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Abstract

To simulate a macroscopic system from a simulation cell, a direct summation

of the elastic fields produced by periodic images can be used. If the cell con-

tains a non-zero elastic dipole component, the sum is known to be conditionally

convergent. In analogy with systems containing electric or magnetic dipoles, we

show that the sum introduces a component which only depends on the shape

of the summation domain and on the dipole density. A correction to the direct

summation is proposed for the strain and stress fields in the simulation cell,

which ensures that zero tractions are imposed on the boundary of the macro-

scopic system. The elastic fields then do not depend anymore on the shape of

the domain. The effect of this correction is emphasized on the kinetics of dislo-

cation loop growth by absorption of point defects. It is shown that correcting

elastic fields has an influence on the kinetics if defects have different properties

at stable and saddle points.

Keywords: Elastic dipole, periodic boundary conditions, kinetics, conditional

convergence

1. Introduction

Elastic fields produced by microstructural defects such as dislocations, grain

boundaries and precipitates are known to deeply affect the evolution of material
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properties. Simulations including such elastic effects can be dislocation dynam-

ics [1, 2, 3, 4], phase field [5, 6] and object kinetic Monte Carlo [7, 8]. Whatever

the method used, precise values of the elastic field produced by the microstruc-

tural defects must be determined. To simulate a large system, it is common to

use periodic boundary conditions (PBCs) and the influence of defects outside

the simulation box must be taken into account for the calculation of the elastic

fields. If elastic fields are calculated by solving the mechanical equilibrium in

Fourier space, this contribution is taken into account naturally [5]. Another

possibility is to sum the contributions from individual defects located in image

boxes, considering that each defect is in an infinite medium.

It is known, however, that elastic fields obtained by direct summation over

periodic images can contain a spurious component if the lattice sums are not

absolutely but only conditionally convergent [9, 10]. A correction scheme has

been proposed by W. Cai et al. to recover a truly periodic elastic solution [9].

Consider, for example, the strain or stress fields produced by dislocation loops

and cavities in three-dimensional simulations. For both kinds of defects, elastic

fields decay as 1/x3 for large values of x due to their non-zero dipolar com-

ponent, so the sum over periodic images is not absolutely convergent. Similar

conditionally convergent sums are present for the calculation of the electric or

magnetic fields in materials containing electric or magnetic dipoles, respectively.

It is well known that for such systems, conditional convergence is related to a

shape effect [11, 12, 13], ie the value of the sum depends on the shape of the

summation domain. If Ewald sum, which makes use of Fourier transform, is

used instead, an “intrinsic” value, independent of the shape, is obtained [11].

The value given by Ewald sum can be readily deduced from a direct summation,

by removing the “extrinsic” shape correction which only depends on the dipole

moment of the simulation cell [11, 13]. However, it should be remembered that

the shape effect is physical and that in general, it should be present if a finite,

macroscopic system is simulated. For a material containing electric or magnetic

dipoles, the extrinsic correction corresponds to the depolarization and demag-

netization fields. For electrostatic problems, Ewald sum corresponds to the
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very particular case of a system surrounded by a medium of infinite dielectric

constant (“tin foil” boundary condition) [12].

For elastic problems, the situation is more complex. Contrary to electric and

magnetic dipoles, the elastic field produced by an elastic dipole is not an intrinsic

property of this defect, it depends on the prescribed boundary conditions. If

boundaries are sufficiently far from the defect, the elastic solution in an infinite

medium is appropriate. In the vicinity of a surface, this solution, however, leads

to the appearance of surface tractions which must be canceled if a free surface

is considered. An additional mechanical loading can be added if necessary. The

question which arises is therefore the following: which correction, if any, should

be added to the elastic field computed by direct summation to simulate the

elastic field at the center of a macroscopic system of a given shape, with zero

surface tractions? We will see that in general, a correction must be added, which

depends on the macroscopic shape of the system. This correction also depends

on the magnitude of the dipole component in the simulation box.

