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Abstract

We examine a class of deep learning models with a tractable method to compute information-
theoretic quantities. Our contributions are three-fold: (i) We show how entropies and mutual
informations can be derived from heuristic statistical physics methods, under the assumption
that weight matrices are independent and orthogonally-invariant. (ii) We extend particular cases
in which this result is known to be rigorously exact by providing a proof for two-layers networks
with Gaussian random weights, using the recently introduced adaptive interpolation method.
(iii) We propose an experiment framework with generative models of synthetic datasets, on which
we train deep neural networks with a weight constraint designed so that the assumption in (i) is
verified during learning. We study the behavior of entropies and mutual informations throughout
learning and conclude that, in the proposed setting, the relationship between compression and
generalization remains elusive.

The successes of deep learning methods have spurred efforts towards quantitative modeling of
the performance of deep neural networks. In particular, an information-theoretic approach linking
generalization capabilities to compression has been receiving increasing interest. The intuition behind
the study of mutual informations in latent variable models dates back to the information bottleneck
(IB) theory of [1]. Although recently reformulated in the context of deep learning [2], verifying its
relevance in practice requires the computation of mutual informations for high-dimensional variables,
a notoriously hard problem. Thus, pioneering works in this direction focused either on small network
models with discrete (continuous, eventually binned) activations [3], or on linear networks [4, 5].

In the present paper we follow a different direction, and build on recent results from statistical
physics [6, 7] and information theory [8, 9] to propose, in Section 1, a formula to compute information-
theoretic quantities for a class of deep neural network models. The models we approach, described in
∗Corresponding author: marylou.gabrie@ens.fr
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Section 2, are non-linear feed-forward neural networks trained on synthetic datasets with constrained
weights. Such networks capture some of the key properties of the deep learning setting that are
usually difficult to include in tractable frameworks: non-linearities, arbitrary large width and depth,
and correlations in the input data. We demonstrate the proposed method in a series of numerical
experiments in Section 3. First observations suggest a rather complex picture, where the role of
compression in the generalization ability of deep neural networks is yet to be elucidated.

1 Multi-layer model and main theoretical results

A stochastic multi-layer model— We consider a model of multi-layer stochastic feed-forward
neural network where each element xi of the input layer x ∈ RN0 is distributed independently
as P0(xi), while hidden units t`,i at each successive layer t` ∈ RN` (vectors are column vectors)
come from P`(t`,i|W ᵀ

`,it`−1), with t0 ≡ x and W`,i denoting the i-th row of the matrix of weights
W` ∈ RN`×N`−1 . In other words

t0,i ≡ xi ∼ P0(·), t1,i ∼ P1(·|W ᵀ
1,ix), . . . tL,i ∼ PL(·|W ᵀ

L,itL−1), (1)

given a set of weight matrices {W`}L`=1 and distributions {P`}L`=1 which encode possible non-
linearities and stochastic noise applied to the hidden layer variables, and P0 that generates the
visible variables. In particular, for a non-linearity t`,i = ϕ`(h, ξ`,i), where ξ`,i ∼ Pξ(·) is the stochastic
noise (independent for each i), we have P`(t`,i|W ᵀ

`,it`−1) =
∫
dPξ(ξ`,i) δ

(
t`,i − ϕ`(W ᵀ

`,it`−1, ξ`,i)
)
.

Model (1) thus describes a Markov chain which we denote by X → T1 → T2 → · · · → TL, with
T` = ϕ`(W`T`−1, ξ`), ξ` = {ξ`,i}N`i=1, and the activation function ϕ` applied componentwise.

Replica formula— We shall work in the asymptotic high-dimensional statistics regime where
all α̃` ≡ N`/N0 are of order one while N0 →∞, and make the important assumption that all
matrices W` are orthogonally-invariant random matrices independent from each other; in other
words, each matrix W`∈RN`×N`−1 can be decomposed as a product of three matrices, W`=U`S`V`,
where U`∈O(N`) and V`∈O(N`−1) are independently sampled from the Haar measure, and S` is a
diagonal matrix of singular values. The main technical tool we use is a formula for the entropies
of the hidden variables, H(T`) = −ET` lnPT`(t`), and the mutual information between adjacent
layers I(T`;T`−1) = H(T`) + ET`,T`−1

lnPT`|T`−1
(t`|t`−1), based on the heuristic replica method

[10, 11, 6, 7, 8, 9]:

Claim 1 (Replica formula). Assume model (1) with L layers in the high-dimensional limit with
componentwise activation functions and weight matrices generated from the ensemble described above,
and denote by λWk

the eigenvalues of W ᵀ
kWk. Then for any ` ∈ {1, . . . , L} the normalized entropy

of T` is given by the minimum among all stationary points of the replica potential:

lim
N0→∞

1

N0
H(T`) = min extr

A,V ,Ã,Ṽ
φ`(A,V , Ã, Ṽ ), (2)

which depends on `-dimensional vectors A,V , Ã, Ṽ , and is written in terms of mutual information
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I and conditional entropies H of scalar variables as

φ`(A,V , Ã, Ṽ ) = I
(
t0; t0 +

ξ0√
Ã1

)
− 1

2

∑̀
k=1

α̃k−1

[
ÃkVk + αkAkṼk − FWk

(AkVk)
]

+
`−1∑
k=1

α̃k

[
H(tk|ξk; Ãk+1, Ṽk, ρ̃k)−

1

2
log(2πeÃk+1)

]
+ α̃`H(t`|ξ`; Ṽ`, ρ̃`), (3)

where αk = Nk/Nk−1, α̃k = Nk/N0, ρk =
∫
dPk−1(t) t2, ρ̃k = (EλWkλWk

)ρk/αk, and ξk ∼ N (0, 1)
for k = 0, . . . , `. In the computation of the conditional entropies in (3), the scalar tk-variables are
generated from P (t0) = P0(t0) and

P (tk|ξk;A, V, ρ) = Eξ̃,z̃ Pk(tk + ξ̃/
√
A|
√
ρ− V ξk +

√
V z̃), k = 1, . . . , `− 1, (4)

P (t`|ξ`;V, ρ) = Ez̃ P`(t`|
√
ρ− V ξ` +

√
V z̃), (5)

where ξ̃ and z̃ are independent N (0, 1) random variables. Finally, the function FWk
(x) depends on

the distribution of the eigenvalues λW`
following

FWk
(x) = min

θ∈R

{
2αkθ + (αk − 1) ln(1− θ) + EλWk ln[xλWk

+ (1− θ)(1− αkθ)]
}
. (6)

The computation of the entropy in the large dimensional limit, a computationally difficult task,
has thus been reduced to an extremization of a function of 4` variables, that requires evaluating
single or bidimensional integrals. This extremization can be done efficiently, as detailed in the
Supplementary Material; a user-friendly Python package is provided [12], which performs the
computation for different choices of prior P0, activations ϕ` and spectra λW`

. Finally, the mutual
information between successive layers I(T`;T`−1) can be obtained from the entropy following the
evaluation of an additional bidimensional integral, see Section 1.6.1 of the Supplementary Material.

Our approach in the derivation of (3) builds on recent progresses in statistical estimation and
information theory for generalized linear models following the application of methods from statistical
physics of disordered systems [10, 11] in communication [13], statistics [14] and machine learning
problems [15, 16]. In particular, we use advanced mean field theory [17] and the heuristic replica
method [10, 6], along with its recent extension to multi-layer estimation [7, 8, 9], in order to derive
the above formula (3). This derivation is lengthy and thus given in the Supplementary Material.

Rigorous statement— We recall the assumptions under which the replica formula of Claim 1
is conjectured to be exact: (i) weight matrices are drawn from an ensemble of random orthogonally-
invariant matrices, (ii) matrices at different layers are statistically independent and (iii) layers have
a large dimension and respective sizes of adjacent layers are such that weight matrices have aspect
ratios {αk, α̃k}`k=1 of order one. While we could not prove the replica prediction in full generality, we
stress that it comes with multiple credentials: (i) for Gaussian prior P0 and Gaussian distributions P`,
it corresponds to the exact analytical solution when weight matrices are independent of each other
(see Section 1.6.2 of the Supplementary Material). (ii) In the single-layer case with a Gaussian weight
matrix, it reduces to formula (13) in the Supplementary Material, which has been recently rigorously
proven for (almost) all activation functions ϕ [18]. (iii) In the case of Gaussian distributions P`, it
has also been proven for a large ensemble of random matrices [19] and (iv) it is consistent with all
the results of the AMP [20, 21, 22] and VAMP [23] algorithms, known to perform well for these
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estimation problems. An equivalent formula was proposed by Reeves in [9] using different heuristic
arguments.

In order to go beyond results for the single-layer problem and heuristic arguments, we prove
Claim 1 for the more involved multi-layer case, assuming Gaussian i.i.d. matrices and two non-linear
layers:

Theorem 1 (Two-layer Gaussian replica formula). Suppose (H1) the input units distribution P0 is
separable and has bounded support; (H2) the activations ϕ1 and ϕ2 corresponding to P1(t1,i|W ᵀ

1,ix)

and P2(t2,i|W ᵀ
2,it1) are bounded C2 with bounded first and second derivatives w.r.t their first argument;

and (H3) the weight matrices W1, W2 have Gaussian i.i.d. entries. Then for model (1) with two
layers L = 2 the high-dimensional limit of the entropy verifies Claim 1.

The theorem, that proves the conjecture presented in [7], is proven using the adaptive interpolation
method of [24, 18] in a multi-layer setting, as first developed in [25]. The lengthy proof, presented in
details in the Supplementary Material, is of independent interest and adds further credentials to
the replica formula, as well as offers a clear direction to further developments. Note that, following
the same approximation arguments as in [18] where the proof is given for the single-layer case, the
hypothesis (H1) can be relaxed to the existence of the second moment of the prior, (H2) can be
dropped and (H3) extended to matrices with i.i.d. entries of zero mean, O(1/N0) variance and finite
third moment.

2 Tractable models for deep learning

The multi-layer model presented above can be leveraged to simulate two prototypical settings of
deep supervised learning on synthetic datasets amenable to the replica tractable computation of
entropies and mutual informations.

 
teacher student generative recognition

teacher-student
(i.i.d. input data)

generative-recognition
(correlated input data)

Figure 1: Two models of synthetic data

The first scenario is the so-called teacher-
student (see Figure 1, left). Here, we assume
that the input x is distributed according to a
separable prior distribution PX(x) =

∏
i P0(xi),

factorized in the components of x, and the corre-
sponding label y is given by applying a mapping
x → y, called the teacher. After generating a
train and test set in this manner, we perform the
training of a deep neural network, the student,
on the synthetic dataset. In this case, the data
themselves have a simple structure given by P0.

In constrast, the second scenario allows gen-
erative models (see Figure 1, right) that create
more structure, and that are reminiscent of the
generative-recognition pair of models of a Vari-
ational Autoencoder (VAE). A code vector y
is sampled from a separable prior distribution
PY (y) =

∏
i P0(yi) and a corresponding data point x is generated by a possibly stochastic neural

network, the generative model. This setting allows to create input data x featuring correlations,
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differently from the teacher-student scenario. The studied supervised learning task then consists in
training a deep neural net, the recognition model, to recover the code y from x.

In both cases, the chain going from X to any later layer is a Markov chain in the form of (1). In
the first scenario, model (1) directly maps to the student network. In the second scenario however,
model (1) actually maps to the feed-forward combination of the generative model followed by the
recognition model. This shift is necessary to verify the assumption that the starting point (now
given by Y ) has a separable distribution. In particular, it generates correlated input data X while
still allowing for the computation of the entropy of any T`.

At the start of a neural network training, weight matrices initialized as i.i.d. Gaussian random
matrices satisfy the necessary assumptions of the formula of Claim 1. In their singular value
decomposition

W` = U`S`V` (7)

the matrices U` ∈ O(N`) and V` ∈ O(N`−1), are typical independent samples from the Haar measure
across all layers. To make sure weight matrices remain close enough to independent during learning,
we define a custom weight constraint which consists in keeping U` and V` fixed while only the matrix
S`, constrained to be diagonal, is updated. The number of parameters is thus reduced from N`×N`−1

to min(N`, N`−1). We refer to layers following this weight constraint as USV-layers. For the replica
formula of Claim 1 to be correct, the matrices S` from different layers should furthermore remain
uncorrelated during the learning. In Section 3, we consider the training of linear networks for which
information-theoretic quantities can be computed analytically, and confirm numerically that with
USV-layers the replica predicted entropy is correct at all times. In the following, we assume that is
also the case for non-linear networks.

In Section 3.2 of the Supplementary Material we train a neural network with USV-layers on
a simple real-world dataset (MNIST), showing that these layers can learn to represent complex
functions despite their restriction. We further note that such a product decomposition is reminiscent
of a series of works on adaptative structured efficient linear layers (SELLs and ACDC) [26, 27]
motivated this time by speed gains, where only diagonal matrices are learned (in these works the
matrices U` and V` are chosen instead as permutations of Fourier or Hadamard matrices, so that
the matrix multiplication can be replaced by fast transforms). In Section 3, we discuss learning
experiments with USV-layers on synthetic datasets.

While we have defined model (1) as a stochastic model, traditional feed forward neural networks
are deterministic. In the numerical experiments of Section 3, we train and test networks without
injecting noise, and only assume a noise model in the computation of information-theoretic quantities.
Indeed, for continuous variables the presence of noise is necessary for mutual informations to remain
finite (see discussion of Appendix C in [5]). We assume at layer ` an additive white Gaussian noise of
small amplitude just before passing through its activation function to obtain H(T`) and I(T`;T`−1),
while keeping the mapping X → T`−1 deterministic. This choice attempts to stay as close as possible
to the deterministic neural network, but remains inevitably somewhat arbitrary (see again discussion
of Appendix C in [5]).

Other related works— The strategy of studying neural networks models, with random weight
matrices and/or random data, using methods originated in statistical physics heuristics, such as the
replica and the cavity methods [10] has a long history. Before the deep learning era, this approach
led to pioneering results in learning for the Hopfield model [28] and for the random perceptron
[29, 30, 15, 16].

Recently, the successes of deep learning along with the disqualifying complexity of studying real
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world problems have sparked a revived interest in the direction of random weight matrices. Recent
results –without exhaustivity– were obtained on the spectrum of the Gram matrix at each layer
using random matrix theory [31, 32], on expressivity of deep neural networks [33], on the dynamics
of propagation and learning [34, 35, 36, 37], on the high-dimensional non-convex landscape where
the learning takes place [38], or on the universal random Gaussian neural nets of [39].

The information bottleneck theory [1] applied to neural networks consists in computing the
mutual information between the data and the learned hidden representations on the one hand, and
between labels and again hidden learned representations on the other hand [2, 3]. A successful
training should maximize the information with respect to the labels and simultaneously minimize the
information with respect to the input data, preventing overfitting and leading to a good generalization.
While this intuition suggests new learning algorithms and regularizers [40, 41, 42, 43, 44, 45, 46], we
can also hypothesize that this mechanism is already at play in a priori unrelated commonly used
optimization methods, such as the simple stochastic gradient descent (SGD). It was first tested in
practice by [3] on very small neural networks, to allow the entropy to be estimated by binning of
the hidden neurons activities. Afterwards, the authors of [5] reproduced the results of [3] on small
networks using the continuous entropy estimator of [44], but found that the overall behavior of
mutual information during learning is greatly affected when changing the nature of non-linearities.
Additionally, they investigate the training of larger linear networks on i.i.d. normally distributed
inputs where entropies at each hidden layer can be computed analytically for an additive Gaussian
noise. The strategy proposed in the present paper allows us to evaluate entropies and mutual
informations in non-linear networks larger than in [5, 3].

3 Numerical experiments

Estimators and activation comparisons— Two non-parametric estimators have already been
considered by [5] to compute entropies and/or mutual informations during learning. The kernel-
density approach of Kolchinsky et. al. [44] consists in fitting a mixture of Gaussians (MoG) to samples
of the variable of interest and subsequently compute an upper bound on the entropy of the MoG [47].
The method of Kraskov et al. [48] uses nearest neighbor distances between samples to directly build
an estimate of the entropy. Both methods require the computation of the matrix of distances between
samples. Recently, [45] proposed a new non-parametric estimator for mutual informations which
involves the optimization of a neural network to tighten a bound. It is unfortunately computationally
hard to test how these estimators behave in high dimension as even for a known distribution the
computation of the entropy is intractable (#P-complete) in most cases. However the replica method
proposed here is a valuable point of comparison for cases where it is rigorously exact.

