︸

ρ
2 ‖x−z−u

ρ
‖2

2−
1

2ρ‖u‖
2
2

, (8)

One should minimize the expression above with respect to x and z, and maximize its dual
L∗ = minx,z L(x, z,u) with respect to the Lagrange multiplier u, see e.g. [32, 33]. The
alternating direction method of multipliers (ADMM) [2, 3] accomplishes this by means of

‡ We denote (·)+ = max(·, 0).
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Figure 2. Comparison between VAMP and PRS algorithms for sparse regression on
synthetic data, with n = 1200, p = 2000 and ρ = 0.2, σ2 = 10−5, λ = 1. Left: PRS behavior
is highly dependent on the value chosen for the stepsize ρ, whereas for VAMP no parameter
needs to be set. Center: effective stepsize (top) and variance estimates (bottom) provided
by VAMP. Right: difference between PRS and VAMP objectives after 250 iterations.

the following iteration

xt = arg min
x

L(x, zt,ut) = proxL/ρ (zt + ut/ρ), (9)

zt = arg min
z

L(xt, z,ut) = proxR/ρ (xt − ut/ρ), (10)

ut+1 = ut + ρ(zt − xt). (11)

where we have defined L(x) = 1
2‖y −Ax‖2

2 and R(z) = λ
∑
j f(zj). Equations (9) and (10)

perform two sequential gradient descent steps in L, first for x then z, whereas equation (11)
is effectively a gradient ascent step in L∗(u), with stepsize set so as to satisfy the optimality
conditions ∇x,zL = 0.

The strategy employed by ADMM is empirically known as Douglas-Rachford splitting.
Different strategies, with the same fixed points but slightly different updates, can be
employed. For instance, the Peaceman-Rachford splitting (PRS) consists in the following
equations [34, 35]

xt = proxL/ρ (ut/ρ), (12)
zt = proxR/ρ (2xt − ut/ρ), (13)
ut+1 = ut + 2ρ(zt − xt). (14)

While PRS is known to often lead to lower objectives faster than ADMM [34, 36], it is
provably convergent under stronger assumptions, and in practice the objective often does
not decrease monotonically.
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Writing the proximal operators explicitly in the PRS iteration (12) and (13) yields

xt = (ATA + ρIn)−1(ATy + ut), zt = ηλ/ρ(2xt − ut/ρ). (15)

Interestingly, setting σtx = σtz = 1
2ρ in the VAMP iteration (5)-(6) leads to the PRS iteration

above; VAMP can thus be seen as a PRS variant where the stepsize is set adaptively. This
remark has been first made in [37].

We thus see that VAMP is more robust than AMP, converging in situations where AMP
does not, as shown in Figure 1. It also has a significant advantage over variable-splitting
methods, since no stepsize needs to be set. While neither VAMP nor variable-splitting
methods are competitive with the state-of-the-art in the particular setting of separable
penalties, we now turn to non-sperable penalties, which are more challenging regarding
efficiency and convergence control [38], yet very important in practical applications.

3. Non-separable penalties

Consider a penalty which is separable not on x but on disjoint subsets of a linear
transformation Kx, with K ∈ Rr×n

x̂ = arg min
x

1
2‖y −Ax‖2

2 + λ
r∑

k=1
f
(
(Kx)k

)
, (16)

for any convex function f . Note that k does not necessarily index a single component of Kx,
but more generally a subset of components; moreover, each component belongs to a single
subset. An example is the so-called total variation (TV) penalty [18, 19], used to enforce
spatial regularity – typically flat regions separated by sharp transitions

RTV(x) =
∑
ij

√
(xi,j − xi,j−1)2 + (xi,j − xi−1,j)2, (17)

where we have indexed the vector x by two components i, j such that xk = xi,j for i = bk/Lc
and j = k mod L. By defining a gradient operator ∇

(∇x)k =
(
xi,j+1 − xi,j
xi+1,j − xi,j

)
, (18)

the 2D TV penalty can be conveniently written as RTV = ∑2n
k=1 ‖(∇x)k‖2 ≡ ‖∇x‖2,1.

Different boundary conditions can be used; in our experiments, we assume periodic boundary
conditions.

While we define it above for two dimensions, the TV operator is easily generalizated to
lattices in three or more dimensions. Notice moreover that we are dealing with the isotropic
or rotation-invariant TV operator, instead of the anisotropic one ‖∇x‖1,1.