We start by recalling the correction proposed by W. Cai et al. to simulate

periodic systems. This correction is reformulated in as surface integral over the

macroscopic system. This formulation is then used to show that applying the

correction amounts to simulating a macroscopic but finite system with uniform

loading, related to the elastic dipole density. A correction is proposed to simulate

a macroscopic system with zero surface tractions. In the last section, the impact

of elastic corrections on the kinetics of dislocation loop growth by absorption of

point defects is highlighted.

2. Reformulation of the correction for periodic systems

In this section we investigate the physical meaning of the correction proposed

by W. Cai et al. [9] to remove the component of the strain or stress field linked to

non-periodicity of the displacement field, when a direct summation over images

is used. We consider a three-dimensional simulation box containing a non-zero

elastic dipole component. It means that far from the simulation box, the stress
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and strain fields produced by all defects contained in the box decay as 1/x3,

where x = |x| and x is the position relative to center of the box. This is the case,

for example, for a collection of dislocation loops and cavities. In this section we

focus on the strain field. The same reasoning can be applied for the stress field.

2.1. Correction for periodic systems

W. Cai et al. have shown that absolutely convergent sums converge to a

field which is periodic, so the lack of periodicity is closely linked to the con-

ditional convergence of the direct summation on image boxes. Since absolute

convergence is obtained for terms which decay as 1/x4, but not 1/x3, the first

derivative of the strain field is absolutely convergent. Therefore, the strain field

ε can be written, by integration of the absolutely convergent field, as

εij(x) = εPBC
ij (x) + ε0ij , (1)

where εPBC
ij is the strain field corresponding to the periodic solution of the

problem and ε0ij is a contribution linked to the non-periodic character of the

displacement field u. By integration, this field reads

ui(x) = uPBC
i (x) + gi · x+ u0i , (2)

where uPBC
i is the periodic displacement field. It is related to εPBC

ij (x) by

εPBC
ij (x) =

1

2

(
uPBC
i,j (x) + uPBC

j,i (x)
)
, (3)

where ui,j = ∂ui/∂xj and gi is a constant vector such that

ε0ij =
1

2
(gij + gji). (4)

In practice, the strain field is calculated by summing over periodic images

contained in a given region V, which leads to expression (1). The constant field

ε0 can be deduced from gi, which is computed, for example, by evaluating the

displacement field at one corner of the box and at the three adjacent corners. It

is important, in this case, to use the same summation domain V. Indeed we will

see in next section that gi and thus ε0 depend on the shape of the summation
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domain. These quantities, however, do not depend on the order of summation

(although u0i , in general, does). To obtain the solution corresponding to a

periodic system, it is necessary to subtract ε0 from ε.

Such corrections are used not only in the framework of dislocation dynam-

ics, but also in atomistic calculations to evaluate formation energies of isolated

defects [14]. In numerical simulations, formation energies contain a spurious

component due to the interaction between the defect, which can be modeled as

an elastic dipole, and its periodic images. To remove this interaction energy, a

direct summation of the strain field on periodic images can be performed and

the component ε0 must then be subtracted. We note that in this context, other

formulations for the correction of the energy have been recently derived [15, 16].

2.2. An alternative corrective scheme using surface integrals

For an infinite elastic medium, the displacement field generated by an elastic

dipole pjk, which is the first moment of a localized point-force distribution,

reads [17, 18]

ui(x) = −pjkG∞ij,k(x̄), (5)

where x̄ = x − x′ is the vector pointing from the dipole location to the point

where the field is evaluated and G∞ij is the elastic Green function in an infinite

body. Summation over repeated indices is implied in the following. For an

isotropic material, we have

G∞ij (x̄) =
1

8π(1− ν)2µ

(
δij

3− 4ν

x̄
+
x̄ix̄j
x̄3

)
. (6)

In this equation, µ is the shear modulus, ν is the Poisson’s ratio and δij is the

Kronecker delta.