In the first numerical experiment we place ourselves in the setting of Theorem 1: a 2-layer
network with i.i.d weight matrices, where the formula of Claim 1 is thus rigorously exact in the limit
of large networks, and we compare the replica results with the non-parametric estimators of [44]
and [48]. Note that the requirement for smooth activations (H2) of Theorem 1 can be relaxed (see
discussion below the Theorem). Additionally, non-smooth functions can be approximated arbitrarily
closely by smooth functions with equal information-theoretic quantities, up to numerical precision.

We consider a neural network with layers of equal size N = 1000 that we denote: X → T1 → T2.
The input variable components are i.i.d. Gaussian with mean 0 and variance 1. The weight matrices
entries are also i.i.d. Gaussian with mean 0. Their standard-deviation is rescaled by a factor 1/

√
N

and then multiplied by a coefficient σ varying between 0.1 and 10, i.e. around the recommended value
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for training initialization. To compute entropies, we consider noisy versions of the latent variables
where an additive white Gaussian noise of very small variance (σ2

noise = 10−5) is added right before
the activation function, T1 = f(W1X+ε1) and T2 = f(W2f(W1X) +ε2) with ε1,2 ∼ N (0, σ2

noiseIN ),
which is also done in the remaining experiments to guarantee the mutual informations to remain
finite. The non-parametric estimators [44, 48] were evaluated using 1000 samples, as the cost of
computing pairwise distances is significant in such high dimension and we checked that the entropy
estimate is stable over independent draws of a sample of such a size (error bars smaller than marker
size). On Figure 5, we compare the different estimates of H(T1) and H(T2) for different activation
functions: linear, hardtanh or ReLU. The hardtanh activation is a piecewise linear approximation of
the tanh, hardtanh(x)=−1 for x<−1, x for −1<x<1, and 1 for x>1, for which the integrals in
the replica formula can be evaluated faster than for the tanh.

In the linear and hardtanh case, the non-parametric methods are following the tendency of
the replica estimate when σ is varied, but appear to systematically over-estimate the entropy. For
linear networks with Gaussian inputs and additive Gaussian noise, every layer is also a multivariate
Gaussian and therefore entropies can be directly computed in closed form (exact in the plot legend).
When using the Kolchinsky estimate in the linear case we also check the consistency of two strategies,
either fitting the MoG to the noisy sample or fitting the MoG to the deterministic part of the T` and
augment the resulting variance with σ2

noise, as done in [44] (Kolchinsky et al. parametric in the plot
legend). In the network with hardtanh non-linearities, we check that for small weight values, the
entropies are the same as in a linear network with same weights (linear approx in the plot legend,
computed using the exact analytical result for linear networks and therefore plotted in a similar color
to exact). Lastly, in the case of the ReLU-ReLU network, we note that non-parametric methods are
predicting an entropy increasing as the one of a linear network with identical weights, whereas the
replica computation reflects its knowledge of the cut-off and accurately features a slope equal to half
of the linear network entropy (1/2 linear approx in the plot legend). While non-parametric estimators
are invaluable tools able to approximate entropies from the mere knowledge of samples,they inevitably
introduce estimation errors. The replica method is taking the opposite view. While being restricted
to a class of models, it can leverage its knowledge of the neural network structure to provide a
reliable estimate. To our knowledge, there is no other entropy estimator able to incorporate such
information about the underlying multi-layer model.

Beyond informing about estimators accuracy, this experiment also unveils a simple but possibly
important distinction between activation functions. For the hardtanh activation, as the random
weights magnitude increases, the entropies decrease after reaching a maximum, whereas they only
increase for the unbounded activation functions we consider – even for the single-side saturating
ReLU. This loss of information for bounded activations was also observed by [5], where entropies
were computed by discretizing the output as a single neuron with bins of equal size. In this setting,
as the tanh activation starts to saturate for large inputs, the extreme bins (at −1 and 1) concentrate
more and more probability mass, which explains the information loss. Here we confirm that the
phenomenon is also observed when computing the entropy of the hardtanh (without binning and
with small noise injected before the non-linearity). We check via the replica formula that the same
phenomenology arises for the mutual informations I(X;T`) (see Section3.1).

Learning experiments with linear networks— In the following, and in Section 3.3 of the the
Supplementary Material, we discuss training experiments of different instances of the deep learning
models defined in Section 2. We seek to study the simplest possible training strategies achieving
good generalization. Hence for all experiments we use plain stochastic gradient descent (SGD) with
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Figure 2: Entropy of latent variables in stochastic networks X → T1 → T2, with equally sized
layers N = 1000, inputs drawn from N (0, IN ), weights from N (0, σ2IN2/N), as a function of the
weight scaling parameter σ. An additive white Gaussian noise N (0, 10−5IN ) is added inside the
non-linearity. Left column: linear network. Center column: hardtanh-hardtanh network. Right
column: ReLU-ReLU network.

constant learning rates, without momentum and without any explicit form of regularization. The
sizes of the training and testing sets are taken equal and scale typically as a few hundreds times the
size of the input layer. Unless otherwise stated, plots correspond to single runs, yet we checked over
a few repetitions that outcomes of independent runs lead to identical qualitative behaviors. The
values of mutual informations I(X;T`) are computed by considering a noisy versions of the latent
variables where an additive white Gaussian noise of very small variance (σ2

noise = 10−5) is added
right before the activation function, as in the previous experiment. This noise is neither present
at training time, where it could act as a regularizer, nor at testing time. Given the noise is only
assumed at the last layer, the second to last layer is a deterministic mapping of the input variable;
hence the replica formula yielding mutual informations between adjacent layers gives us directly
I(T`;T`−1) = H(T`)−H(T`|T`−1) = H(T`)−H(T`|X) = I(T`;X). We provide a second Python
package [49] to implement in Keras learning experiments on synthetic datasets, using USV- layers
and interfacing the first Python package [12] for replica computations.

To start with we consider the training of a linear network in the teacher-student scenario. The
teacher has also to be linear to be learnable: we consider a simple single-layer network with additive
white Gaussian noise, Y = W̃teachX + ε, with input x ∼ N (0, IN ) of size N, teacher matrix W̃teach

i.i.d. normally distributed as N (0, 1/N) , noise ε ∼ N (0, 0.01IN ), and output of size NY = 4.
We train a student network of three USV-layers, plus one fully connected unconstrained layer
X → T1 → T2 → T3 → Ŷ on the regression task, using plain SGD for the MSE loss (Ŷ − Y )2. We
recall that in the USV-layers (7) only the diagonal matrix is updated during learning. On the left
panel of Figure 3, we report the learning curve and the mutual informations between the hidden
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Figure 3: Training of a 4-layer linear student of varying size on a regression task generated by a
linear teacher of output size NY = 4. Upper-left: MSE loss on the training and testing sets during
training by plain SGD for layers of size N = 1500. Best training loss is 0.004735, best testing loss is
0.004789. Lower-left: Corresponding mutual information evolution between hidden layers and input.
Center-left, center-right, right: maximum and squared error of the replica estimation of the mutual
information as a function of layers size N , over the course of 5 independent trainings for each value
of N for the first, second and third hidden layer.

layers and the input in the case where all layers but outputs have size N = 1500. Again this linear
setting is analytically tractable and does not require the replica formula, a similar situation was
studied in [5]. In agreement with their observations, we find that the mutual informations I(X;T`)
keep on increasing throughout the learning, without compromising the generalization ability of the
student. Now, we also use this linear setting to demonstrate (i) that the replica formula remains
correct throughout the learning of the USV-layers and (ii) that the replica method gets closer and
closer to the exact result in the limit of large networks, as theoretically predicted (2). To this aim,
we repeat the experiment for N varying between 100 and 1500, and report the maximum and the
mean value of the squared error on the estimation of the I(X;T`) over all epochs of 5 independent
training runs. We find that even if errors tend to increase with the number of layers, they remain
objectively very small and decrease drastically as the size of the layers increases.

Learning experiments with deep non-linear networks— Finally, we apply the replica
formula to estimate mutual informations during the training of non-linear networks on correlated
input data.

We consider a simple single layer generative model X = W̃genY + ε with normally distributed
code Y ∼ N (0, INY ) of size NY = 100, data of size NX = 500 generated with matrix W̃gen i.i.d.
normally distributed as N (0, 1/NY ) and noise ε ∼ N (0, 0.01INX ). We then train a recognition
model to solve the binary classification problem of recovering the label y = sign(Y1), the sign of
the first neuron in Y , using plain SGD but this time to minimize the cross-entropy loss. Note
that the rest of the initial code (Y2, ..YNY

) acts as noise/nuisance with respect to the learning task.
We compare two 5-layers recognition models with 4 USV- layers plus one unconstrained, of sizes
500-1000-500-250-100-2, and activations either linear-ReLU-linear-ReLU-softmax (top row of Figure
4) or linear-hardtanh-linear-hardtanh-softmax (bottom row). Because USV-layers only feature O(N)
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Figure 4: Training of two recognition models on a binary classification task with correlated input
data and either ReLU (top) or hardtanh (bottom) non-linearities. Left: training and generalization
cross-entropy loss (left axis) and accuracies (right axis) during learning. Best training-testing
accuracies are 0.995 - 0.991 for ReLU version (top row) and 0.998 - 0.996 for hardtanh version
(bottom row). Remaining colums: mutual information between the input and successive hidden
layers. Insets zoom on the first epochs.

parameters instead of O(N2) we observe that they require more iterations to train in general. In
the case of the ReLU network, adding interleaved linear layers was key to successful training with 2
non-linearities, which explains the somewhat unusual architecture proposed. For the recognition
model using hardtanh, this was actually not an issue (see Supplementary Material for an experiment
using only hardtanh activations), however, we consider a similar architecture for fair comparison.
We discuss further the ability of learning of USV-layers in the Supplementary Material.

This experiment is reminiscent of the setting of [3], yet now tractable for networks of larger sizes.
For both types of non-linearities we observe that the mutual information between the input and all
hidden layers decrease during the learning, except for the very beginning of training where we can
sometimes observe a short phase of increase (see zoom in insets). For the hardtanh layers this phase
is longer and the initial increase of noticeable amplitude.

In this particular experiment, the claim of [3] that compression can occur during training even
with non double-saturated activation seems corroborated (a phenomenon that was not observed
by [5]). Yet we do not observe that the compression is more pronounced in deeper layers and its
link to generalization remains elusive. For instance, we do not see a delay in the generalization
w.r.t. training accuracy/loss in the recognition model with hardtanh despite of an initial phase
without compression in two layers. Further learning experiments, including a second run of this last
experiment, are presented in the Supplementary Material.
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4 Conclusion and perspectives

We have presented a class of deep learning models together with a tractable method to compute
entropy and mutual information between layers. This, we believe, offers a promising framework
for further investigations, and to this aim we provide Python packages that facilitate both the
computation of mutual informations and the training, for an arbitrary implementation of the model.

We observe in our high-dimensional experiments that compression does happen during learning,
even when using ReLU activations. While we did not observe a clear link between generalization
and compression in our setting, there are many directions to be further explored within the models
presented in Section 2. Studying the entropic effect of regularizers is a natural step to formulate
an entropic interpretation to generalization. Furthermore, while our experiments focused on the
supervised learning, the replica formula derived for multi-layer models is general and can be applied
in unsupervised contexts, for instance in the theory of VAEs. On the rigorous side, the greater
perspective remains proving the replica formula in the general case of multi-layer models, and further
confirm that the replica formula stays true after the learning of the USV-layers. Another question
worth of future investigation is whether the replica method can be used to describe not only entropies
and mutual informations for learned USV-layers, but also the optimal learning of the weights itself.
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1 Replica formula for the entropy

1.1 Background

The replica method [1, 2] was first developed in the context of disordered physical systems where
the strength of interactions J are randomly distributed, J ∼ PJ(J). Given the distribution of
microstates x at a fixed temperature β−1, P (x|β, J) = 1

Z(β,J) e
−βHJ (x), one is typically interested

in the average free energy

F(β) = − lim
N→∞

1

βN
EJ logZ(β, J), (8)

from which typical macroscopic behavior is obtained. Computing (8) is hard in general, but can be
done with the use of specific techniques. The replica method in particular employs the following
mathematical identity

EJ logZ = lim
n→0

EJZn − 1

n
. (9)

Evaluating the average on the r.h.s. leads, under the replica-symmetry assumption, to an expression
of the form EJZn = e−βNn extrq φ(β,q), where φ(β, q) is known as the replica-symmetric free energy,
and q are order parameters related to macroscopic quantities of the system. We then write
F(β) = extrq φ(β, q), so that computing F depends on solving the saddle-point equations∇qφ

∣∣
q∗

= 0.
Computing (8) is of interest in many problems outside of physics [3, 4]. Early applications of the

replica method in machine learning include the evaluation of the optimal capacity and generalization
error of the perceptron [5, 6, 7, 8, 9]. More recently it has also been used in the study of problems
in telecommunications and signal processing, such as channel divison multiple access [10] and
compressed sensing [11, 12, 13, 14]. For a review of these developments see [15].

These particular examples all share the following common probabilistic structure{
y ∼ PY |Z(y|Wx),

x ∼ PX(x),
(10)

for fixed W and different choices of PY |Z and PX ; in other words, they are all specific instances
of generalized linear models (GLMs). Using Bayes theorem, one writes the posterior distribution
of x as P (x|W,y) = 1

P (W,y) PY |Z(y|Wx)PX(x); the replica method is then employed to evaluate
the average log-marginal likelihood EW,y logP (W,y), which gives us typical properties of the model.
Note this quantity is nothing but the entropy of y given W , H(y|W ).

The distribution PJ (or PW in the notation above) is usually assumed to be i.i.d. on the elements
of the matrix J . However, one can also use the same techniques to approach J belonging to arbitrary
orthogonally-invariant ensembles. This approach was pioneered by [16, 17, 18, 19], and in the context
of generalized linear models by [20, 21, 22, 23, 24, 25, 26].

Generalizing the analysis of (10) to multi-layer models has first been considered by [27] in the
context of Gaussian i.i.d. matrices, and by [28, 29] for orthogonally-invariant ensembles. In particular,
[29] has an expression for the replica free energy which should be in principle equivalent to the one
we present, although its focus is in the derivation of this expression rather than applications or
explicit computations.

Finally, it is worth mentioning that even though the replica method is usually considered to be
non-rigorous, its results have been proven to be exact for different classes of models, including GLMs
[30, 31, 32, 33, 34, 35], and are widely conjectured to be exact in general. In fact, in section 2 we
show how to proove the formula in the particular case of two-layer with Gaussian matrices.
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1.2 Entropy in single/multi-layer generalized linear models

1.2.1 Single-layer

For a single-layer generalized linear model{
x ∼ PX(x),

y ∼ PY |Z(y|Wx).
(11)

with PX and PY |Z separable in the components of x ∈ RN and y ∈ RM , and W ∈ RM×N Gaussian
i.i.d., Wµi ∼ N (0, 1/N), define α = M/N and ρ = Exx2. Then the entropy of y in the limit N →∞
is given by [15, 35]

lim
N→∞

N−1H(y|W ) = min extr
A,V

φ(A, V ), (12)

where
φ(A, V ) = −1

2
AV + I(x;x+

ξ0√
A

) + αH(y|ξ1;V, ρ), (13)

with ξ0, ξ1 both normally distributed with zero mean and unit variance, and P (y|ξ;V, ρ) =∫
Dz̃ PY |Z(y|√ρ− V ξ +

√
V z̃) (here Dz̃ denotes integration over a standard Gaussian measure).