7



Variable splitting algorithms can be easily adapted to that case, by using a split variable
z = Kx; the augmented Lagrangian (8) becomes

L(x, z,u) = 1
2‖y −Ax‖2

2 + λ
r∑

k=1
f(zk)− uT (Kx− z) + ρ

2‖Kx− z‖2
2. (19)

and the PRS iteration is now written

xt = (ATA + ρKTK)−1(ATy + KTut), (20)
zt = ηλ/ρ(2Kxt − ut/ρ), (21)
ut+1 = ut + 2ρ(zt −Kxt). (22)

In particular for TV, K = ∇ and the η function is given by the group soft thresholding
operator

ηλ/ρ(v) =
(

1− λ/ρ

‖v‖2

)
+

v. (23)

3.1. VAMP for non-separable penalties

The following VAMP-like iteration, which we derive in Appendix B, can be used in order to
solve problem 16

xt = (ATA + ρtKTK)−1(ATy + KTut), σtx = 1
n

Tr
[
K(ATA + ρtKTK)−1KT

]
, (24)

zt = η λσtx
1−σtxρt

(
Kxt − σtxut

1− σtxρt

)
, σtz = σtx

1− σtxρt

〈
∇η λσtx

1−σtxρt

(
Kxt − σtxut

1− σtxρt

)〉
,

(25)
ut+1 = ut + (zt/σtz −Kxt/σtx), ρt+1 = ρt + (1/σtz − 1/σtx). (26)

Upon convergence, it is verified that z = Kx and σx = σz. Once again, if the variances
remain fixed throughout the iteration, σtx = σtz = 1

2ρ , the PRS iteration (20)-(22) is recovered.
Moreover, the Woodbury formula can also be applied, leading to a faster iteration whenever
n � p. The iteration is particularly fast for the TV matrix K = ∇, for which KTK = ∆
is a circulant matrix and thus diagonal in the Fourier basis, see Appendix C.1.

While we consider convex f functions, we never use this assumption explicitly. In other
words, the iteration above could, in principle, also be used when f is non-convex.

3.2. Enforcing contractivity

A well-known issue with PRS is that, differently from ADMM, the iteration mapping might
not be contractive [39, 36], which might lead to lack of convergence. The iteration we
propose, (24)-(26), suffers from the same issue. A way of enforcing contractivity, done for
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PRS in [36], is by including a underdetermined relaxation factor 0 < γ < 1 in the update of
the Lagrange multiplier u, that is

ut+1 = ut + γ(zt/σtz −Kxt/σtx). (27)

For consistency, we also include the same parameter in the update of the stepsize ρ

ρt+1 = ρt + γ(1/σtz − 1/σtx). (28)

While this modification improves the convergence properties of the algorithm, it also
makes us need to specify an extra parameter γ. This parameter could in principle be set
adaptively, as it has been done for other AMP algorithms [27]. In our experiments, however,
we leave this parameter fixed at a small enough value chosen arbitrarily, γ = 0.6.

4. Numerical experiments

In this section we solve problem (16) for a 2D total variation penalty, K = ∇, and different
choices of {y,A}. We compare the iteration we propose, (24)-(26), to three other standard
algorithms: ADMM with an adaptive stepsize [40]; a FISTA [1] adaptation known as
FAASTA [41], as implemented in§ the Nilearn package [42]; and the Peaceman-Rachford
splitting, recovered by leaving variances fixed in our own implementation.

We work in the high-dimensional regime with n� p and thus use the numerical tricks
described in Appendix C, combining the Woodbury formula to the eigendecompositions of
AAT and KTK to speed up the evaluation of the proximal step in VAMP, PRS and ADMM.
In all experiments, we set the relaxation factor to γ = 0.6 in VAMP, and to γ = 0.95 in
PRS.

All experiments have been performed on a machine with a 12-core Intel i7-8700K
processor and 32GB of RAM, using Numpy and a multi-CPU implementation of BLAS
(OpenBLAS).

4.1. Classification in task fMRI

In our first numerical experiment, we approach a multi-class classification problem, namely a
task fMRI one: each row of A ∈ Rn×p is given by an fMRI image, while the entries of y ∈ Rn

tell us what task was being performed by the subject at the time of acquisition. We use the
Haxby dataset [43], which is commonly used for benchmarks and contains n = 1452 samples
of p = 40× 64× 64 = 163840 features each. The classes refer to what image the subject was
observing at the time of acquisition. We perform one vs. all classification for three of these
classes: “face”, “house” and “chair”, each associated to 108 of the 1452 samples.

§ We have performed a small modification to this implementation, so as to allow periodic boundary
conditions.
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Figure 3. Left: weight map obtained by VAMP in classifying “face” vs. all. Intensities
are thresholded at 0.002. Right: objective in classifying “face” vs. all at different numbers
of iterations, for different choices of relaxation factor. If the relaxation factor is set small
enough, there is no noticeable difference in performance.