For a system of volume V containing an array of N identical elastic dipoles

pjk, the displacement is

ui(x) = −
N∑
α=1

pjkG
∞
ij,k(x̄(α)). (7)

This sum is evaluated inside the material, with x 6= x′(α) for α = 1, . . . , N .

For dipoles which are far from x, the discrete sum can be approximated by an
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integral. Actually it is possible to perform this integral over the whole volume,

since is is absolutely convergent for x→ 0 (it behaves as 1/x2 [19]). The result

is not guaranteed to be the same as the discrete sum, but what is important is

that we capture the contribution from faraway sources. The displacement is

ui(x) = −
∫
V
PjkG

∞
ij,k(x̄)dV ′, (8)

where Pjk = pjk/V is an elastic dipole density and V = V/N is the volume

corresponding to a single dipole. Using Ostrogradsky’s theorem and the fact

that G∞ij,k(x̄) = −G∞ij,k′(x̄), we obtain

ui(x) =

∫
S
PjknkG

∞
ij (x̄)dS′, (9)

with n the outward-pointing normal to the surface S which delimits V. The

elastic strain can be readily deduced:

εij(x) =
1

2

∫
S
Plknk

[
G∞il,j(x̄) +G∞jl,i(x̄)

]
dS′. (10)

This expression corresponds to the strain produced by surface forces f =

PdS′ [20].

We see that the direct sum of the strain field created by dipoles in V has a

contribution which is due to surface forces on the boundary of the summation

domain. Since a periodic system has no surfaces, the contribution of these

surface forces to the strain field must be subtracted from the direct sum to

recover a periodic system. It thus appears that Eq. (10) corresponds to the

spurious field ε0. The same volume must in principle be used for the discrete

sum and the contribution of surface forces. Actually, since the function to

integrate over S varies as 1/x2, the integral does not depend on the volume

itself, but only on the shape of the volume.

Within the framework of anisotropic elasticity, efficient numerical evalua-

tions of the derivative of elastic Green function can be used to compute the

integral [21]. In isotropic elasticity, the integral can be written under the fol-
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lowing form, owing to Eq. (6):

εij(x) =
1

32π(1− ν)µ

∫
S
Plknk

(
−δil(3− 4ν)

x̄j
x̄3

+ δlj
x̄i
x̄3

+ δij
x̄l
x̄3
− 3

x̄ix̄j x̄l
x̄5

−δjl(3− 4ν)
x̄i
x̄3

+ δli
x̄j
x̄3

+ δij
x̄l
x̄3
− 3

x̄ix̄j x̄l
x̄5

)
dS′. (11)

For a cuboid shaped box, this integral can be calculated analytically (Ap-

pendix A). It takes a particularly simple form when the field is estimated at

(0, 0, 0) (Eqs. (A.9) and (A.10)). This result can be used to correct a discrete

sum over a cuboid-shaped domain with the simulation box at the center of the

domain.

To validate the explicit form of the correction given in Eq. (10), we consider

a cubic simulation box of edge length l = 10 nm (V = l3), containing an

interstitial prismatic dislocation loop of radius r = 2 nm along x3 axis. A

cuboid-shaped domain is used for the discrete sum: each image box is identified

by a tuple (n1, n2, n3) and summation indices run from−nneighbours to nneighbours

in the three directions. The triplet (0, 0, 0) corresponds to the simulation box.