This can be adapted to orthogonally-invariant ensembles by using the techniques described in
[22]. Let W = USV T , where U is orthogonal, S diagonal and arbitrary and V is Haar distributed.
We denote by πW (λW ) the distribution of eigenvalues of W TW , and the second moment of z = Wx
by ρ̃ = EλW

α ρ. The entropy is then written as N−1H(y|W ) = min extrA,V,Ã,Ṽ φ(A, V, Ã, Ṽ ), where

φ(A, V, Ã, Ṽ ) = −1

2

(
ÃV + αAṼ − FW (AV )

)
+ I(x;x+

ξ0√
Ã

) + αH(y|ξ1; Ṽ , ρ̃), (14)

and
FW (x) = min

θ

{
2αθ + (α− 1) log(1− θ) + EλW log[xλW + (1− θ)(1− αθ)]

}
. (15)

If the matrix is Gaussian i.i.d., πW (λW ) is Marchenko-Pastur and FW (AV ) = αAV . Extremizing
over A gives Ṽ = V , so that (13) is recovered. In this precise case, it has been proven rigorously in
[35].

1.2.2 Multi-layer

Consider the following multi-layer generalized linear model

t0,i ≡ xi ∼ P0(xi),

t1,i ∼ P1(t1,i|W1x),

t2,i ∼ P2(t2,i|W2t1),

...
tL,i ≡ yi ∼ PL(y|WLtL−1),

(16)

where the W` ∈ Rn`×n`−1 are fixed, and the i index runs from 0 to n`. Using Bayes’ theorem we can
write

P (t0|tL,W )=
1

P (tL,W )

∫ L−1∏
`=1

dt`

L∏
`=1

P (t`|W`t`−1)P (t0). (17)
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with W = {W`}`=1,...,L. Performing posterior inference requires one to evaluate the marginal
likelihood

P (tL,W ) =

∫ L−1∏
`=0

dt`

L∏
`=1

P (t`|W`t`−1)P (t0), (18)

which is in general hard to do. Our analysis employs the framework introduced in [27] to compute
the entropy of tL in the limit n0 →∞ with α̃` = n`/n0 finite for ` = 1, . . . , L

lim
n0→∞

n−1
0 H(tL|W ) = min extr

A,V ,Ã,Ṽ
φ(A,V , Ã, Ṽ ), (19)

with the replica potential φ given by

φ(A,V , Ã, Ṽ ) = −1

2

L∑
`=1

α̃`−1

[
Ã`V` + α`A`Ṽ` − FW`

(A`V`)
]

+ I(t0; t0 +
ξ0√
Ã1

) + (20)

+

L−1∑
`=1

α̃`

[
H(t`|ξ`; Ã`+1, Ṽ`, ρ̃`)−

1

2
log(2πeÃ`+1)

]
+ α̃LH(tL|ξL; ṼL, ρ̃L).

and the ξ normally distributed with zero mean and unit variance. The t` in the expression above
are distributed as

P (t`|ξ`;A, V, ρ) =

∫
Dξ̃Dz̃ P`(t` +

√
1/Aξ̃|

√
ρ− V ξ` +

√
V z̃), (21)

P (tL|ξL;V, ρ) =

∫
Dz̃ PL(tL|

√
ρ− V ξL +

√
V z̃). (22)

where
∫
Dz (·) =

∫
dzN (z; 0, 1) (·) denotes the integration over the standard Gaussian measure.

1.3 A simple heuristic derivation of the multi-layer formula

Formula (20) can be derived using a simple argument. Consider the case L = 2, where the model
reads 

t0 ∼ P0(t0),

t1 ∼ P1(t1|W1t0),

t2 ∼ P2(t2|W2t1),

(23)

with t` ∈ Rn` and W ∈ Rn`×n`−1 . For the problem of estimating t1 given the knowledge of t2, we
compute limn1→∞ n

−1
1 H(t2|W1) using the replica free energy (14)

φ(A2, V2, Ã2, Ṽ2)=−1

2

(
Ã2V2 + α2A2Ṽ2 − FW2(A2V2)

)
+ (24)

+ I(t1; t1 +
ξ̃1√
Ã2

) + α2H(t2|ξ2; Ṽ2, ρ̃2). (25)

Note that

I(t1; t1 +
ξ̃1√
Ã2

) = H
(
t1 +

ξ̃1√
Ã2

)
−H

( ξ̃1√
Ã2

)
= H

(
t1 +

ξ̃1√
Ã2

)
− 1

2
log(2πeÃ2).

(26)
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Moreover, H(t1 + ξ̃1/
√
Ã2) can be obtained from the replica free energy of another problem: that of

estimating t0 given the knowledge of (noisy) t1, which can again be written using (14)

lim
n0→∞

n−1
0 H(t1 +

ξ̃1√
Ã2

) = min extr
A1,V1,Ã1,Ṽ1

φ1(A1, V1, Ã1, Ṽ1), (27)

with

φ1(A1, V1, Ã1, Ṽ1)=−1

2

(
Ã1V1 + α1A1Ṽ1 − FW1(A1V1)

)
+ (28)

+ I(t0; t0 +
ξ0√
Ã1

) + α1H(t1|ξ1; Ã1, Ṽ1, ρ̃1), (29)

and the noise ξ̃1 being integrated in the computation of H(t1|ξ1), see (22). Replacing (26)-(29)
in (25) gives our formula (20) for L = 2; further repeating this procedure allows one to write the
equations for arbitrary L.

1.4 Formulation in terms of tractable integrals

While expression (20) is more easily written in terms of conditional entropies and mutual informations,
evaluating it requires us to explicitely state it in terms of integrals, which we do below. We first
consider the Gaussian i.i.d. In this case, the multi-layer formula was derived with the cavity and
replica method by [27], and we shall use their results here. Assuming that W` ∈ Rn`×n`−1 such that
W`,µi ∼ N (0, 1/n`−1) and using the replica formalism, Claim 1 from the main text becomes, in this
case

lim
n0→∞

n−1
0 H(tL|W ) = min extr

A,V
φ(A,V ), (30)

with the replica potential φ evaluated from

φ(A,V ) =
1

2

L∑
`=1

α̃`−1A`(ρ` − V`)−K(A,V ,ρ), (31)

and

K(A,V ,ρ) = K0(A1) +

L−1∑
`=1

α̃`K`(A`+1, V`, ρ`) + α̃LKL(VL, ρL). (32)

The constants α`, α̃` and ρ` are defined as following1: α` = n`/n`−1, α̃` = n`/n0, ρ` =
∫
dt P`−1(t) t2.

Moreover
K`(A, V, ρ) = Eb,t,z,w|A,V,ρ logZ`(A, b, V, w), (33)

for 1 ≤ ` ≤ L− 1, and
K0(A) = Eb,x|A logZ0(A, b),

KL(V, ρ) = Ey,z,w|V,ρ logZL(y, V, w).
(34)

1Note that due to the central limit theorem, ρ` can be evaluated from ρ`−1 using ρ` =
∫
dtdz P`(t|z)N (z; 0, ρ`−1) t

2.
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where

Z0(A,B)=
∫
dxP0(x)e−

1
2
Ax2+Bx,

Z`(A,B, V, ω)=
∫
dtdz P`(t|z)N (z;ω, V )e−

1
2
At2+Bt,

ZL(y, V, ω)=
∫
dz PL(y|z)N (z;ω, V ). (35)

and the measures over which expectations are computed are

p0(b, x;A)=P0(x)N (b;Ax,A),

p`(b, t, z, w;A, V, ρ)=P`(t|z)N (b;At,A)N (z;w, V )N (w, 0,m), (36)
pL(y, z, w;V, ρ)=PL(y|z)N (z;w, V )N (w; 0, ρ−V ).

We typically pick the likelihoods P` so that Z` can be computed in closed-form, which allows for
a number of activation functions – linear, probit, ReLU etc. However, our analysis is quite general
and can be done for arbitrary likelihoods, as long as evaluating (33) and (34) is computationally
feasible.

Finally, the replica potential above can be generalized to the orthogonally-invariant case using
the framework of [22], which we have described in the previous subsection

φ(A,V , Ã, Ṽ ) = −1

2

L∑
`=1

α̃`−1

[
Ã`V` + α`A`Ṽ` − FW`

(A`V`)
]

+ I(t0; t0 +
ξ0√
A1

) + (37)

+
L−1∑
`=1

α̃`

[
H(t`|ξ`;A`+1, V`, ρ̃`)−

1

2
log(2πeA`)

]
+ α̃LH(tL|ξL).

If the matrix W` is Gaussian i.i.d., the distribution of eigenvalues of W T
` W` is Marchenko-Pastur

and one gets FW`
(A`V`) = α`A`V`, Ã` = α`A`, Ṽ` = V`, so that (31) is recovered. Moreover, for

L = 1, one obtains the replica free energy proposed by [22, 23, 24].

1.4.1 Recovering the formulation in terms of conditional entropies

One can rewrite the formulas above in a simpler way. By manipulating the measures (36) one obtains

K0(A, ρ) = −I(x; b) +
1

2
Aρ, (38)

for x ∼ P0(x) and b ∼ N (b;Ax,A). Introducing a standard normal variable ξ0 and using the
invariance of mutual informations, this can be written as

K0(A, ρ) = −I(x;x+
√

1/Aξ0) +
1

2
Aρ. (39)

Similarly
KL(V, ρ) = −H(y|w;V ), (40)

for P (y|w;V ) =
∫
dzPL(y|z)N (z;w, V ) and P (w;V, ρ) = N (w; 0, ρ − V ). Introducing standard

normal ξL
KL(V, ρ) = −H(y|ξL;V, ρ). (41)
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where
P (y|ξL;V, ρ) =

∫
Dz̃ PL(y|

√
ρ− V ξL +

√
V z̃), (42)

and
∫
Dz̃ (·) =

∫
dz̃N (z; 0, 1) (·) denotes integration over the standard Gaussian measure.

Finally, for the K`

K`(A, V, ρ) = −H(b|w;A, V, ρ) +
1

2
Aρ+

1

2
log(2πeA), (43)

for P (b|w;A, V ) =
∫
dtdzN (b;At,A)P`(t|z)N (z;w, V ) and P (w;V, ρ) = N (w; 0, ρ−V ). Introducing

standard normal ξ`

K`(A, V, ρ) = −H(t`|ξ`;A, V ) +
1

2
Aρ+

1

2
log(2πeA). (44)

where
P (t`|ξ`;A, V, ρ) =

∫
Dξ̃Dz̃ P`(t` +

√
1/Aξ̃|

√
ρ− V ξ` +

√
V z̃). (45)

We can then rewrite (32) as

K(A,V ,ρ) =
1

2

L∑
`=1

α̃`−1A`ρ` − I(t0; t0 +
ξ0√
A1

)−

−
L−1∑
`=1

α̃`

[
H(t`|ξ`;A`+1, V`, ρ`)−

1

2
log(2πeA`+1)

]
− α̃LH(tL|ξL;VL, ρL).

(46)

Replacing in (31) yields

φ(A,V ) = −1

2

L∑
`=1

α̃`−1A`V` + I(t0; t0 +
ξ0√
A1

)+

+

L−1∑
`=1

α̃`

[
H(t`|ξ`;A`+1, V`, ρ`)−

1

2
log(2πeA`+1)

]
+ α̃LH(tL|ξL;VL, ρL).

(47)

1.5 Solving saddle-point equations

In order to deal with the extremization problem in

lim
n0→∞

n−1
0 H(tL|W ) = min extr

A,V ,Ã,Ṽ
φ(A,V , Ã, Ṽ ), (48)

one needs to solve the saddle-point equations ∇{A,V ,Ã,Ṽ }φ = 0. In what follows we propose two
different methods to do that: a fixed-point iteration, and the state evolution of the ML-VAMP
algorithm [28].
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1.5.1 Method 1: fixed-point iteration

We first introduce the following function, which is related to the derivatives of FW`

ψ`(θ, γ) = 1− γ
[
S`
(
− γ−1(1− θ)(1− α`θ)

)]−1
, (49)

where S`(z) = Eλ`
1

λ`−z is the Stieltjes transform of W T
` W`, see e.g. [36]. In our experiments we have

evaluated S approximately by using the empirical distribution of eigenvalues.
The fixed point iteration consist in looping through layers L to 1, first computing the ϑ` which

minimizes (15), and Ṽ`
ϑ

(t)
` = arg min

θ

[
θ − ψ`(θ,A(t)

` V
(t)
` )
]2
,

Ṽ
(t)
` = ϑ

(t)
` /A

(t)
` ,

(50)

then A(t+1)
` , which for layers 1 ≤ ` ≤ L− 1 comes from

A
(t+1)
` = −Eb,t,z,w|ρ̃`,Ã`+1,Ṽ`

∂2
w logZ`(Ã

(t)
`+1, b, Ṽ

(t)
` , w), (51)

and for the L-th layer, from

A
(t+1)
L = −Ey,z,w|ρ̃L,ṼL∂

2
w logZL(y, ṼL, w). (52)

Finally, we recompute ϑ` using A
(t+1)
` , and Ã`

ϑ
(t+ 1

2
)

` = arg min
θ

[
θ − ψ`(θ,A(t+1)

` V
(t)
` )
]2
,

Ã
(t)
` = α`ϑ

(t+ 1
2

)

` /V
(t)
` .

(53)

and move on to the next layer. After these quantities are computed for all layers, we compute all
the V`; for 2 ≤ ` ≤ L

V
(t+1)
` = Eb,t,z,w|ρ̃`−1,Ã`,Ṽ`−1

∂2
b logZ`(Ã

(t)
` , b, Ṽ

(t)
`−1, w), (54)

and for the 1st layer
V

(t+1)
1 = Eb,x|Ã1

∂b logZ1(Ã
(t)
1 , b). (55)

This particular order has been chosen so that if W` is Gaussian i.i.d., θ(t)
` = A

(t)
` V

(t)
` and one

recovers the state evolution equations in [27].
The set of initial conditions is picked so as to cover the basin of attraction of typical fixed points.

In our experiments we have chosen (A
(0)
i,` , V

(0)
i,` ) ∈ {(ρ−1

` , ρ`), (δ
−1, δ)}, with δ = 10−10.

1.5.2 Method 2: ML-VAMP state evolution

While the fixed-point iteration above works well in most cases, it is not provably convergent. In
particular, it relies on a solution for θ = ψ`(θ,A

(t)
` V

(t)
` ) being found, which might not happen

throughout the iteration.
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Algorithm 1 Compute entropy H(yL|W )

Require: {A(1)
i ,V

(1)
i }ninit

i=1 , ε, tmax

for i = 1→ ninit do (loop through initial conditions)
t← 0
while D < ε or t < tmax do (at each time step . . . )
for ` = L→ 1 do (. . . loop through layers)
compute ϑ(t)

` , Ṽ (t)
` using (50)

compute A(t+1)
` using (51) or (52)

compute ϑ(t+ 1
2

)

` , Ã(t)
` using (53)

end for
compute V (t+1)

` ∀` using (54) or (55)
D ←∑

` |V
(t+1)
` − V (t)

` |
t← t+ 1

end while
Hi ← φ(A(t),V (t), Ã(t), Ṽ (t))

end for
return miniHi

An alternative is to employ the state evolution (SE) of the ML-VAMP algorithm [28], which
leads to the same fixed points as the scheme above under certain conditions. Let us first look at the
single-layer case; the ML-VAMP SE equations read

A+
x =

1

V +
x (A−x )

−A−x , A+
z =

1

V +
z (A+

x , 1/A
−
z )
−A−z , (56)

A−x =
1

V −x (A+
x , 1/A

−
z )
−A+

x , A−z =
1

V −z (A+
z )
−A+

z , (57)

where

V +
x (A) = Ex,z∂2

B logZ0(A,Ax+
√
Az), (58)

V +
z (A, σ2) = σ2 lim

M→∞

1

M
Tr
[
Φ(ΦTΦ +Aσ2)−1ΦT

]
= α−1σ2

(
1−Aσ2 S(−Aσ2)

)
, (59)

V −x (A, σ2) = σ2 lim
N→∞

1

N
Tr
[
(ΦTΦ +Aσ2)−1

]
= σ2 S(−Aσ2), (60)

V −z (A) =
1

A
+

1

A2
Ey,w,z∂2

w logZ1(y, w, 1/A)︸ ︷︷ ︸
−ḡ(A)

. (61)

Combining (57) and (61) yields

1/A−z =
1

ḡ(A+
z )
− 1

A+
z
. (62)

At the fixed points

Vx ≡ V +
x = V −x =

1

A+
x +A−x

, Vz ≡ V +
z = V −z =

1

A+
z +A−z

. (63)
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as well as
Vz =

1−A+
x Vx

αA−z
=
A−x Vx

αA−z
⇒ α

A−z
A−z +A+

z
=

A−x
A−x +A+

x
(64)

One can show these conditions also hold for the above scheme, under the following mapping of
variables:

V = Vx, Ã = A−x , Ṽ = 1/A+
z , A = A−z A

+
z Vz = ḡ(A+

z ), θ = A−z Vz =
1

1 + A+
z

A−z

. (65)

These equations are easily generalizable to the multi-layer case; the equations for A+
z and A−x

remain the same, while the equations for A+
x and A−z become

A+
x`

=
1

V +
x` (A

−
x` , 1/A

+
z`−1)

−A−x` , (66)

A−z`−1
=

1

V −z`−1(A−x` , 1/A
+
z`−1)

−A+
z`−1

, (67)

where

V +
x`

(A, V ) = Eb,t,z,w ∂2
B logZ`(A, b, V, w), (68)

V −z`−1
(A, V ) =

1

A
+

1

A2
Eb,t,z,w ∂2

w logZ`(A, b, V, w). (69)

Note that the quantities in (58), (61), (68) and (69) were already being evaluated in the scheme
described in the previous subsection.