While p = 163840, many of the voxels are zero-valued and thus a mask can be applied,
leading to a new feature matrix with only 39912 columns. One can pass this smaller matrix
to FISTA instead of the full one, as it is capable of dealing with such masks. However, the
remaining methods require the full matrix, at least in the way we have implemented them.

Two of the parameters are fixed: the regularization λ = 0.1 and the relaxation γ, which
is set to 0.6 for VAMP and to 0.95 for PRS. In this setting, VAMP achieves smaller values of
the objective faster than all other methods and for all the three classes considered, as shown
in Figure 4. The weight map obtained in “face” classification is displayed in Figure 3.

In Figure 3 (right), we study how the performance of our scheme changes in this
experiment as a function of γ. We can see the performance does not change considerably as
long as γ is set small enough. While this has been often observed by us, further experiments
must be performed to ensure such behavior is indeed recurrent. If that is the case, it should
be straightforward to devise an adaptive scheme for γ.

4.2. Reconstruction in tomography

A second experiment consists in reconstructing a two-dimensional image from a number
of tomographic projections. We use a Shepp-Logan phantom of dimensions 200x200, so
that p = 40000, and perform the reconstruction for 10 (n = 2000), 20 (n = 4000) and 50
(n = 10000) equally spaced projections. Moreover, we add a 1% SNR noise to the projections.
In other words, the tomographic projections are generated as y = Ax +N (0, σ2), where A

is the two-dimensional Radon transform and σ2 = 0.01 · ‖Ax‖2
2/n. In our experiments, we

explicitly generate the Radon matrix, that is, we do not use its operator form.
The regularization parameter is set to λ = 1.0, and the relaxation parameter to

γ = 0.6. While for the reconstruction using 20 and 50 projections VAMP is faster than
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Figure 4. Classification in task fMRI using the Haxby dataset, n = 1452 and p = 136840.
Since there are multiple classes, we perform one vs. all classification for three specific
ones: “face”, “house” and “chair”. All schemes seek to solve the same convex optimization
problem (16) with a TV penalty, K = ∇, and λ = 0.1. For all three classes considered,
VAMP achieves a lower objective faster than all other schemes. VAMP, AADMM and PR
have a late start due to preprocessing time, during which the eigendecomposition of AT A
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Figure 5. Reconstruction of a Sheep-Logan phantom of size 200x200 (p = 40000) using 10
(left), 20 (center) and 50 (right) equally spaced noisy projections (n = 2000, 4000 and 10000,
respectively). A TV penalty is used with λ = 1.0. For 10 and 20 projections, VAMP and
AADMM are competitive with each other and both faster than FISTA; for 50 projections,
VAMP seems to be considerably faster. Meanwhile, PRS performance is highly dependent
on the choice of the stepsize ρ. Note that preprocessing time is not discounted for any
of the approaches, and that a larger number of projections (i.e. larger n) incurs bigger
preprocessing times.
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original FISTA adap. ADMM VAMP

Figure 6. Estimates obtained by the different approaches 10 seconds after preprocessing is
finished, using 50 noisy projections.

the remaining algorithms, for 10 projections it is beaten by adaptive-step ADMM, being,
however, still competitive with FISTA. Finally, we show the performance of Peaceman-
Rachford for different values of stepsize ρ; while it might eventually perform better than all
the other algorithms, its behaviour is highly dependant on the choice of stepsize.

5. Conclusion

We have proposed a VAMP-like iteration for optimizing functions consisting of linear losses
and a given class of non-separable penalties. As the usual VAMP iteration, it can be
seen as a Peaceman-Rachford splitting with adaptive stepsizes. Initial experiments reveal
that the resulting algorithm is competitive with, and faster than other typically employed
optimization schemes, namely ADMM and FISTA. While further experiments should be
performed in order to assess the superiority of the algorithm in more general settings, we
believe that the results displayed demonstrate its potential for real-world applications.

Our analysis also elucidates the connection between message-passing algorithms and
other known optimization schemes, expanding on the remark of [37]. In particular, the
Peaceman-Rachford splitting is recovered if variances/stepsizes are kept fixed. Further
exploring this connection should lead to improved inference and optimization algorithms,
and hopefully also to convergence proofs, which are typically difficult to obtain for message-
passing algorithms.

There are other EC/VAMP adaptations able to deal with constraints of the form
z = Kx, but these are typically used on the loss, not the penalty [44, 45]. They could
be integrated into our framework to study losses other than quadratic. An alternative would
be using these adaptations on the penalty instead, by artificially introducing new effective
samples that mimic the penalty as an additional loss term; this has been explored for AMP
in [46, 47], and is not as straightforward as the construction we use in this paper.