Isotropic elasticity is used, so that results can also be compared to the analytical

solution (Eq. (A.9)). The elastic dipole tensor of a dislocation loop is [18]

pij = −CijklSkbl = −µ(Sibj + Sjbi)−
2νµ

1− 2ν
δijSkbk, (12)

where Cijkl are the elastic constants, b is the Burgers vector (b = −be3) and

S is the surface vector defining the area of the loop [22]. Here S = Se3 with

S = πr2. Note that S · b = Skbk = −bS due to the interstitial character of

the loop. Parameters corresponding to aluminum are used: Burgers vector of

magnitude b = 0.2338 nm, Poisson’s ratio ν = 0.35, shear modulus µ = 26 GPa

(not necessary for the evaluation of the strain correction). The elastic dipole

density tensor is P11 = P22 = 1.1064 eV/nm3, P33 = 2.0548 eV/nm3 and Pij = 0

for i 6= j, so owing to Eq. (A.10) components εij are also zero for i 6= j. In

addition, ε011 = ε022, so only ε011 and ε033 are shown in Fig. 1.

For the approach based on direct summation of displacement fields (Eq. (4)),

the displacement field is evaluated at four locations in the simulation box
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Figure 1: Comparison of the two approaches (discrete sum and surface integral) to evaluate

the correction corresponding to a periodic elastic solution. The simulation box of edge length

l = 10 nm contains an interstitial prismatic dislocation loop of radius r = 2 nm along x3 axis

(see text for details). Two components are represented: (a) ε011 and (b) ε033. The reference

solution (Eq. (A.9)) is shown in gray.

(the origin is at the center of the box) : (−l/2,−l/2,−l/2), (l/2,−l/2,−l/2),

(−l/2, l/2,−l/2) and (−l/2,−l/2, l/2), so the number of Green function eval-

uations to determine the spurious strain field is nGreen = 4(2nneighbours + 1)3.

For the surface approach (Eq. (10)), a Gaussian quadrature is used to calcu-

late the integral. For nGauss integration points in one direction, the number of

Green function evaluations is nGreen = 6n2Gauss. To compare the two methods,

the strain field is represented as a function of nGreen. It is clear that the two

approaches converge to the same result given by (A.9) and (A.10). The surface

approach appears to converge faster than the direct sum approach, although

in both cases values are reasonably well converged for a few hundreds of Green

function evaluations, corresponding to nneighbours = 1 and nGauss = 5. Therefore

it appears that the surface method is preferable if the computation of the strain

correction is required to be fast and precise. The surface method can be readily

generalized to a collection of defects with non-zero elastic dipole components,
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once the elastic dipole density tensor is calculated.

3. Simulation of macroscopic systems with prescribed tractions

We consider the case of a simulation box embedded into a macroscopic,

finite system obtained by replication of the simulation box around it (Fig. 2

(a)). Surface tractions T = σn are imposed, where n is the normal to the

surface of the system. A particular case is T = 0, which corresponds to a

system with free surfaces. In this section we derive the field that must be added

to the discrete sum over image boxes which constitute the macroscopic system,

in order to be representative of a finite system with zero surface tractions. The

more general case of a given stress state can be readily obtained by adding the

corresponding stress field.

To obtain the solution corresponding to zero surface tractions, a common

method is to add a field which cancels surface tractions T produced by the

solution for an infinite medium [23]. This can be done, for example, by finite

element (FE) solving of the elastic problem with prescribed tractions −T . The

traction field can be quite complicated, with steep variations on the scale of the

simulation box, due to the distribution of defects in the box. However, if the

simulation box is in the middle of the macroscopic system, far from surfaces,

the effect of surface tractions can be accurately modelled by taking into account

only their average value over a surface Sk = lilj defined by the box dimensions

(l1, l2, l3). The average value over Sk of the field created by a discrete set of

defects of periodicity li and lj is well approximated by integrals over a contin-

uous distribution of dipole density, except near the edges of the system where

the discrete nature of sources can be more significant. However, such regions

represent a small part of the surface and their contribution to the field in the

middle of the macroscopic system is small. Higher order multipole contributions

can be safely neglected if the simulation box is far from the surfaces.

It is therefore envisageable to determine the field to add to the simulation

box by performing a FE solving of the elastic problem with surface tractions
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determined by surface integrals similar to Eq. (10) for the stress field, evaluated

outside the system, close to the surface. Actually it is possible to avoid the

numerical solving phase and to derive a simple expression for this field.