1.6 Further considerations

1.6.1 Mutual information from entropy

While in our computations we focus on the entropy H(T`), the mutual information I(T`;T`−1) can
be easily obtained from the chain rule relation

I(T`;T`−1) = H(T`) + ET`,T`−1
logPT`|T`−1

(t`|t`−1)

= H(T`) +

∫
dzN (z; 0, ρ̃`)

∫
dhP`(h|z) logP`(h|z), (70)

where in order to go from the first to the second line we have used the central limit theorem. In
particular if the mapping X → T`−1 is deterministic, as typically enforced in the models we use in
the experiments, then I(T`;T`−1) = I(T`;X).

1.6.2 Equivalence in linear case

In the linear case, Y = WLWL−1 · · ·W1X +N (0,∆), our formula reduces to [22, 25, 37]

lim
N→∞

N−1I(Y ;X) = min extr
A,V

{
−1

2
AV − 1

2
G(−V/∆) + I(x;x+

√
1/Aξ)

}
, (71)

where
G(x) = extr

Λ
{−Eλ log |λ− Λ|+ Λx} − (log |x|+ 1), (72)
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is also known as the integrated R-transform, with λ the eigenvalues of W TW , W ≡WLWL−1 · · ·W1.
If P0 is Gaussian, then I(x;x+

√
1/Aξ) = 1

2 log(1 +A); extremizing over A and V then gives

A = 1/V − 1, V = ∆S(−∆), (73)

where S(z) is the Stieltjes transform of W TW . The mutual information can then be rewritten as

lim
N→∞

N−1I(Y ;X) =
1

2
Eλ log(λ+ ∆)− 1

2
log ∆. (74)

This same result can be achieved analytically with much less effort, since in this case PY (y) =
N (y; 0,∆IM +WW T ).

2 Proof of the replica formula by the adaptive interpolation method

2.1 Two-layer generalized linear estimation: Problem statement

One gives here a generic description of the observation model, that is a two-layer generalized linear
model (GLM). Let n0, n1, n2 ∈ N∗ and define the triplet n = (n0, n1, n2). Let P0 be a probability
distribution over R and let (X0

i )n0
i=1

i.i.d.∼ P0 be the components of a signal vector X0. One fixes two
functions ϕ1 : R × Rk1 → R and ϕ2 : R × Rk2 → R, k1, k2 ∈ N. They act component-wise, i.e. if
x ∈ Rm and A ∈ Rm×ki then ϕi(x,A) ∈ Rm is a vector with entries [ϕi(x,A)]µ := ϕi(xµ,Aµ),
Aµ being the µ-th row of A. For i ∈ {1, 2}, consider (Ai,µ)niµ=1

i.i.d.∼ PAi where PAi is a probability
distribution over Rki . One acquires n2 measurements through

Yµ = ϕ2

( 1√
n1

[
W2ϕ1

(W1X
0

√
n0

,A1

)]
µ
,A2,µ

)
+
√

∆Zµ , 1 ≤ µ ≤ n2 . (75)

Here (Zµ)n2
µ=1

i.i.d.∼ N (0, 1) is an additive Gaussian noise, ∆ > 0, and W1 ∈ Rn1×n0 , W2 ∈ Rn2×n1 are
measurement matrices whose entries are i.i.d. with respect to (w.r.t.) N (0, 1). Equivalently,

Yµ ∼ Pout,2

(
·
∣∣∣ 1√
n1

[
W2ϕ1

(W1X
0

√
n0

,A1

)]
µ

)
(76)

where the transition density, w.r.t. Lebesgue’s measure, is

Pout,2

(
y
∣∣x) =

∫
dPA2(a)

1√
2π∆

e−
1

2∆
(y−ϕ2(x,a))2

. (77)

Our analysis uses both representations (75) and (76). The estimation problem is to recover X0 from
the knowledge of Y = (Yµ)n2

µ=1, ϕ1, ϕ2, W1, W2, ∆, P0.
In the language of statistical mechanics, the random variables Y, W1, W2, X0, A1, A2, Z are

called quenched variables because once the measurements are acquired they have a “fixed realization”.
An expectation taken w.r.t. all quenched random variables appearing in an expression will simply be
denoted by E without subscript. Subscripts are only used when the expectation carries over a subset
of random variables appearing in an expression or when some confusion could arise.

After definition of the Hamiltonian

H(x,a1;Y,W1,W2) := −
n2∑
µ=1

lnPout,2

(
Yµ

∣∣∣ 1√
n1

[
W2ϕ1

(W1x√
n0
,a1

)]
µ

)
, (78)
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the joint posterior distribution of (x, a1) given the quenched variables Y, W1, W2 reads (Bayes
formula)

dP (x,a1|Y,W1,W2) =
1

Z(Y,W1,W2)
dP0(x)dPA1(a1)e−H(x,a1;Y,W1,W2) ; (79)

dP0(x) =
∏n0
i=1 dP0(xi) being the prior over the signal and dPA1(a1) :=

∏n1
i=1 dPA1(a1,i). The

partition function is defined as

Z(Y,W1,W2)

:=

∫
dP0(x)dPA1(a1)dPA2(a2)

n2∏
µ=1

1√
2π∆

e
− 1

2∆

(
Yµ−ϕ2

(
1√
n1

[
W2ϕ1

(
W1x√
n0
,a1

)]
µ
,a2,µ

))2

. (80)

One introduces a standard statistical mechanics notation for the expectation w.r.t. the posterior
(79), the so called Gibbs bracket 〈−〉 defined for any continuous bounded function g as

〈g(x,a1)〉 :=

∫
dP (x,a1|Y,W1,W2)g(x,a1) (81)

One important quantity is the associated averaged free entropy (or minus the averaged free energy)

fn :=
1

n0
E lnZ(Y,W1,W2) . (82)

It is perhaps useful to stress that Z(Y,W1,W2) is nothing else than the density of Y conditioned
on W1,W2; so we have the explicit representation (used later on)

fn =
1

n0
EW1,W2

∫
dYZ(Y,W1,W2) lnZ(Y,W1,W2)

=
1

n0
EW1,W2

[∫
dYdP0(X0)dPA1(A1)e−H(X0,A1;Y,W1,W2)

· ln
∫
dP0(x)dPA1(a1)e−H(x,a1;Y,W1,W2)

]
, (83)

where dY =
n2∏
µ=1

dYµ.

This appendix presents the derivation, thanks to the adaptive interpolation method, of the
thermodynamic limit limn→∞ fn in the “high-dimensional regime”, namely when n0, n1, n2 → +∞
such that n2/n1 → α2 > 0, n1/n0 → α1 > 0. In this high-dimensional regime, the “measurement rate”
satisfies n2/n0 → α := α1 · α2.

2.2 Important scalar inference channels

The thermodynamic limit of the free entropy will be expressed in terms of the free entropy of
simple scalar inference channels. This “decoupling property” results from the mean-field approach in
statistical physics, used through in the replica method to perform a formal calculation of the free
entropy of the model [2, 4]. This section presents these three scalar denoising models.
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The first channel is an additive Gaussian one. Let r ≥ 0 play the role of a signal-to-noise
ratio. Consider the inference problem consisting of retrieving X0 ∼ P0 from the observation
Y0 =

√
r X0 + Z0, where Z0 ∼ N (0, 1) independently of X0. The associated posterior distribution is

dP (x|Y0) =
dP0(x)e

√
r Y0x−rx2/2∫

dP0(x)e
√
r Y0x−rx2/2

. (84)

The free entropy associated to this channel is just the expectation of the logarithm of the normalization
factor

ψP0(r) := E ln

∫
dP0(x)e

√
r Y0x−rx2/2 . (85)

The second scalar channel appearing naturally in the problem is linked to Pout,2 through the
following inference model. Suppose that V,U i.i.d.∼ N (0, 1) where V is known, while the inference
problem is to recover the unknown U from the observation

Ỹ0 ∼ Pout,2

(
· |√q V +

√
ρ− q U

)
, (86)

where ρ > 0, q ∈ [0, ρ]. The free entropy for this model, again related to the normalization factor of
the posterior dP (u|Ỹ0, V ), is

ΨPout,2(q; ρ) := E ln

∫
DuPout,2

(
Ỹ0|
√
q V +

√
ρ− q u

)
, (87)

where Du = du(2π)−1/2e−w
2/2 is the standard Gaussian measure.

The third scalar channel to play a role is linked to the hidden layer X1 := ϕ1

(
W1X0/√n0,A1

)
of the two-layer GLM. Suppose that V,U i.i.d.∼ N (0, 1), where V is known. Consider the problem
of recovering U from the observation Y ′0 =

√
rϕ1(
√
q V +

√
ρ− q U,A1) + Z ′ where r ≥ 0, ρ > 0,

q ∈ [0, ρ], Z ′ ∼ N (0, 1) and A1 ∼ PA1 . Equivalently, Y ′0 ∼ P
(r)
out,1(·|√q V +

√
ρ− q U) with

P
(r)
out,1(y|x) :=

∫
dPA1(a)

1√
2π
e−

1
2

(y−
√
rϕ1(x,a))2

. (88)

From this last description, it is easy to see that the free entropy for this model is given by a formula
similar to (87). Introducing δ( · − ϕ1(x,a)), the Dirac measure centred on ϕ1(x,a), it reads

Ψ
P

(r)
out,1

(q; ρ) = E ln

∫
DuP (r)

out,1

(
Y ′0 |
√
q V +

√
ρ− q u

)
= E ln

∫
DudPA1(a)dh

1√
2π
e−

1
2

(Y ′0−
√
rh)2

δ
(
h− ϕ1(

√
q V +

√
ρ− q u,a)

)
= − ln(2π) + E[(Y ′0)2]

2

+ E ln

∫
DudPA1(a)dhe

√
rhY ′0−

rh2

2 δ
(
h− ϕ1(

√
q V +

√
ρ− q u,a)

)
.

The second moment of Y ′0 is simply E[(Y ′0)2] = rE[ϕ2
1(T,A1)] + 1 with T ∼ N (0, ρ), A1 ∼ PA1 .

Hence

Ψ
P

(r)
out,1

(q; ρ) = −1 + ln(2π) + rE[ϕ2
1(T,A1)]

2
+ Ψϕ1(q, r; ρ) (89)

where

Ψϕ1(q, r; ρ) := E ln

∫
DudPA1(a)dhe

√
rhY ′0−

rh2

2 δ
(
h− ϕ1(

√
q V +

√
ρ− q u,a)

)
. (90)
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2.3 Replica-symmetric formula and mutual information

Our goal is to prove Theorem 1 that gives a single-letter replica-symmetric formula for the asymptotic
free entropy of model (75), (76). The result holds under the following hypotheses:

(H1) The prior distribution P0 has a bounded support.
(H2) ϕ1, ϕ2 are bounded C2 functions with bounded first and second derivatives w.r.t. their first

argument.
(H3) W1, W2 have entries i.i.d. with respect to N (0, 1).

Let ρ0 := E[(X0)2] where X0 ∼ P0 and ρ1 := E[ϕ2
1(T,A1)] where T ∼ N (0, ρ0), A1 ∼ PA1 . The

replica-symmetric potential (or just potential) is

fRS(q0, r0, q1, r1; ρ0, ρ1) := ψP0(r0) + α1Ψϕ1(q0, r1; ρ0) + αΨPout,2(q1; ρ1)− r0q0

2
− α1

r1q1

2
. (91)

Theorem 1 (Replica-symmetric formula). Suppose that hypotheses (H1), (H2), (H3) hold. Then,
the thermodynamic limit of the free entropy (82) for the two-layer generalized linear estimation model
(75), (76) satisfies

f∞ := lim
n→∞

fn = sup
q1∈[0,ρ1]

inf
r1≥0

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1) . (92)

The limiting expression of the mutual information between the observations and the signal to
recover follows immediately of Theorem 1.

Corollary 1 (Single-letter formula for the mutual information). The thermodynamic limit of the
mutual information for model (75), (76) between the observations and the signal to recover verifies

in :=
1

n0
I(X0,A1,A2;Y |W1,W2) −−−→

n→∞
i∞ := −f∞ −

α

2
(1 + ln(2π∆)) . (93)

Proof. A simple calculation gives
1

n0
I(X0,A1,A2;Y|W1,W2)

= − 1

n0
E lnP (Y|W1,W2) +

1

n0
E lnP (Y|X0,A1,A2,W1,W2)

= −fn −
1

2n0∆
E

[
n2∑
µ=1

(
Yµ − ϕ2

([W2X
1

√
n1

]
µ
,A2,µ

))2
]
− n2

2n0
ln(2π∆)

= −fn −
n2

2n0
− n2

2n0
ln(2π∆) .

2.4 Interpolating estimation problem

The proof of Theorem 1 follows the same steps than the proof of the replica formula for a one-layer
GLM in [35].

One introduces an interpolating estimation problem that interpolates between the original problem
(76) at t = 0, t ∈ [0, 1] being the interpolation parameter, and two analytically tractable problems at
t = 1.

Define ρ1(n0) := E
[

1
n1

n1∑
i=1

(X1
i )2
]

= E
[
ϕ2

1

(
[W1X0/√n0]1,A1,1

)]
. In Appendix A.2 one shows
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Proposition 1 (Convergence of ρ1(n0) to ρ1). Under the hypotheses (H1), (H2), (H3)

lim
n0→+∞

ρ1(n0) = ρ1 . (94)

Let q : [0, 1]→ [0, ρ1(n0)] be a continuous interpolation function and r ≥ 0. Define

St,µ :=

√
1− t
n1

[
W2ϕ1

(W1X
0

√
n0

,A1

)]
µ

+

√∫ t

0
q(v)dv Vµ +

√∫ t

0
(ρ1(n0)− q(v))dv Uµ (95)

where Vµ, Uµ i.i.d.∼ N (0, 1). Assume V = (Vµ)n2
µ=1 is known and two kinds of observations are given:Yt,µ ∼ Pout,2( · |St,µ) , 1 ≤ µ ≤ n2,

Y ′t,i =
√
r t ϕ1

([
W1X0
√
n0

]
i
,A1,i

)
+ Z ′i , 1 ≤ i ≤ n1,

(96)

where (Z ′i)
n1
i=1

i.i.d.∼ N (0, 1). Yt = (Yt,µ)n2
µ=1, Y

′
t = (Y ′t,i)

n1
i=1 are our “time-dependent” observations.

Define, with a slight abuse of notations, st,µ(x,a1, uµ) ≡ st,µ as

st,µ =

√
1− t
n1

[
W2ϕ1

(W1x√
n0
,a1

)]
µ

+

√∫ t

0
q(v)dv Vµ +

√∫ t

0
(ρ1(n0)− q(v))dv uµ . (97)

One introduces the interpolating Hamiltonian

Ht(x,a1,u;Yt,Y
′
t,W1,W2,V) := −

n2∑
µ=1

lnPout,2(Yt,µ|st,µ)

+
1

2

n1∑
i=1

[
Y ′t,i −

√
r t ϕ1

([W1x√
n0

]
i
,a1,i

)]2
. (98)

It depends on W2 and V through the terms (st,µ)n2
µ=1, and on W1 through both (st,µ)n2

µ=1 and the
sum over i ∈ {1, . . . , n1}. The corresponding Gibbs bracket 〈−〉t, which is the expectation operator
w.r.t. the t-dependent joint posterior distribution of (x,a1,u) given (Yt,Y

′
t,W1,W2,V) is defined

for every continuous bounded function g on Rn0 × Rn2 as:

〈g(x,a1,u)〉t :=
1

Zt

∫
dP0(x)dPA1(a1)Du g(x,a1,u) e−Ht(x,a1,u;Yt,Y′t,W1,W2,V) . (99)

In (99), Du = (2π)−n2/2
∏n2
µ=1 duµe

−u2
µ/2 is the n2-dimensional standard Gaussian distribution and

Zt ≡ Zt(Yt,Y
′
t,W1,W2,V) is the appropriate normalization, i.e.