Yet another perspective is adapting the algorithm for online inference, using the scheme

12



described in [48]. Interestingly, this is similar to what is already done to adapt ADMM to
the online setting [49]. Finally, we leave for future work comparing our approach to other
recent promising alternatives, in particular that of [50].

Acknowledgments

This work was supported by LabEx DigiCosme and the DRF Impulsion program. We also
acknowledge the support from the ERC under the European Unions FP7 Grant Agreement
307087-SPARCS and the European Union’s Horizon 2020 Research and Innovation Program
714608-SMiLe, as well as by the French Agence Nationale de la Recherche under grants
ANR-17-CE23-0023-01 PAIL and ANR-17-CE23-0011 Fast-Big.

Appendix A. Expectation-consistent approximation

The expectation-consistent approximation[23] is defined for a probability distribution of the
form

P (x) = 1
Z
P`(x)Pr(x). (A.1)

It seeks to approximate (minus) the log-partition function − logZ = − log
∫
dxP`(x)Pr(x)

by means of the following objective, denoted the expectation-consistent free energy

F [Q`, Qr] = − log
∫
dxP`(x)Qr(x)− log

∫
dxQ`(x)Pr(x) + log

∫
dxQ`(x)Qr(x). (A.2)

If there are no restrictions on Q, then F is minimized for Q` = P`, Qr = Pr. What
we want however is to have a tractable approximation, so the Q are typically replaced by
distributions in the exponential family. We use a (unnormalized) Gaussian distribution,
written in canonical form as

Q`,r(x) = e−
1
2ρ`,rxTx+uT`,rx. (A.3)

In our case, P`(x) ∝ e−
1
2‖y−Ax‖2

2 and Pr(x) = ∏p
j=1 e

−λf(xj). Combined to the explicit form
of Q above this gives

F(u`,ur, ρ`, ρr) = 1
2yTy − 1

2(ATy + ur)T (ATA + ρrIp)−1(ATy + ur)+

+ 1
2 log det(ρrIp + ATA)−

p∑
j=1

log
∫
dxje

−λf(xj)e−
1
2ρ`x

2
j+u`kxj+

+ 1
2

p∑
j=1

[
urk + u`k
ρr + ρ`

− log(ρr + ρ`)
]
.

(A.4)
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There are different ways of looking for local minima of F [23]; the vector AMP iteration [14]
is one of them. It consists in the following fixed-point iteration

ut+1
` = Et`x

〈Vart`(x)〉
− ut

r, ρt+1
` = 1

〈Vart`(x)〉
− ρtr,

ut+1
r = Etrx

〈Varr(x)〉 − ut
`, ρt+1

r = 1
〈Vartr(x)〉

− ρt`,
(A.5)

where we denote by Et`,r the expectation w.r.t. the tilted distributions Q̃t
`,r(x) ∝

P`,r(x)Qt
`,r(x), and by Vartr,`(x) the variance of these distributions. In particular

Et`x = (ATA + ρtrIp)−1(ATy + ut
r), 〈Vart`(x)〉 = 1

p
Tr(ATA + ρtrIp)−1, (A.6)

and, by defining z(u, ρ) =
∫
dxe−λf(x)e−

1
2ρx

2+ux,

Etrxj = ∂

∂u
log z(u, ρ)

∣∣∣∣
ut
`k
,ρt
`

, 〈Vartr(x)〉 = 1
p

p∑
j=1

∂2

∂u2 log z(u, ρ)
∣∣∣∣
ut
`k
,ρt
`

, (A.7)

Note that upon convergence one achieves the stationary conditions ∇F = 0

u` + ur = E`x
〈Var`(x)〉 = Erx

〈Varr(x)〉 , ρ` + ρr = 1
〈Var`(x)〉 = 1

〈Varr(x)〉 . (A.8)

In other words, the first two moments of Q̃` and Q̃r must be consistent with those of the
approximating posterior Q(x) ∝ Q`(x)Qr(x).