As noted in the previous section, the contribution of faraway defects to

the elastic field in the simulation box can be accurately described by surface

forces f0 = PdS′ (Figs. 2 (a) and (b)). To remove the spurious field and

simulate a periodic system, we have seen that we have to add to the field in

the simulation box (and in the macroscopic system) the contribution from an

opposite distribution of surface forces −f0 = −PdS′ (Fig. 2-(c)). The stress

field, in the interspace between the two distributions of forces f0 and −f0, is

such that

σn = −Pn. (13)

This expression can be obtained either by performing the integral in Eq. (10)

(in isotropic elasticity), or more simply by applying equilibrium equation of

elasticity on a small volume straddling one of the two distributions of forces.

The same method is used, for example, to determine the electric field due to an

infinite plane of charges. The two distributions of surface forces correspond to a

capacitor, where the electric field is constant if the two planes are close enough

to each other.

Eq. (13) means that by adding the field due to −f0 = −PdS′, which cancels

the shape effect and leads to a periodic solution, we impose a loading of the

material equal to σ = −P . Therefore, to cancel surface tractions, this field

should be removed. This result can also be obtained directly by noting that

applying the correction from Ref. [9] amounts to considering a periodic system

with no imposed deformation ; it has been shown that in this case, the average

stress on the simulation box, or on a group of simulation boxes, is −P [24].

Finally, the field inside the simulation box, which corresponds to zero surface

tractions on the macroscopic system, can be written as follows:

σ = σsum − σ0 + P , (14)

where σsum = σPBC+σ0 comes from the sum over the defects in the macroscopic
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Figure 2: Schematic representation of the correction to remove the non-periodic part of the

elastic solution. (a) System with periodic images: the stress field computed by direct sum

over a finite set of images contains a spurious component which corresponds to a non-periodic

displacement field. (b) This component can be rewritten as a contribution from surface forces

PdS, where P is the elastic dipole density. (c) By removing these surface forces, a periodic

solution is obtained. Surface tractions on the boundary of the macroscopic system (red dashed

lines) are σn = −Pn, where n is the outward-pointing normal to the surface.
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system, σ0 is the field created by surface forces f0 = PdS′ distributed over

the surface of the macroscopic system and P is the dipole density inside the

simulation box. As mentioned in the previous section, σ0 is known analytically

in isotropic elasticity and can be evaluated numerically in anisotropic elasticity

by either of the two methods described in the previous section. It is important

to notice that the solution with zero tractions does not depend on the shape of

the sample (it is simply σ = σPBC + P ). This is markedly different from the

local electric and magnetic fields in systems containing electric and magnetic

dipoles, which depend on the shape of the sample.

To validate this expression, we consider the same system as in the previous

section, ie a prismatic loop of radius r = 2 nm in a cubic simulation box of

edge length l = 10 nm. This box is duplicated 21 times along each direction to

create the macroscopic system. Surface tractions produced by the solution in

an infinite medium, resulting from the discrete sum over the loops, is shown in

Fig. 3-(a,d) for σ33 and σ13 on the upper surface of normal [001]. They exhibit

steep variations, correlated with the loop positions. However, tractions averaged

over the simulation box dimensions have a much smoother profile (Fig. 3-(b,e)).

This profile is mostly due to the shape effect, which can be removed by adding

the field −σ0. By adding further the elastic dipole density P , average surface

tractions become essentially zero (Fig. 3-(c,f)).