Zt(Yt,Y
′
t,W1,W2,V) :=

∫
dP0(x)dPA1(a1)Du e−Ht(x,a1,u;Yt,Y′t,W1,W2,V) . (100)

Finally, the interpolating free entropy is

fn(t) :=
1

n0
E lnZt(Yt,Y

′
t,W1,W2,V) . (101)
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2.5 Interpolating free entropy at t=0 and t=1

One verifies easily that{
fn(0) = fn − 1

2
n1
n0
,

fn(1) = f̃n0,n1 + n2
n0

ΨPout,2

( ∫ 1
0 q(t)dt; ρ1(n0)

)
+ n1

n0

ln 2π
2 .

(102)

In the expression of fn(1), f̃n0,n1 denotes the free entropy of the one-layer GLM

Y ′i =
√
r ϕ1

([W1X
0

√
n0

]
i
,A1,i

)
+ Z ′i , 1 ≤ i ≤ n1, (103)

with (X0
i )n0
i=1

i.i.d.∼ P0, (A1,i)
n1
i=1

i.i.d.∼ PA1 and (Z ′i)
n1
i=1

i.i.d.∼ N (0, 1). Applying Theorem 1 of [35], then
(89), the free entropy f̃n0,n1 in the thermodynamic limit n0, n1 → +∞ such that n1/n0 → α1 is

lim
n0,n1→+∞

f̃n0,n1 = sup
q0∈[0,ρ0]

inf
r0≥0

ψP0(r0) + α1Ψ
P

(r)
out,1

(q0; ρ0)− r0q0

2

= −α1
1 + ln 2π + rρ1

2
+ sup
q0∈[0,ρ0]

inf
r0≥0

ψP0(r0) + α1Ψϕ1(q0, r; ρ0)− r0q0

2
. (104)

From (102), by making use of (104) and Lemma 1 below, one obtains in the thermodynamic limit:

fn(1) = −α1
1 + rρ1

2
+ αΨPout,2

(∫ 1

0
q(t)dt; ρ1(n0)

)
+ sup
q0∈[0,ρ0]

inf
r0≥0

{
ψP0(r0) + α1Ψϕ1(q0, r; ρ0)− r0q0

2

}
+ On(1) . (105)

Here On(1) is a quantity that vanishes uniformly in the limit n0, n1, n2 → +∞. Lemma 1 justifies
the identity n2

n0
ΨPout,2

( ∫ 1
0 q(t)dt; ρ1(n0)

)
= αΨPout,2

( ∫ 1
0 q(t)dt; ρ1(n0)

)
+ On(1).

Lemma 1 (Uniform upperbound on ΨPout,2). Assuming ϕ2 is bounded, one has for all ρ ≥ 0 and
q ∈ [0, ρ]

|ΨPout,2(q; ρ)| ≤ 1 + ln(2π∆)

2
+

2 sup |ϕ2|2
∆

.

Proof. The upperbound Pout,2

(
y
∣∣x) ≤ √2π∆

−1
directly implies

ΨPout,2(q; ρ) ≤ −1

2
ln(2π∆) .

By Jensen’s inequality, one also has the lowerbound

ΨPout,2(q; ρ) ≥ E
∫
DudPA2(a) ln

1√
2π∆

e−
1

2∆
(Ỹ0−ϕ2(

√
q V+

√
ρ−q u,a))2

≥ − 1

2∆
E
∫
DudPA2(a)

(
ϕ2(
√
q V +

√
ρ− q U,a)− ϕ2(

√
q V +

√
ρ− q u,a)

)2
− 1 + ln 2π∆

2
.

Put together, these lower and upper bounds give the lemma.
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To conclude on that section, the interpolating model is such that:

• at t=0, it recovers the two-layer GLM;

• at t=1, it reveals one scalar inference channel associated to the term ΨPout,2 and a one-layer
GLM whose formula for the free entropy f̃n0,n1 in the thermodynamic limit is already known
from [35].

2.6 Free entropy variation along the interpolation path

From the Fundamental Theorem of Analysis fn(1)− fn(0) =
∫ 1

0
dfn(t)
dt dt and (102), (105), it follows

fn = −α1
rρ1

2
+ αΨPout,2

(∫ 1

0
q(t)dt; ρ1(n0)

)
−
∫ 1

0

dfn(t)

dt
dt

+ sup
q0∈[0,ρ0]

inf
r0≥0

{
ψP0(r0) + α1Ψϕ1(q0, r; ρ0)− r0q0

2

}
+ On(1) . (106)

Most of the terms that form the potential (91) can already be identified in the expression (106). For
the missing terms to appear, the t-derivative of the free entropy has to be computed first.

Define uy(x) := lnPout,2(y|x). Let u′y(x) be the derivative (w.r.t. x). In Appendix B one shows

Proposition 2 (Free entropy variation). The derivative of the free entropy (101) verifies, for all
t ∈ (0, 1),

dfn(t)

dt
= −1

2

n1

n0
E
〈(

1

n1

n2∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r
)(
Q̂− q(t)

)〉
t

+
n1

n0

(
rq(t)

2
− rρ1(n0)

2

)
+ On(1) , (107)

where On(1) is a quantity that goes to 0 in the limit n0, n1, n2 → +∞, uniformly in t ∈ [0, 1], and
the overlap is

Q̂ :=
1

n1

n1∑
i=1

ϕ1

([W1X
0

√
n0

]
i
,A1,i

)
ϕ1

([W1x√
n0

]
i
,a1,i

)
. (108)

2.7 Overlap concentration

We already know from [35] that the overlap Q = 1
n0

∑n0
j=1 xj ·X0

j concentrates. This concentration
plays a key role in the proof of the thermodynamic limit of the free entropy f̃n0,n1 , still in [35]. The
next lemma states that the overlap Q̂ concentrates around its mean.

As in the one-layer case, a “small” perturbation to the interpolating estimation problem is
introduced by adding to the Hamiltonian (98) a term

n1∑
i=1

ε

2
ϕ2

1

([W1x√
n0

]
i
,a1,i

)
− εϕ1

([W1x√
n0

]
i
,a1,i

)
ϕ1

([W1X
0

√
n0

]
i
,A1,i

)
−√εϕ1

([W1x√
n0

]
i
,a1,i

)
Ẑi (109)
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where (Ẑi)
n1
i=1

i.i.d.∼ N (0, 1). It corresponds to having extra observations coming from a side-channel

Ŷi =
√
εϕ1

([W1X
0

√
n0

]
i
,A1,i

)
+ Ẑi for i = 1, . . . , n1 . (110)

It thus preserves the Nishimori identity (see Proposition 8). The new Hamiltonian defines a new
Gibbs bracket 〈−〉t,ε and free entropy fn,ε(t). All the set up of Sec. 2.4 and Proposition 2 trivially
extend. This perturbation induces only a small change in the free entropy, namely of the order of ε:

Lemma 2 (Small free entropy variation under perturbation). Let supϕ2
1 be the supremum of ϕ2

1

(well-defined under the hypothesis (H2)). For all ε > 0 and all t ∈ [0, 1],

|fn,ε(t)− fn(t)| ≤ n1

n0︸︷︷︸
→α1

supϕ2
1

2
· ε . (111)

Proof. A simple computation gives ∂fn,ε(t)
∂ε = −n1

n0
E〈Lε〉t,ε where

Lε :=
1

n1

n1∑
i=1

1

2
ϕ2

1

([W1x√
n0

]
i
,a1,i

)
− ϕ1

([W1x√
n0

]
i
,a1,i

)
ϕ1

([W1X
0

√
n0

]
i
,A1,i

)
− 1

2
√
ε
ϕ1

([W1x√
n0

]
i
,A1,i

)
Ẑi .

In Appendix C.2 one proves Lemma 10, i.e. E〈Lε〉t,ε = −1
2E〈Q̂〉t,ε. The trivial bound |Q̂| ≤ supϕ2

1

ends the proof.

Besides, this small perturbation forces the overlap to concentrate around its mean:

Lemma 3 (Overlap concentration). For any 0 < a < 1,

lim
n0→∞

∫ 1

a
dε

∫ 1

0
dtE

〈(
Q̂− E〈Q̂〉t,ε

)2〉
t,ε

= 0 . (112)

The proof of Lemma 3 is mostly the same as the one streamlined in Section V of [38]. One only
needs to make slight changes to fit the proof to our problem. For this reason, Appendix C.2 sketches
the main steps of the adapted proof and refers to [38] for details.
Lemma 3 implies that there exists a sequence (ε(n0))n0≥1 ∈ (0, 1)N

∗ that converges to 0 such that

lim
n0→+∞

∫ 1

0
dtE

〈(
Q̂− E〈Q̂〉t,ε(n0)

)2〉
t,ε(n0)

= 0 . (113)

As (ε(n0))n0≥1 converges to 0, fn,ε(n0)(t) and fn(t) have the same limit (provided it exists) thanks to
Lemma 2. In the next section, to lighten the notations, the perturbation subscript ε(n0) is abusively
removed since it makes no difference for computing the limit of the free entropy.
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2.8 Canceling the remainder

Note from (106) and (91) that the second term appearing in (107) is precisely the missing one that
is required to obtain the expression of the potential on the r.h.s. of (106) (recall Proposition 1 and
make the identifications r ↔ r1,

∫ 1
0 q(t)dt ↔ q1). Hence, to prove Theorem 1, we would like to

“cancel” the Gibbs bracket in (107), which is the so called remainder (once integrated over t). This
is made possible thanks to the adaptive interpolating parameter q. One has to choose q(t) = E〈Q̂〉t,
which is approximately equal to Q̂ because it concentrates (see Lemma 3). However, E〈Q̂〉t depends
on
∫ t

0 q(v)dv (and on r too). The equation q(t) = E〈Q̂〉t is therefore a first order differential equation
over t 7→

∫ t
0 q(v)dv.

Proposition 3 (Existence of the optimal interpolation function). For all r ≥ 0 the differential
equation

q(t) = E〈Q̂〉t (114)

admits a unique solution q(r)
n0 (t) on [0, ρ1(n0)] and the mapping

r ≥ 0 7→
∫ 1

0
q(r)
n0

(v)dv (115)

is continuous.

Proof. Under (H2) one verifies easily that E〈Q̂〉t is a bounded C1 function of (
∫ t

0 q(v)dv, r). The
proposition then follows from an application of the parametric Cauchy-Lipschitz theorem.

This optimal choice for the interpolating function allows to relate the free entropy to the potential.

Proposition 4. Let r ≥ 0. For n0 ∈ N∗, q(r)
n0 is the solution of (114). Then

fn = sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0,

∫ 1

0
q(r)
n0

(v)dv, r; ρ0, ρ1(n0)
)

+ On(1) . (116)

Proof. By Cauchy-Schwarz inequality∣∣∣∣ ∫ 1

0
dtE

〈( 1

n1

n2∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r
)(
Q̂− q(r)

n0
(t)
)〉

t

∣∣∣∣
≤
[ ∫ 1

0
dtE

〈( 1

n1

n2∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r
)2〉

t

]1/2[ ∫ 1

0
dtE

〈(
Q̂− q(r)

n0
(t)
)2〉

t

]1/2

= On(1) .

The last equality uses that the first factor is bounded (independently of t) under assumptions (H1), (H2)
and (H3) (similar proof to the one in Appendix A.5 of [35]), and that the second factor goes to 0
when n0, n1, n2 → +∞ with ε = ε(n0) thanks to (113), (114). Making use of the latter result and
n1/n0 → α1, ρ1(n0)→ ρ1, the integral of (107) reads∫ 1

0

dfn(t)

dt
dt = α1

r

2

∫ 1

0
q(r)
n0

(t)dt− α1
rρ1

2
+ On(1) , (117)

Replacing this identity in (106) gives the desired result.
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2.9 Lower and upper matching bounds

To end the proof of Theorem 1 one has to go through the following two steps:

(i) Prove that under assumptions (H1), (H2) and (H3)

lim
n→∞

fn = sup
r1≥0

inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1) .

(ii) Invert the order of the optimizations on r1 and q1.

To tackle (i), one proves that lim infn0→∞ fn and lim supn0→∞ fn are – respectively – lowerbounded
and upperbounded by the same quantity sup

r1≥0
inf

q1∈[0,ρ1]
sup

q0∈[0,ρ0]
inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1).

Proposition 5 (Lower bound). The free entropy (82) verifies

lim inf
n0→∞

fn ≥ sup
r≥0

inf
q∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1

)
. (118)

Proof. By Proposition 4 we have that for any r ≥ 0

fn ≥ inf
q∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1(n0)

)
+ On(1) . (119)

By a continuity argument

lim
n0→∞

inf
q∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1(n0)

)
= inf

q∈[0,ρ1]
sup

q0∈[0,ρ0]
inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1

)
. (120)

This limit, combined with (119), gives

lim inf
n0→∞

fn ≥ inf
q∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1

)
. (121)

This is true for all r ≥ 0, thus we obtain Proposition 5.

Proposition 6 (Upper bound). The free entropy (82) verifies

lim sup
n0→∞

fn ≤ sup
r≥0

inf
q∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1

)
. (122)

Proof. Let Kn0 = 2α2Ψ′Pout,2
(ρ1(n0); ρ1(n0)), Ψ′Pout,2

being the derivative of ΨPout,2 w.r.t. its first
argument. The latter is continuous and bounded (see Appendix A.2.2. of [35]). Also, (115) is a
continuous mapping. It follows that

[0,Kn0 ] → [0,Kn0 ]

r 7→ 2α2Ψ
′
Pout,2

( ∫ 1
0 q

(r)
n0 (t)dt; ρ1(n0)

) (123)
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is continuous too. Therefore, it admits a fixed point

r∗(n0) = 2α2Ψ′Pout,2

(∫ 1

0
q(r∗(n0))
n0

(t)dt; ρ1(n0)

)
.

We now remark that

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0,

∫ 1

0
q(r∗(n0))
n0

(t)dt, r∗(n0); ρ0, ρ1(n0)
)

= inf
q∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r

∗(n0); ρ0, ρ1(n0)
)
. (124)

Indeed, the function

gr∗(n0) : q ∈ [0, ρ1(n0)] 7→ sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r

∗(n0); ρ0, ρ1(n0)
)

is convex. To see it, first remember that

gr∗(n0)(q) = αΨPout,2

(
q; ρ1(n0)

)
− α1

r∗(n0)

2
q + C , (125)

where C := supq0 infr0 ψP0(r0) +α1Ψϕ1(q0, r
∗(n0); ρ0)− r0q0/2 does not depend on q. The convexity

of gr∗(n0) then follows of the convexity of ΨPout,2

(
· ; ρ1(n0)

)
(see Proposition 11 in Appendix A.2.2.

of [35]). gr∗(n0) derivative is easily obtained from (125):

g′r∗(n0)(q) = αΨ′Pout,2

(
q; ρ1(n0)

)
− α1

r∗(n0)

2
. (126)

By definition of r∗(n0), g′r∗(n0)

(∫ 1
0 q

(r∗(n0))
n0 (t)dt

)
= 0 and the minimum of gr∗(n0) is necessarily

achieved at
∫ 1

0 q
(r∗(n0))
n0 (t)dt. Proposition 4, combined with (124), gives

fn = inf
q∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r

∗(n0); ρ0, ρ1(n0)
)

+ On(1)

≤ sup
r≥0

inf
q∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1(n0)

)
+ On(1) . (127)

Finally, by a continuity argument, we have

lim
n0→∞

sup
r≥0

inf
q∈[0,ρ1(n0)]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1(n0)

)
= sup

r≥0
inf

q∈[0,ρ1]
sup

q0∈[0,ρ0]
inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1

)
,

and taking the limit in the inequality (127) ends the proof:

lim sup
n0→∞

fn ≤ sup
r≥0

inf
q∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS

(
q0, r0, q, r; ρ0, ρ1

)
.
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It remains to prove (ii), i.e.