Appendix A.1. MAP estimate

In order to go from the equations above to (5)-(7), we perform two additional steps. First,
note that one does not need to work with both ` and r variables; by denoting u ≡ ur, we
rewrite the iteration as

ut+1 = ut +
(

Etrx
〈Vartr(x)〉

− Et`x
〈Vart`(x)〉

)
, (A.9)

and analogously for ρ, thus obtaining (6). Moreover, since we are interested in the MAP
estimate, we use the following trick: we consider instead a distribution P (x) ∝ [P`(x)Pr(x)]β
and take the limit β → ∞, thus making the distribution concentrate around its mode; we
then look at 1

β
logZ. By rescaling u`,r → βu`,r and ρ`,r → βρ`,r, we ensure that most

equations remain the same. The only difference is in the second integral in F , which can be
performed using the Laplace method to yield

1
β

log z(u, ρ) = 1
β

log
∫
dxje

−β{λf(x)+ 1
2ρx−ux} β→∞−−−→ u2

2ρ − ρMλf/ρ`(u/ρ), (A.10)
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where Mf (v) = minx
{
f(x) + 1

2(x − v)2
}

is the Moreau envelope of f . Given that
∂
∂v
Mf (v) = x− proxf (v), we get using (A.7) that

Etrx = proxλf/ρt
`
(u`/ρ`) ≡ ηλf/ρt

`
(u`/ρ`), (A.11)

and also that 〈Vartr(x)〉 = ρ−1
` 〈∇ηλf/ρt`(u`/ρ`)〉, leading to (5) and (7).

Appendix B. Adapting the EC approximation to TV penalties

In order to adapt iteration (5)-(6) to total variation penalties, we look at the expectation-
consistent (EC) approximation [23] in closer detail. We first define the following distribution

P (x) ∝ e−
1
2‖y−Ax‖2

2

r∏
k=1

e
−λf

(
(Kx)k

)
. (B.1)

Problem (16) is then recovered when considering the MAP estimator for x, given by the
mode of P (x). Next we introduce a variable z = Kx, and rewrite the distribution above as

P (x, z) ∝ e−
1
2‖y−Ax‖2

2 δ(z −Kx)
r∏

k=1
e
−λf

(
zk

)
. (B.2)

so that the marginal distribution of z becomes

P (z) = 1
Z

[∫
dx e−

1
2‖y−Ax‖2

2 δ(z −Kx)
]

r∏
k=1

e−λf(zk). (B.3)

We apply the EC scheme described above for P (z), by setting

P`(z) ∝
∫
dx e−

1
2‖y−Ax‖2

2 δ(z −Kx), Pr(z) ∝
r∏

k=1
e−λf(zk), (B.4)

thus yielding the following expectation-consistent free energy

F [Q`, Qr] = − log
∫
dx e−

1
2‖y−Ax‖2

2 Qr(Kx)− log
∫
dzQ`(z)Pr(z) + log

∫
dzQ`(z)Qr(z),

(B.5)
We once again parametrize these distributions by canonical-form Gaussians, Q`,r(z; u`,r, ρ`,r) =
e−

ρ`,r
2 zT z+uT`,rz, leading to the fixed-point iteration (24)-(26).

Appendix C. VAMP iteration for n� p

In the n� p setting, iteration (5) can be made efficient by combining the Woodbury formula
with the eigendecomposition of AAT = U diag(d)UT . We first use the Woodbury formula
to replace the iteration on x by

xt = ut

ρt
+ AT (AAT + ρtIn)−1

(
y −A

ut

ρt

)
, (C.1)
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and then insert the eigendecomposition

xt = ut

ρt
+ ATU

{[
UT

(
y −A

ut

ρt

)]
� (d + ρt)

}
, (C.2)

where we have used the symbol � to denote the Hadamard or elementwise division between
two vectors. Note that evaluating the expression above consists only in performing matrix-
vector products and other vector-vector operations, and can thus be performed in O(np).

Finally, iteration (7) can be replaced by

σtx = 1
n

n∑
i=1

1
di + ρt

. (C.3)

Appendix C.1. Further simplifications for TV penalty

For the non-separable penalty (16), the same trick can be applied to yield

xt = (KTK)−1 ut

ρt
+ (KTK)−1ATU

{[
UT (y −A(KTK)−1 ut

ρt

]
� (d + ρt)

}
, (C.4)

and, by further using the eigendecomposition of KTK = F TΛF

xt = F TΛ−1

F
ut

ρt
+ ÃTU

{[
UT (y − ÃΛ−1F

ut

ρt

]
� (d + ρt)

}, (C.5)

for ÃT = F AT . In particular for the TV penalty, K = ∇ is the gradient operator and
KTK = ∆ is the Laplacian, which being a circulant matrix has F given by the Fourier
transform. We can then replace F by the FFT, so that the expression above can be evaluated
almost as efficiently as (C.2).

The iteration on σx is written in this case as

σtx = 1
ρt

[
1
d
− 1
nd

nd∑
i=1

di
di + ρt

]
= 1
nd

nd∑
i=1

1
di + ρt

− d− 1
d

1
ρt
, (C.6)

where d is the dimension of the TV operator, i.e. K = ∇ is a nd× n matrix.
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