The accuracy of expression (14) is assessed by performing reference FE cal-

culations (see for example [23]). Surface tractions T are obtained by summing

the contributions of all the loops, as in Fig. 3-(a,d). A typical elastic solution

with prescribed tractions −T is shown in Fig. 4. As noted before, in the sim-

ulation box located in the middle of the macroscopic system, the details of the

surface tractions do not impact the solution, only the average value, linked to

the elastic dipole density, is important. The FE solution in the middle of the

macroscopic system is compared to the analytical solution, σ = −σ0 + P , for

different aspect ratios l1/l3 (Fig. 5). The agreement is very good, which proves

that a continuous description of the traction fields, including only the dipole

component, is precise enough. Corrections on σ13, σ23 and σ33 slowly converge
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Figure 3: Stresses σ33 (a-c) and σ13 (d-f) on a surface of normal [001] of a macroscopic system

containing 21 × 21 × 21 simulation boxes: (a,d) stress σ = σsum due to the contribution of

defects inside the system (b,e) average stress σ = 〈σsum〉 over the simulation box dimensions

(c,f) average stress corrected by the non-periodic part σ0 and the dipole density: σ = 〈σsum〉−

σ0 + P . The simulation box contains one prismatic loop (see text for details).
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to zero as l1/l3 approaches infinity, since σ0e3 approaches Pe3 in the interspace

between two infinite distributions of surface forces ±PdS′e3.

Figure 4: Stress component σ33 calculated by FE modelling of a macroscopic system. Surface

tractions are set to the opposite of the tractions generated by the collection of loops inside

the system (see for example Fig. 3-(a,d) for one of the surfaces). The macroscopic system

contains 21 × 21 × 21 simulation boxes. Each box has a single prismatic loop in the middle

(see text for details). The system is cut half-way along e2 for the purpose of visualisation.

4. Application: loop evolution under irradiation

In the previous section we have seen that a correction must be added to

the field calculated by direct summation over near images, in order to obtain a

solution corresponding to zero surface tractions on the macroscopic system. Its

magnitude is proportional to the elastic dipole density, as the correction pro-

posed in Ref. [9] which corresponds to a solution for a fully periodic system. For

boxes with large elastic dipole densities, dislocation and point defect behaviours

may be affected by the correction. In this section we investigate the effect of the

two corrections on the loop growth under irradiation, using an object kinetic

Monte Carlo (OKMC) approach [8, 25].
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Figure 5: Correction for the stress field in the middle of a macroscopic system, corresponding to

a traction-free system, for different aspect ratios l1/l3. To obtain these ratios, the macroscopic

system is made of 11 × 11 × 41, 21 × 21 × 21 and 41 × 41 × 11 simulation boxes. Each box

has a single prismatic loop in the middle (see text for details). Reference FE simulations are

compared to the analytical result derived in the present work, σ = −σ0 + P .

As before, we use typical parameters for aluminum (see section 2.2). Two

interstitial Frank loops of different radii (2 and 3 nm) are introduced in a cubic

box of edge length l = 10 nm, at (l/2, l/2, l/4) and (l/2, l/2, 3l/4). The normal to

their habit plane is e3. Six vacancies and self-interstitials are introduced in the

box per second, which corresponds to damage rate of 10−4 dpa/s (displacements

per atom). They diffuse in the simulation box with periodic boundary conditions

until they are absorbed by one of the loops. Simulations are performed at

T = 300 K. The emission of point defects by loops can be neglected at this

temperature.

The migration of point defects occurs by successive hops between stable

positions in the lattice. The jump frequency is given by

ν = ν0 exp

(
− Em

kBT

)
, (15)

where ν0 = 1013 Hz is an attempt frequency and Em is the migration energy
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for the considered jump. It reads [17]

Em = Em
0 − psadij εij + pstaij εij , (16)

with Em
0 the migration energy without any strain, pstaij and psadij the elastic

dipoles at the stable and saddle positions and εij the strain field, which is

assumed to be the same at both positions. We also suppose here that the

elastic dipoles do not depend on the strain, ie polarizability effects are not

considered [26]. Elastic dipoles of vacancies and self-interstitials in aluminum

at stable and saddle configurations can be found in Ref. [25].