Proposition 7 (Switch the optimization order). Under (H2), for any positive real numbers ρ0 and
ρ1 one has

sup
r1≥0

inf
q1∈[0,ρ1]

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1)

= sup
q1∈[0,ρ1]

inf
r1≥0

sup
q0∈[0,ρ0]

inf
r0≥0

fRS(q0, r0, q1, r1; ρ0, ρ1) .

Proof. Let f : [0,+∞[→ R and g : [0, ρ1]→ R be the two functions

f(r1) := sup
q0∈[0,ρ0]

inf
r0≥0

{
ψP0(r0) + α1Ψϕ1(q0, r1; ρ0)− r0q0

2

}
, g(q1) := αΨPout,2(q1; ρ1) ,

such that ψ(r1, q1) := supq0∈[0,ρ0] infr0≥0 fRS(q0, r0, q1, r1; ρ0, ρ1) = f(r1) + g(q1)− α1
2 r1q1.

In Appendix A.3 it is shown that, under (H2), f is convex, Lipschitz and non-decreasing on
[0,+∞[. Proposition 11 in Appendix A.2.2 of [35] states that, under (H2), g is convex, Lipschitz and
non-decreasing on [0, ρ1]. The desired result is then obtained by applying Corollary 5 in Appendix E
of [35]:

sup
r1≥0

inf
q1∈[0,ρ1]

ψ(r1, q1) = sup
q1∈[0,ρ1]

inf
r1≥0

ψ(r1, q1) .

3 Numerical experiments

3.1 Activations comparison in terms of mutual informations

Here we assume the exact same setting as the one presented in the main text to compare activation
functions on a two-layer random weights network. We compare here the mutual information estimated
with the proposed replica formula instead of the entropy behaviors discussed in the main text. As
it was the case for entropies, we can see that the saturation of the double-side saturated hardtanh
leads to a loss of information for large weights, while the mutual informations are always increasing
for linear and ReLU activations.

3.2 Learning ability of USV-layers

To ensure weight matrices remain close enough to being independent during learning we instroduce
USV-layers, corresponding to a custom type of weight constraint. We recall that in such layers, weight
matrices are decomposed in the manner of a singular value decomposition, W` = U`S`V`, with by U`
and V` drawn from the corresponding Haar measures (i.e. uniformly among the orthogonal matrices
of given size), and S` contrained to be diagonal, being the only matrix being learned. In the main
text, we demonstrate on a linear network that the USV-layers ensure that the assumptions necessary
to our replica formula are met with learned matrices in the case of linear networks. Nevertheless,
a USV-layer of size N ×N has only N trainable parameters, which implies that they are harder
to train than usual fully connected layers. In practice, we notice that they tend to require more
parameter updates and that interleaving linear USV-layers to increase the number of parameters
between non-linearities can significantly improve the final result of training.
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Figure 5: Replica mutual informations between latent and input variables in stochastic networks
X → T1 → T2, with equally sized layers N = 1000, inputs drawn from N (0, IN ), weights from
N (0, σ2IN2/N), as a function of the weight scaling parameter σ. An additive white Gaussian
noise N (0, 10−5IN ) is added inside the non-linearity. Left column: linear network. Center column:
hardtanh-hardtanh network. Right column: ReLU-ReLU network.

To convince ourselves that the training ability of USV-layers is still relevant to study learning
dynamics on real data we conduct an experiment on the MNIST dataset. We study the classification
problem of the classical MNIST data set (60 000 training images and 10 000 testing images) with
a simple fully-connected network featuring one non-linear (ReLU) hidden layer of 500 neurones.
On top of the ReLU-layer, we place a softmax output layer where the 500× 10 parameters of the
weight matrix are all being learned in all the versions of the experiments. Conversely, before the
ReLU layer, we either (1) do not learn at all the 784× 500 parameters which then define random
projections, (2) learn all of them as a traditional fully connected network, (3) use a combination of 2
(3a), 3 (3b) or 6 (3c) consecutive USV-layers (without any intermediate non-linearity). The best
train and test, losses and accuracies, for the different architectures are given in Table 1 and some
learning curves are displayed on Figure 6. As expected we observe that USV-layers are acheiving
better classification success than the random projections, yet worse than the unconstrained fully
connected layer. Interestingly, stacking USV-layers to increase the number of trainable parameters
allows to reach very good training accuracies, nevertheless, the testing accuracies do not benefit
to the same extent from these additional parameters. On Figure 6, we can actually see that the
version of the experiment with 6 USV-layers overfits the training set (green curves with testing losses
growing towards the end of learning). Therefore, particularly in this case, adding regularizers might
allow to improve the generalization performances of models with USV-layers.
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Figure 6: Training and testing curves for the training of a two-layer neural net on the classification
of MNIST for different constraints on the first layer (further details are given in Section3.2). For
each version of the experiment the outcomes of two independent runs are plotted with the same
color, it is not always possible to distinguish the two runs as they overlap.

3.3 Additional learning experiments on synthetic data

Similarly to the experiments of the main text, we consider simple training schemes with constant
learning rates, no momentum, and no explicit regularization.

We first include a second version of Figure 4 of the main text, corresponding to the exact same
experiment with a different random seed and check that results are qualitatively identical.

We consider then a regression task created by a 2-layer teacher network of sizes 500-3-3, activations
ReLU-linear, uncorrelated input data distribution N (0, INX ) and additive white Gaussian noise at
the output of variance 0.01. The matrices of the teacher network are i.i.d. normally distributed with
a variance equal to the inverse of the layer input dimension. We train a student network with 2
ReLU layers of sizes 2500 and 1000, each featuring 5 stacked USV-layers of same size before the
non linear activation, and with one final fully-connected linear layer. We use plain SGD with a
constant learning rate of 0.01 and a batchsize of 50. In Figure 8 we plot the mutual informations
with the input at the effective 10-hidden layers along the training. Except for the very first layer
where we observe a slight initial increase, all mutual informations appear to only decrease during
the learning, at least at this resolution (i.e. after the first epoch). We thus observe a compression
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First layer type #train
params

Train loss Test loss Train acc Test acc

Random (1) 0 0.1745 0.1860 95.05 (0.09) 94.61 (0.02)
Unconstrained (2) 784× 500 0.0012 0.0605 100. (0.00) 98.18 (0.06)
2-USV (3a) 2× 500 0.0758 0.1326 97.80 (0.07) 96.10 (0.03)
3-USV (3b) 3× 500 0.0501 0.1238 98.62 (0.05) 96.35 (0.04)
6-USV (3c) 6× 500 0.0092 0.1211 99.93 (0.01) 96.54 (0.17)

Table 1: Training results for MNIST classification of a fully connected 784-500-10 neural net with a
ReLU non linearity. The different rows correspond to different specifications of trainable parameters
in the first layer (1, 2, 3a, 3b, 3c) describe in the paragraph. We use plain SGD to minimize the
cross-entropy loss. All experiments use the same learning rate 0.01 and batchsize of 100 samples.
Results are averaged over 5 independent runs, and standard deviations are reported in parentheses.
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Figure 7: Independent run outcome for Figure 4 of the main text. Training of two recognition
models on a binary classification task with correlated input data and either ReLU (top) or hardtanh
(bottom) non-linearities. Left: training and generalization cross-entropy loss (left axis) and accuracies
(right axis) during learning. Best training-testing accuracies are 0.995 - 0.992 for ReLU version (top
row) and 0.998 - 0.997 for hardtanh version (bottom row). Remaining colums: mutual information
between the input and successive hidden layers. Insets zoom on the first epochs.

even in the absence of double-saturated non-linearities. We further note that in this case we observe
an accuentuation of the amount of compression with layer depth as observed by [39] (see second
plot of first row of Figure 8), but which we did not observe in the binary classification experiment
presented in the main text. On Figure 9, we reproduce the figure for a different seed.
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Figure 8: Example of regression with a 10 hidden-layer student network: 5 USV-layers - ReLU
activation - 5 USV-layers - ReLu activation - 1 unconstrained final linear layer, on dataset generated
by a non-linear teacher network: ReLu-linear. Top row, first plot: training and testing MSE loss
along learning. Best train loss is 0.015, best test loss is 0.018. Top row, second plot: mutual
informations curves of the 10 hidden layers showing the slight accentuation of compression in deeper
layers. Remaining: mutual information from each layer displayed separately.

In a last experiment, we even show that merely changing the weight initialization can drastically
change the behavior of mutual informations during training while resulting in identical training
and testing final performances. We consider here a setting closely related to the classification on
correlated data presented in the main text. The generative model is a a simple single layer generative
model X = W̃genY + ε with normally distributed code Y ∼ N (0, INY ) of size NY = 100, from which
data of size NX = 500 are generated with matrix W̃gen i.i.d. normally distributed as N (0, 1/

√
NY )

and noise ε ∼ N (0, 0.01INX ). The recognition model attempts to solve the binary classification
problem of recovering the label y = sign(Y1), the sign of the first neuron in Y . Again the training is
done with plain SGD to minimize the cross- entropy loss and the rest of the initial code (Y2, ..YNY )
acts as noise/nuisance with respect to the learning task. On Figure 10 we compare 3 identical 5-layers
recognition models with sizes 500-1000-500-250-100-2, and activations hardtanh-hardtanh-hardtanh-
hartanh-softmax. For the model presented at the top row, initial weights were sampled according to
W`,ij ∼ N (0, 4/N`−1), for the model of the middle row N (0, 1/N`−1) was used instead, and finally
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Figure 9: Independent run outcome for Figure 8 of the Supplementary Material. Example of
regression with a 10 hidden-layer student network: 5 USV-layers - ReLU activation - 5 USV-layers -
ReLu activation - 1 unconstrained final linear layer, on dataset generated by a non-linear teacher
network: ReLu-linear. Top row, first plot: training and testing MSE loss along learning. Best train
loss is 0.015, best test loss is 0.019. Top row, second plot: mutual informations curves of the 10
hidden layers showing the slight accentuation of compression in deeper layers. Remaining: mutual
information from each layer displayed separately.

N (0, 1/4N`−1) for the bottom row. The first column shows that training is delayed for the weight
initialized at smaller values, but eventually catches up and reaches accuracies superior to 0.97 both
in training and testing. Meanwhile, mutual informations have different initial values for the different
weight initializations and follow very different paths. They either decrease during the entire learning,
or on the contrary are only increasing, or actually feature an hybrid path. We further note that it is
to some extent surprising that the mutual information would increase at all in the first row if we
expect the hardtanh saturation to instead induce compression. Figure 11 presents a second run of
the same experiment with a different random seed. Findings are identical.

These observed differences and non-trivial observations raise numerous questions, and suggest
that within the examined setting, a simple information theory of deep learning remains out-of-reach.
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Figure 10: Learning and hidden-layers mutual information curves for a classification problem with
correlated input data, using a 4-USV hardtanh layers and 1 unconstrained softmax layer, from 3
different initializations. Top: Initial weights at layer ` of variance 4/N`−1, best training accuracy
0.999, best test accuracy 0.994. Middle: Initial weights at layer ` of variance 1/N`−1, best train
accuracy 0.994, best test accuracy 0.9937. Bottom: Initial weights at layer ` of variance 0.25/N`−1,
best train accuracy 0.975, best test accuracy 0.974. The overall direction of evolution of the mutual
information can be flipped by a change in weight initialization without changing drastically final
performance in the classification task.

A Proofs of some technical propositions

A.1 The Nishimori identity

Proposition 8 (Nishimori identity). Let (X,Y) ∈ Rn1 × Rn2 be a couple of random variables.
Let k ≥ 1 and let X(1), . . . ,X(k) be k i.i.d. samples (given Y) from the conditional distribution
P (X = · |Y), independently of every other random variables. Let us denote 〈−〉 the expectation
operator w.r.t. P (X = · |Y) and E the expectation w.r.t. (X,Y). Then, for all continuous bounded
function g we have

E〈g(Y,X(1), . . . ,X(k))〉 = E〈g(Y,X(1), . . . ,X(k−1),X)〉 . (128)

Proof. This is a simple consequence of Bayes formula. It is equivalent to sample the couple (X,Y)
according to its joint distribution or to sample first Y according to its marginal distribution and then
to sample X conditionally to Y from its conditional distribution P (X = · |Y). Thus the (k+1)-tuple
(Y,X(1), . . . ,X(k)) is equal in law to (Y,X(1), . . . ,X(k−1),X).
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Figure 11: Independent run outcome for Figure 10 of the Supplementary Material. Learning and
hidden-layers mutual information curves for a classification problem with correlated input data, using
a 4-USV hardtanh layers and 1 unconstrained softmax layer, from 3 different initializations. Top:
Initial weights at layer ` of variance 4/N`−1, best training accuracy 0.999, best test accuracy 0.998.
Middle: Initial weights at layer ` of variance 1/N`−1, best train accuracy 0.9935, best test accuracy
0.9933. Bottom: Initial weights at layer ` of variance 0.25/N`−1, best train accuracy 0.974, best test
accuracy 0.973. The overall direction of evolution of the mutual information can be flipped by a
change in weight initialization without changing drastically final performance in the classification
task.

A.2 Limit of the sequence (ρ1(n0))n0≥1

Here one proves Proposition 1, i.e. that the sequence (ρ1(n0))n0≥1 converges to ρ1 := E[ϕ2
1(T,A1)]

where T ∼ N (0, ρ0), A1 ∼ PA1 under the hypotheses (H1), (H2), (H3).
If ρ0 = 0 then X0 = 0 almost surely (a.s.) and ρ1(n0) = Eϕ2

1(0,A1) = ρ1 for every n0 ≥ 1,
making the result trivial.
From now on, assume ρ0 > 0. Given X0, one has

[
W1X0
√
n0

]
1
∼ N

(
0, ‖X

0‖2
n0

)
. Therefore

ρ1(n0) := E
[
ϕ2

1

([W1X
0

√
n0

]
1
,A1

)]
= E

∫
dt dPA1(a)ϕ2

1(t,a)

exp− t2

2
‖X0‖2
n0√

2π ‖X
0‖2
n0

= E
[
h

(‖X0‖2
n0

)]
,

where h : v 7→
∫
dtdPA1(a)ϕ2

1(t,a) 1√
2πv

exp(−t2/2v) is a function on ]0,+∞[. It is easily shown to be
continuous under (H2) thanks to the dominated convergence theorem.
By the Strong Law of Large Numbers, ‖X0‖2/n0 converges a.s. to ρ0. Combined with the continuity
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of h, one has

lim
n0→+∞

h

(‖X0‖2
n0

)
a.s.
= h(ρ0) = ρ1 .

Noticing that |h (‖X0‖2/n0)| ≤ supϕ2
1, the dominated convergence theorem gives

ρ1(n0) = E
[
h

(‖X0‖2
n0

)]
−−−−−→
n0→+∞

E
[

lim
n0→+∞

h

(‖X0‖2
n0

)]
= ρ1 .

A.3 Properties of the third scalar channel

Proposition 9. Assume ϕ1 is bounded (as it is the case under (H2)). Let V,U i.i.d.∼ N (0, 1) and
ρ0 ≥ 0, q0 ∈ [0, ρ0]. For any r ≥ 0, Y ′(r)0 =

√
rϕ1(
√
q V +

√
ρ− q U,A1) + Z ′ where Z ′ ∼ N (0, 1),

A1 ∼ PA1. The function

Ψϕ1(q0, · ; ρ0) : r 7→ E ln

∫
DuP (r)

out,1

(
Y
′(r)

0

∣∣√q V +
√
ρ− q u

)
.

is twice-differentiable, convex, non-decreasing and ρ1

2 -Lipschitz on R+. Then the function

f : r 7→ sup
q0∈[0,ρ0]

inf
r0≥0

ψP0(r0) + α1Ψϕ(q0, r; ρ0)− r0q0

2

is convex, non-decreasing and
(
α1

ρ1

2

)
-Lipschitz on R+.

Proof. For fixed ρ0 and q0, let Ψϕ1 ≡ Ψϕ1(q0, · ; ρ0). Note that

Ψϕ1(r) = E
[ ∫

dy′0
1√
2π
e−

1
2

(y′0−
√
rϕ1(

√
q0V+

√
ρ0−q0U,A1))2

· ln
∫
Du dPA1(a)e

√
ry′0ϕ1(

√
q0V+

√
ρ0−q0u,a)− r

2
ϕ2

1(
√
q0V+

√
ρ0−q0u,a)

]
.

With the properties imposed on ϕ1, all the domination hypotheses to prove the twice-differentiability
of ψϕ1 are reunited. Denote 〈−〉r the expectation operator w.r.t. the joint posterior distribution

dP (u,a|Y ′0 , V ) =
1

Z(Y ′0 , V )
Du dPA1(a)e

√
ry′0ϕ1(

√
q0V+

√
ρ0−q0u,a)− r

2
ϕ2

1(
√
q0V+

√
ρ0−q0u,a) ,

where Z(Y ′0 , V ) is a normalization factor. Using Gaussian integration by parts and the Nishimori
property (Proposition 8), one verifies that for all r ≥ 0

Ψ′ϕ1
(r) =

1

2
E
[
〈ϕ1(
√
q0V +

√
ρ0 − q0u,a)〉2r

]
≥ 0 ,

Ψ
′′
ϕ1

(r) =
1

2
E
[(
〈ϕ2

1(
√
q0V +

√
ρ0 − q0u,a)〉r − 〈ϕ1(

√
q0V +

√
ρ0 − q0u,a)〉2r

)2] ≥ 0 .

Hence Ψϕ1 is non-decreasing and convex. The Lipschitzianity follows simply from∣∣Ψ′ϕ1
(r)
∣∣ ≤ 1

2

∣∣E〈ϕ2
1(
√
q0V +

√
ρ0 − q0u,a)〉r

∣∣ =
1

2

∣∣E[ϕ2
1(
√
q0V +

√
ρ0 − q0U,A1)]

∣∣ =
1

2
ρ1 .

The Nishimori identity was used once again to obtain the penultimate equality. Finally, f properties
are direct consequences of its definition as the “sup inf” of convex, non-decreasing, ρ1

2 -lipschitzian
functions.
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B Proof of Proposition 2

Recall u′y(x) is the x-derivative of uy(x) := lnPout,2(y|x). Denote P ′out,2(y|x) and P ′′out,2(y|x) the
first and second x-derivatives of Pout,2(y|x), respectively. First one shows that for all t ∈ (0, 1)

dfn(t)

dt
= −1

2

n1

n0
E
〈(

1

n1

n2∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r
)(
Q̂− q(t)

)〉
t

+
n1

n0

(
rq(t)

2
− rρ1(n0)

2

)
− An(t)

2
, (129)

where the overlap is Q̂ := 1
n1

n1∑
i=1

ϕ1

([
W1X0
√
n0

]
i
,A1,i

)
ϕ1

([
W1x√
n0

]
i
,a1,i

)
and

An(t) := E

[
1√
n1

n2∑
µ=1

P ′′out,2(Yt,µ|St,µ)

Pout,2(Yt,µ|St,µ)

1√
n1

n1∑
i=1

(
ϕ2

1

([W1X
0

√
n0

]
i
,A1,i

)
− ρ1(n0)

)
lnZt
n0

]
. (130)

Once this is done, one proves that An(t) goes to 0 uniformly in t ∈ [0, 1] as n0, n1, n2 → +∞ (while
n1/n0 → α1, n2/n1 → α2), thus proving Proposition 2.

B.1 Proof of (129)

Recall definition (101). Once written as a function of the interpolating Hamiltonian (98), it becomes

fn(t)=
1

n0
EW1,W2,V

[ ∫
dYdY′dP0(X0)dPA1(A1)DU(2π)−

n1
2 e−Ht(X

0,A1,U;Y,Y′,W1,W2,V)

· ln
∫
dP0(x)dPA1(a1)Du e−Ht(x,a1,u;Y,Y′,W1,W2,V)

]
. (131)

Here, and from now on, one drops the dependence on t when writing Y and Y′ as they are now
dummy variables on which the integration is performed. We will need the Hamiltonian t-derivative
H′t given by

H′t(X0,A1,U;Y,Y′,W1,W2,V) = −
n2∑
µ=1

dSt,µ
dt

u′Yµ(St,µ)

− 1

2

√
r

t

n1∑
i=1

ϕ1

([W1X
0

√
n0

]
i
,A1,i

)(
Y ′i −

√
rtϕ1

([W1X
0

√
n0

]
i
,A1,i

))
. (132)

The derivative of the interpolating free entropy for 0 < t < 1 thus reads

dfn(t)

dt
= − 1

n0
E
[
H′t(X∗,A1,U;Y,Y′,W1,W2,V) lnZt

]
︸ ︷︷ ︸

T1

− 1

n0
E
〈
H′t(x,a1,u;Y,Y′,W1,W2,V)

〉
t︸ ︷︷ ︸

T2

, (133)
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where Zt ≡ Zt(Y,Y′,W1,W2,V) is defined in (100).
In the remaining part of this subsection B.1, to lighten notations, one will omit the second

argument of the function ϕ1 except in a few occasions, i.e. one will write for i = 1 . . . n1

ϕ1

([W1X
0

√
n0

]
i

)
≡ ϕ1

([W1X
0

√
n0

]
i
,A1,i

)
, ϕ1

([W1x√
n0

]
i

)
≡ ϕ1

([W1x√
n0

]
i
,a1,i

)
.

It does not hurt the understanding of the derivation of (129) as the latter relies on integration by
parts w.r.t. the Gaussian random variables W1, W2, V, U, Z′.
Let first compute T1. For 1 ≤ µ ≤ n2 one has from (95)

− E
[
dSt,µ
dt

u′Yµ(St,µ) lnZt
]

=
1

2
E
[

1√
n1(1− t)

[
W2ϕ1

(W1X
0

√
n0

)]
µ
u′Yµ(St,µ) lnZt

]
− 1

2
E

[(
q(t)√∫ t
0 q(s)ds

Vµ +
ρ1(n0)− q(t)√∫ t

0 (ρ1(n0)− q(s))ds
Uµ

)
u′Yµ(St,µ) lnZt

]
. (134)

By Gaussian integration by parts w.r.t (W2)µi, 1 ≤ i ≤ n1, the first expectation becomes

1√
n1(1− t)

E
[[
W2ϕ1

(W1X
0

√
n0

)]
µ
u′Yµ(St,µ) lnZt

]
=

1√
n1(1− t)

n1∑
i=1

E
[ ∫

dYdY′(2π)−
n1
2 e−Ht(X

0,A1,U;Y,Y′,W1,W2,V) (135)

· (W2)µiϕ1

([W1X
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u′Yµ(St,µ) lnZt

]
=

1
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√
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√
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]
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〉
t

= E
[

1
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i=1
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1

([W1X
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√
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]
i

)P ′′out,2(Yµ|St,µ)

Pout,2(Yµ|St,µ)
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+ E
〈 1
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u′Yµ(St,µ)u′Yµ(st,µ)

〉
t
. (136)

In the last equality we used the identity u′′Yµ(x) + u′Yµ(x)2 =
P ′′out,2(Yµ|x)

Pout,2(Yµ|x) .
Now one looks to the second expectation in the right hand side of (134). Using again Gaussian

46



integrations by parts, but this time w.r.t Vµ, Uµ i.i.d.∼ N (0, 1), one similarly obtains

E

[(
q(t)√∫ t
0 q(s)ds

Vµ +
ρ1(n0)− q(t)√∫ t

0 (ρ1(n0)− q(s))ds
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)
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lnZt

]
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〈
q(t)u′Yµ(St,µ)u′Yµ(st,µ)

〉
t
. (137)

Combining equations (134), (135) and (137) together gives us

− E
[
dSt,µ
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u′Yµ(St,µ) lnZt
]
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2
E
[
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As seen from (132), (133) it remains to compute E
[
ϕ1

([
W1X0
√
n0

]
i

)(
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√
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.

Recalling that Y ′i −
√
rtϕ1
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W1X0
√
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]
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)
= Z ′i for 1 ≤ i ≤ n1, and then integrating by parts w.r.t.

Z ′i ∼ N (0, 1), it comes
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Thus, by taking the sum,
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Therefore, for all t ∈ (0, 1),

T1 =
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To obtain (129), it remains to show that T2 is zero. According to the Nishimori identity (see
Proposition 8), one has

T2 =
1

n0
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〉
t

=
1

n0
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From (132) one obtains
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]
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Performing the same integration by parts than the ones leading to (138), one gets

−
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E
[
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The last equality follows from a computation in the next section, see (147). Combining (142), (143)
and (144), one obtains T2 = 0.

B.2 Proof that An(t) vanishes uniformly as n0 →∞
To get Proposition 2, the last step is to prove that An(t) – see definition (130) – vanishes uniformly
in t ∈ [0, 1] as n0 → +∞, under conditions (H1)-(H2)-(H3). First we show that

fn(t)E
[
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Once this is done, we use the fact that 1
n0

lnZt concentrates around fn(t) to prove that An(t)
vanishes uniformly.
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Start by noticing the simple fact that
∫
P ′′out,2(y|s)dy = 0 for all s ∈ R. Consequently, for

µ ∈ {1, . . . , n2},

E
[
P ′′out,2(Yµ|St,µ)

Pout,2(Yµ|St,µ)

∣∣∣∣X0,A1,W1,St

]
=

∫
dYµP

′′
out,2(Yµ|St,µ) = 0 . (146)

The “tower property” of the conditional expectation then gives
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This implies (145). Using successively (145) and the Cauchy-Schwarz inequality, we have
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Making once more use of the “tower property” of conditional expectation, one obtains
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(
ϕ2

1

([W1X
0

√
n0

]
i
,A1,i

)
− ρ1(n0)

)}2

· E
[(

1√
n1

n2∑
µ=1

P ′′out,2(Yµ|St,µ)

Pout,2(Yµ|St,µ)

)2 ∣∣∣∣X0,A1W1,St

]]
. (149)

Conditionally on St, the random variables
(
P ′′out,2(Yµ|St,µ)

Pout,2(Yµ|St,µ)

)
1≤µ≤n2

are i.i.d. and centered. Therefore

E
[( n2∑

µ=1

P ′′out,2(Yµ|St,µ)

Pout,2(Yµ|St,µ)

)2 ∣∣∣∣X0,A1,W1,St

]
= E

[( n2∑
µ=1

P ′′out,2(Yµ|St,µ)

Pout,2(Yµ|St,µ)

)2 ∣∣∣∣St]

= n2E
[(

P ′′out,2(Y1|St,1)

Pout,2(Y1|St,1)

)2 ∣∣∣∣St] . (150)
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Under condition (H2), it is not difficult to show that there exists a constant C > 0 such that

E
[(

P ′′out,2(Y1|St,1)

Pout,2(Y1|St,1)

)2 ∣∣∣∣St] ≤ C . (151)

Combining now (151), (150) and (149) we obtain that

E
[(

1√
n1

n2∑
µ=1

P ′′out,2(Yµ|St,µ)

Pout,2(Yµ|St,µ)

)2{ 1√
n1

n1∑
i=1

(
ϕ2

1

([W1X
0

√
n0

]
i
,A1,i

)
− ρ1(n0)

)}2]

≤ n2

n1
C

1

n1
E
[{ n1∑

i=1

(
ϕ2

1

([W1X
0

√
n0

]
i
,A1,i

)
− ρ1(n0)

)}2]
. (152)

It remains to prove the boundedness of 1
n1
E
[{

n1∑
i=1

(
ϕ2

1

([
W1X0
√
n0

]
i

)
−ρ1(n0)

)}2]
= 1

n1
Var(X1), where

X1 :=
∑n1

i=1X
1
i is the sum of the random variables X1

i := ϕ2
1

([
W1X0
√
n0

]
i
,A1,i

)
, 1 ≤ i ≤ n1. To

achieve that, one uses the identity

1

n1
Var(X1) =

1

n1
E
[
Var(X1|X0)

]
+

1

n1
Var

(
E[X1|X0]

)
(153)

and show that both terms in the right hand side are bounded.
First, the term E

[
Var(X1|X0)

]
. Conditionally on X0, the random variables (X1

i )1≤i≤n1 are i.i.d.
and

Var(X1|X0) =

n1∑
i=1

Var(X1
i |X0) = n1Var(X1

1 |X0) . (154)

It follows that

1

n1
E
[
Var(X1|X0)

]
= E

[
Var(X1

1 |X0)
]
≤ Var(X1

1 ) ≤ E
[
ϕ4

1

([W1X
0

√
n0

]
1
,A1,1

)]
. (155)

Under (H2), the expectation E
[
ϕ4

1

([
W1X0
√
n0

]
1
,A1,1

)]
is bounded because ϕ1 is bounded.

Second, the term Var
(
E[X1|X0]

)
. We have

E[X1|X0] = n1 · E
[
ϕ2

1

([W1X
0

√
n0

]
1
,A1,1

)∣∣∣∣X0

]
= n1 · g(X0

1 , . . . , X
0
n0

) (156)

where g(x1, . . . , xn0) = E
[
ϕ2

1

([
W1x√
n0

]
1
,A1,1

)]
. The partial derivatives of g satisfy for 1 ≤ j ≤ n0

∂g

∂xj
(x1, . . . , xn0) = E

[
2ϕ1

([W1x√
n0

]
1
,A1,1

)
ϕ′1

([W1x√
n0

]
1
,A1,1

)(W1)1j√
n0

]
=

2xj
n0

E
[
ϕ
′2
1

([W1x√
n0

]
1
,A1,1

)
+ ϕ1

([W1x√
n0

]
1
,A1,1

)
ϕ
′′
1

([W1x√
n0

]
1
,A1,1

)]
, (157)

where (157) was obtained by integrating by parts w.r.t. (W1)1j . Under the hypothesis (H1) the prior
P0 has bounded support X ⊆ [−S, S]. Then, for every x ∈ X n0 , we have

∂g

∂xj
(x1, . . . , xn) ≤ 2S

n0
· (sup |ϕ′1|2 + sup |ϕ1| · sup |ϕ′′1 |) ≤

C

n0
, (158)
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for some constant C > 0. Here the hypothesis (H2) was used to bound the expectation in (157).
Thus, the function g satisfies the bounded difference property, i.e. ∀j ∈ {1, . . . , n0}

sup
x∈Xn0 ,x′j∈X

|g(x1, . . . , xj , . . . , xn0)− g(x1, . . . , x
′
j , . . . , xn)| ≤ C

n0
sup

xj ,x′j∈X
|xj − x′j | ≤

2S · C
n0

. (159)

Applying Proposition 11 (see Appendix C.1) it comes

Var
(
g(X0)

)
≤ 1

4

n0∑
j=1

(2S · C
n0

)2
=
C ′

n0
, (160)

and
1

n1
Var

(
E[X1|X0]

)
= n1 · Var

(
g(X0)

)
≤ n1

n0
C ′ . (161)

It ends the proof of 1
n1
E
[(∑n1

i=1

(
ϕ2

1

([
W1X0
√
n0

]
i
,A1,i

)
− ρ1(n0)

))2]
boundedness in the limit n0 →

+∞. Combining (148), (152) and the latter, it comes

|An(t)| ≤ K E
[(

1

n0
lnZt − fn(t)

)2]1/2

(162)

for some constant K > 0 and n0 large enough. The uniform convergence of An(t) then follows
from (162) and Theorem 2 in Appendix C.1, that states E[(n−1

0 lnZt − fn(t))2] −−−−−→
n0→+∞

0 uniformly

in t ∈ [0, 1].

C Concentration of free entropy and overlaps

C.1 Concentration of the free entropy

In this section, one proves that the free entropy of the interpolation model studied in Sec. 2.4
concentrates around its expectation (uniformly in t), i.e. one proves Theorem 2 stated below. To
lighten the notations, one uses C(ϕ1, ϕ2, α1, α2, S) to denote a generic positive constant depending
only on ϕ1, ϕ2, α1, α2, S. Remember that S is a bound on the signal absolute values. It is also
understood that the dimensions n0, n1, n2 are large enough and n1/n0 → α1, n2/n1 → α2.