If the local strain field is corrected by εcorr, the migration barrier becomes

Em = Em
0 − (psadij − pstaij )εij − (psadij − pstaij )εcorrij . (17)

Since in general elastic dipoles are not equal at stable and saddle positions,

the elastic correction can alter the point defect diffusion. In particular, we can

expect an effect of the correction in the simulation of phenomena such as void

swelling or irradiation creep, for which the influence of the elastic field created

by dislocations and cavities on the diffusion of point defects is important [27].

If the magnitude of εcorrij is the same as εij , results could change appreciably.

The evolution of the two loops is given in Fig. 6 with different elastic correc-

tions, averaged over 1000 simulations for each condition. Whatever the correc-

tion, one sees that the larger loop grows, while the smaller loop shrinks. This

result is in agreement with bias calculations on single loops, which show that the

bias increases with loop size [28, 29, 30]. Differences in loop evolution are clearly

observed for the various corrections envisaged, although they remain small from

an experimental point of view. Loops exhibit the fastest evolution if the correc-

tion for zero surface tractions is used. The slowest evolution is obtained with

the correction for a fully periodic system. Simulations were also performed with

simplified elastic dipoles. They were taken purely hydrostatic, with the same

value at stable and saddle positions, deduced from the trace of the DFT dipole

tensors at stable position. No difference in loop evolution is seen in this case,

in agreement with Eq. (17).
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Figure 6: Evolution of the radius of two Frank loops of initial radii (a) 3 nm and (b) 2

nm in a cubic box of edge length l = 10 nm. Vacancies and self-interstitials are introduced

simultaneously, simulating an electron irradiation with a damage rate equal to 10−4 dpa/s.

Corrections −σ0 and −σ0+P are added to the stress field calculated as a sum of contributions

from nearby image boxes (σsum), to account for different boundary conditions. “Anisotropic”

case corresponds to elastic dipoles obtained from DFT calculations. For the “isotropic” case,

dipoles are assumed to be the same at stable and saddle points and are purely hydrostatic.

Their trace is given by DFT results at stable position.
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Since vacancies and interstitials are produced at the same rate, the number of

interstitials in loops stays constant, providing no defects remain in the matrix.

This means that the elastic correction is also roughly the same at any time.

The stress correction for a fully periodic simulation is σ11 = σ22 = 0.290 GPa

and σ33 = 0.489 GPa , while for a macroscopic system with zero tractions it

is σ11 = σ22 = −0.159 GPa and σ33 = −0.368 GPa. These stress levels are

quite substantial and could also affect processes such as dislocation glide. It

therefore appears crucial to apply the stress correction corresponding to the

desired boundary conditions.

5. Conclusions

From a simulation box with a non-zero elastic dipole component, the aim

of this work is to determine the effect, in the box, of prescribed tractions at

the boundary of a macroscopic system built by replicating the simulation box

around it. The starting point is a reformulation of the correction proposed by

Cai et al. [9] to obtain a fully periodic elastic solution. Using this formulation,

based on surface integrals, we show that the correction only depends on the

shape of the macroscopic system, and that applying the correction is equivalent

to simulating a macroscopic but finite system with surface tractions−Pn, where

P is the elastic dipole density and n an outward-pointing normal unit vector.

By removing these tractions, a system containing a homogeneous distribution

of defects, with zero surface tractions, is simulated. The elastic solution thus

obtained does not depend anymore on the shape of the macroscopic system.

Elastic corrections are applied in OKMC simulation boxes to simulate the

evolution of dislocation loops under irradiation, due to the absorption of point

defects. It is shown that the dislocation loop evolution depends on the correction

if point defects have different properties at stable and saddle points. It can be

expected that these elastic corrections not only have an influence on point defect

diffusion, but also on dislocation movement. Therefore it appears important to

be aware of the type of system that is simulated when elastic corrections are
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applied, and to apply the desired correction.
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Appendix A. Surface integrals for the strain correction

The analytical form of the strain field which must be subtracted from a

direct sum to obtain a fully periodic solution is given here in the case of isotropic

elasticity, for a cuboid shaped box of dimensions (l1, l2, l3). The origin is at the

center of the box. Expressions are only given for ε011 and ε012, other terms are

obtained by cyclic permutation of indices.
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1
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ε012(x) =
1
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∑
u=0,1
v=0,1
w=0,1

(−1)u+v+w
{

P11

[
−(1− 2ν)D

(
x1 − (−1)u

l1
2
, x2 − (−1)v

l2
2
, x3 − (−1)w

l3
2

)
+C

(
x1 − (−1)u

l1
2
, x2 − (−1)v

l2
2
, x3 − (−1)w

l3
2

)]
+ P22

[
−(1− 2ν)D

(
x2 − (−1)v

l2
2
, x1 − (−1)u

l1
2
, x3 − (−1)w

l3
2

)
+C

(
x2 − (−1)v

l2
2
, x1 − (−1)u

l1
2
, x3 − (−1)w

l3
2

)]
− P33F

(
x1 − (−1)u

l1
2
, x2 − (−1)v

l2
2
, x3 − (−1)w

l3
2

)
+ P23

[
−2(1− ν)D

(
x3 − (−1)w

l3
2
, x1 − (−1)u

l1
2
, x2 − (−1)v

l2
2

)
−2F

(
x3 − (−1)w

l3
2
, x1 − (−1)u

l1
2
, x2 − (−1)v

l2
2

)]
+ P13

[
−2(1− ν)D

(
x3 − (−1)w

l3
2
, x2 − (−1)v

l2
2
, x1 − (−1)u

l1
2

)
−2F

(
x3 − (−1)w

l3
2
, x2 − (−1)v

l2
2
, x1 − (−1)u

l1
2

)]
+ P12

[
−2(1− ν)A

(
x2 − (−1)v

l2
2
, x1 − (−1)u

l1
2
, x3 − (−1)w

l3
2

)
+ E

(
x2 − (−1)v

l2
2
, x1 − (−1)u

l1
2
, x3 − (−1)w

l3
2

)
− 2(1− ν)A

(
x1 − (−1)u

l1
2
, x2 − (−1)v

l2
2
, x3 − (−1)w

l3
2

)
+E

(
x1 − (−1)u

l1
2
, x2 − (−1)v

l2
2
, x3 − (−1)w

l3
2

)]}
(A.2)

21



Functions used in Eqs (A.1) and (A.2) are given by

A(x, y, z) = arctan

(
yz

x
√
x2 + y2 + z2

)
(A.3)

B(x, y, z) =
xyz(2x2 + y2 + z2)

(x2 + y2)(x2 + z2)
√
x2 + y2 + z2

(A.4)

C(x, y, z) =
x2z

(x2 + y2)
√
x2 + y2 + z2

(A.5)

D(x, y, z) = − ln
(
z +

√
x2 + y2 + z2

)
(A.6)

E(x, y, z) =
xyz

(x2 + y2)
√
x2 + y2 + z2

(A.7)

F (x, y, z) =
z√

x2 + y2 + z2
(A.8)

When a simulation box is embedded into a macroscopic system, it is natural

to place the simulation box in the middle of the system. The field must then be

evaluated at the center of the system (ie x = (0, 0, 0)). Only functions which

are odd in x, y and z contribute to the result, so the field takes the remarkably

simple form:

ε011(0) =
P11

2π(1− ν)µ
[2(1− 2ν)A(l1, l2, l3) +B(l1, l2, l3)]

− P22

2π(1− ν)µ
E(l2, l1, l3)− P33

2π(1− ν)µ
E(l3, l1, l2) (A.9)

ε012(0) =
P12

2π(1− ν)µ
[2(1− ν) (A(l1, l2, l3) +A(l2, l1, l3))− (E(l1, l2, l3) + E(l2, l1, l3))]

(A.10)
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