Theorem 2. Under assumptions (H1), (H2), (H3) one can find a positive constant C(ϕ1, ϕ2, α1, α2, S)
such that

E

[(
1

n0
lnZt − E

[
1

n0
lnZt

])2
]
≤ C(ϕ1, ϕ2, α1, α2, S)

n0
. (163)

One recalls some setups and notations for the reader’s convenience. The interpolating Hamiltonian
(97)-(98) is

−
n2∑
µ=1

lnPout,2(Yµ|st,µ(x,a1, uµ)) +
1

2

n1∑
i=1

(
Y ′i −

√
r t ϕ1

([W1x√
n0

]
i
,a1,i

))2
, (164)
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where st,µ(x,a1, uµ) =
√

1−t
n1

[
W2ϕ1

(
W1x√
n0
,a1

)]
µ

+ k1(t)Vµ + k2(t)uµ with

k1(t) :=

√∫ t

0
q(v)dv, k2(t) :=

√∫ t

0
(ρ1(n0)− q(v))dv .

This Hamiltonian follows from the interpolating modelYt,µ = ϕ2

(√
1−t
n1

[
W2ϕ1

(
W1X0
√
n0

,A1

)]
µ

+ k1(t)Vµ + k2(t)Uµ,A2,µ

)
+
√

∆Zµ , 1 ≤ µ ≤ n2,

Y ′t,i =
√
r t ϕ1

([
W1X0
√
n0

]
i
,A1,i

)
+ Z ′i , 1 ≤ i ≤ n1 ,

where (A1,i)
n1
i=1

i.i.d.∼ PA1 , (A2,µ)n2
µ=1

i.i.d.∼ PA2 , (Zµ)n2
µ=1 , (Z

′
i)
n1
i=1

i.i.d.∼ N (0, 1). Recall the definition

X1 := ϕ1

(
W1X0
√
n0

,A1

)
. The channel Pout,2 defined in (77) can be written as

Pout,2(Yt,µ|st,µ(x,a1,u)) =

∫
dPA2(a2,µ)

1√
2π∆

e−
1

2∆

(
Yt,µ−ϕ2(st,µ(x,a1,uµ),a2,µ

))2

=

∫
dPA2(a2,µ)

1√
2π∆

e−
1

2∆
(Γt,µ(x,a1,a2,µ,uµ)+

√
∆Zµ)2

(165)

with

Γt,µ(x,a1,a2,µ, uµ) := ϕ2

(√1− t
n1

[
W2X

1
]
µ

+ k1(t)Vµ + k2(t)Uµ,A2,µ

)
− ϕ2

(√1− t
n1

[
W2ϕ1

(W1x√
n0
,a1

)]
µ

+ k1(t)Vµ + k2(t)uµ,a2,µ

)
. (166)

From (164), (165), (166) the free entropy of the interpolating model reads

1

n0
lnZt =

1

n0
ln Ẑt −

1

2n0

n2∑
µ=1

Z2
µ −

1

2n0

n∑
i=1

Z ′2i −
n2

2n0
ln(2π∆) (167)

where
1

n0
ln Ẑt =

1

n0
ln
(∫

dP0(x)dPA1(a1)dPA2(a2)Du e−Ĥt(x,a1,a2,u)
)
, (168)

and

Ĥt(x,a1,a2,u) =
1

2∆

n2∑
µ=1

{
Γt,µ(x,a1,a2,µ, uµ)2 + 2

√
∆ZµΓt,µ(x,a1,a2,µ, uµ)

}
+

1

2

n1∑
i=1

[√
rtX1

i −
√
rtϕ1

([W1x√
n0

]
i
,a1,i

)]2
+ 2Z ′i

[√
rtX1

i −
√
rtϕ1

([W1x√
n0

]
i
,a1,i

)]
. (169)

From (166), (168), (169), note that ln Ẑt/n0 has been written as a function of Z, Z′, V, U, W2, W1,
A2, X1. Our goal is to show that the free energy (167) concentrates around its expectation. It is
enough to show that there exists a positive constant C(ϕ1, ϕ2, α1, α2, S) such that Var

(
ln Ẑt/n0

)
≤

C(ϕ1,ϕ2,α1,α2,S)
n0

. This concentration property together with (167) implies (163), i.e. Theorem 2.
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First, the concentration w.r.t. all Gaussian variables Z,Z′,V,U,W2,W1 is shown thanks to the
classical Gaussian Poincaré inequality, then the concentration w.r.t. A2, X1 using classical bounded
difference arguments. The order in which the concentrations are proved matters. These two variance
bounds are recalled below. The reader can refer to [40] (Chapter 3) for detailed proofs of these
statements.

Proposition 10 (Gaussian Poincaré inequality). Let U = (U1, . . . , UN ) be a vector of N independent
standard normal random variables. Let g : RN → R be a continuously differentiable function. Then

Var(g(U)) ≤ E
[
‖∇g(U)‖2

]
. (170)

Proposition 11. Let U ⊂ R. Let g : UN → R a function that satisfies the bounded difference
property, i.e., there exists some constants c1, . . . , cN ≥ 0 such that

sup
u1,...uN∈UN

u′i∈U

|g(u1, . . . , ui, . . . , uN )− g(u1, . . . , u
′
i, . . . , uN )| ≤ ci , for all 1 ≤ i ≤ N .

Let U = (U1, . . . , UN ) be a vector of N independent random variables that takes values in U . Then

Var(g(U)) ≤ 1

4

N∑
i=1

c2
i . (171)

Finally, before starting the proof of Theorem 2, we point out that under the hypothesis (H2)
all the suprema sup |ϕk|, sup |ϕ′k|, sup |ϕ′′k | for k ∈ {1, 2} are well-defined, and for all i ∈ {1, . . . , n1}
|X1

i | ≤ sup |ϕ1| almost surely.

C.1.1 Concentration with respect to Gaussian random variables Z, Z′, V, U, W2, W1

In this subsection, as in B.1 and to lighten the notations, one will systemically omit the second
argument in the functions ϕ1, ϕ2 and their first and second derivatives w.r.t. to their first argument.
Here one proves ln Ẑt/n0 is close to its expectation w.r.t. the Gaussian random variables Z, Z′, V, U,
W2, W1, i.e.

Lemma 4. Let EG′ denotes the expectation w.r.t. Z, Z′, V, U, W2, W1 only. There exists a positive
constant C(ϕ1, ϕ2, α1, α2, S) such that

E

[(
1

n0
ln Ẑt − EG′

[
1

n0
ln Ẑt

])2
]
≤ C(ϕ1, ϕ2, α1, α2, S)

n0
. (172)

Lemma 4 follows, by Pythagorean theorem, from the Lemmas 5, 6, 7 proven below.

Lemma 5. Let EZ,Z′ denotes the expectation w.r.t. Z,Z′ only. There exists a constant C(ϕ1, ϕ2, α1, α2, S) >
0 such that

E

[(
1

n0
ln Ẑt − EZ,Z′

[
1

n0
ln Ẑt

])2
]
≤ C(ϕ1, ϕ2, α1, α2, S)

n0
. (173)
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Proof. Here g = ln Ẑt/n0 is seen as a function of Z, Z′ only and we work conditionally to all other
random variables. The norm of the gradient of g reads

‖∇g‖2 =

n2∑
µ=1

∣∣∣∣ ∂g∂Zµ
∣∣∣∣2 +

n1∑
i=1

∣∣∣∣ ∂g∂Z ′i
∣∣∣∣2 . (174)

Each of these partial derivatives are of the form ∂g = −n−1
0 〈∂Ĥt〉Ĥt where the Gibbs bracket 〈−〉Ĥt

pertains to the effective Hamiltonian (169). One finds∣∣∣∣ ∂g∂Zµ
∣∣∣∣ =

1

n0

√
∆

∣∣〈Γt,µ〉Ĥt∣∣ ≤ 2

n0

√
∆

sup |ϕ2| ,∣∣∣∣ ∂g∂Z ′i
∣∣∣∣ =

1

n0

∣∣∣∣〈√rtX1
i −
√
rtϕ1

([W1x√
n0

]
i

)〉
Ĥt

∣∣∣∣ ≤ 2
√
r

n0
sup |ϕ1| ,

and, replacing in (174), one gets ‖∇g‖2 ≤ 4n−1
0

(
n2
n0

∆−1 sup |ϕ2|2 + rn1
n0

sup |ϕ1|2
)
. Applying Propo-

sition 10, one obtains

EZ,Z′

[(
1

n0
ln Ẑt − EZ,Z′

[
1

n0
ln Ẑt

])2
]
≤ C(ϕ1, ϕ2, α1, α2, S)

n0
(175)

almost surely. Taking the expectation in (175) gives the lemma.

Lemma 6. Let EG denote the expectation w.r.t. Z, Z′, V, U, W2 only. There exists a constant
C(ϕ1, ϕ2, α1, α2, S) > 0 such that

E

[(
EZ,Z′

[
1

n0
ln Ẑt

]
− EG

[
1

n0
ln Ẑt

])2
]
≤ C(ϕ1, ϕ2, α1, α2, S)

n0
. (176)

Proof. Here g = EZ,Z′ [ln Ẑt]/n0 is seen as a function of V, U, W2 and we work conditionally to all
other random variables.∣∣∣∣ ∂g∂Vµ

∣∣∣∣ = n−1
0

∣∣∣EZ,Z′

[〈(
Γt,µ +

√
∆Zµ)∆−1∂Γt,µ

∂Vµ

〉
Ĥt

]∣∣∣
≤ n−1

0 EZ,Z′

[
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√
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√
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∆
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]
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√
2∆

π

)√
ρ1(n0)

∆
2 sup |ϕ′2|

The same inequality holds for
∣∣ ∂g
∂Uµ

∣∣. To compute the derivative w.r.t. (W2)µi, first remark that

∂Γt,µ
∂(W2)µi

=

√
1− t
n1

{
X1
i ϕ
′
2

(√1− t
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[
W2X

1
]
µ

+ k1(t)Vµ + k2(t)Uµ

)
− ϕ1

([W1x√
n0

]
i

)
ϕ
′
2

(√1− t
n1

[
W2ϕ1

(W1x√
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)]
µ

+ k1(t)Vµ + k2(t)uµ
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Therefore ∣∣∣∣ ∂g

∂(W2)µi

∣∣∣∣ = n−1
0

∣∣∣EZ,Z′

[〈
(Γt,µ +

√
∆Zµ)∆−1 ∂Γt,µ

∂(W2)µi

〉
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√
∆|Zµ|)∆−1(2 sup |ϕ1| sup |ϕ′2|)
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=

1

n0
√
n1

(
2 sup |ϕ2|+

√
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π

)
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Putting these inequalities together one ends up with

‖∇g‖2 =

n2∑
µ=1

∣∣∣∣ ∂g∂Vµ
∣∣∣∣2 +

n2∑
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→ρ1
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)(2 sup |ϕ′2|

∆

)2(
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√
2∆

π

)2

.

Then the lemma follows once again of Proposition 10.

Lemma 7. Let EG′ denote the expectation w.r.t. Z, Z′, V, U, W2, W1 only. There exists a positive
constant C(ϕ1, ϕ2, α1, α2, S) such that

E

[(
EG
[

1

n0
ln Ẑt

]
− EG′

[
1

n0
ln Ẑt

])2
]
≤ C(ϕ1, ϕ2, α1, α2, S)

n0
. (177)

Proof. Here g = EG[ln Ẑt]/n0 is seen as a function of W1 only and we work conditionally to the other
random variables. The partial derivatives of g w.r.t. (W1)ij reads

∂g

∂(W1)ij
= − 1

n0

n2∑
µ=1

EG
[〈
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√
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√
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)
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)
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]
i

)〉
Ĥt

]
In a similar fashion to what has be done previously, the absolute value of the second term in this
partial derivative can be upperbounded by

√
r

n
3/2
0

(
2
√
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√
2
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)
· S sup |ϕ′1| .

The first term requires more work. First notice that
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.
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It follows that
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Ĥt

]
= ∆−1

√
1− t
n0n1

EG
[
(W2)µi

〈
(Γt,µ +

√
∆Zµ)Γ̃

(ij)
t,µ

〉
Ĥt
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Integrating by parts w.r.t. (W2)µi we get
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∂(W2)µi

〉
Ĥt
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The first two expectations satisfy∣∣∣∣EG[〈 ∂Γt,µ
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√

∆Zµ)
∂Γ̃

(ij)
t,µ

∂(W2)µi

〉
Ĥt

]∣∣∣∣∣ ≤ (2 sup |ϕ2|+
√

2∆

π

)
· S sup |ϕ′1| sup |ϕ1| sup |ϕ′′2 |√

n1
,

while for the last two we have∣∣∣∣EG[〈(Γt,µ +
√

∆Zµ)2 Γ̃
(ij)
t,µ

∂Γt,µ
∂(W2)ij

〉
Ĥt

]∣∣∣∣
≤ E

[
(2 sup |ϕ2|+

√
∆|Zµ|)2

]
· S sup |ϕ′1| sup |ϕ′2| ·

2 sup |ϕ1| sup |ϕ′2|√
n1

=

(
4 sup |ϕ2|2 + ∆ + 2 sup |ϕ2|

√
2∆

π

)
· S sup |ϕ′1| sup |ϕ′2| ·

2 sup |ϕ1| sup |ϕ′2|√
n1

,∣∣∣∣EG[〈(Γt,µ +
√

∆Zµ)Γ̃
(ij)
t,µ

〉
Ĥt

〈
(Γt,µ +

√
∆Zµ)

∂Γt,µ
∂(W2)ij

〉
Ĥt

]∣∣∣∣
≤
(

4 sup |ϕ2|2 + ∆ + 2 sup |ϕ2|
√

2∆

π

)
· S sup |ϕ′1| sup |ϕ′2| ·

2 sup |ϕ1| sup |ϕ′2|√
n1

.

Putting all these inequalities together gives the existence of a positive constant C1(ϕ1, ϕ2, α1, α2, S)
such that∣∣∣∣n−1

0

n2∑
µ=1

EG
[〈

(Γt,µ +
√

∆Zµ)∆−1 ∂Γt,µ
∂(W1)ij

〉
Ĥt

]∣∣∣∣ ≤ 1

n
3/2
0

· n2

n1
· C1(ϕ1, ϕ2, α1, α2, S)
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Thus, it exists a positive constant C2(ϕ1, ϕ2, α1, α2, S) satisfying
∣∣∣ ∂g
∂(W1)ij

∣∣∣ ≤ C2(ϕ1,ϕ2,α1,α2,S)/n3/2
0 for

any (i, j) ∈ {1, . . . , n1} × {1, . . . , n0}, and

‖∇g‖2 =

n1∑
i=1

n0∑
j=1

∣∣∣∣ ∂g

∂(W1)ij

∣∣∣∣2 ≤ 1

n0
· n1

n0
· C2

2 (ϕ1, ϕ2, α1, α2, S) .

Applying Proposition 10 ends the proof.

C.1.2 Bounded difference with respect to A2,µ

Next one applies the variance bound of Lemma 11 to show n−1
0 EG′ [ln Ẑt] concentrates w.r.t. A2,

while keeping X1 fixed for the moment.

Lemma 8. Let EG′,A2 denotes the expectation w.r.t. Z, Z′, V, U, W2, W1, A2 only. There exists
a positive constant C(ϕ1, ϕ2, α1, α2, S) such that

E

[(
EG′

[
1

n0
ln Ẑt

]
− EG′,A2

[
1

n0
ln Ẑt

])2
]
≤ C(ϕ1, ϕ2, α1, α2, S)

n0
. (178)

Proof. Consider g = EG′ [ln Ẑt]/n0 as a function of A2 only.
Let ν ∈ {1, . . . , n2}. One wants to estimate the variation g(A2)− g(A

(ν)
2 ) for two configurations A2

and A
(ν)
2 with A(ν)

2,µ = A2,µ for µ 6= ν. The notations Ĥ(ν)
t and Γ

(ν)
t,µ will denote the quantities Ĥt and

Γt,µ where A2 is replaced by A
(ν)
2 , respectively. By an application of Jensen’s inequality one finds

1

n0
EG′〈Ĥ(ν)

t − Ĥt〉Ĥ(ν)
t
≤ g(A)− g(A(ν)) ≤ 1

n0
EG′〈Ĥ(ν)

t − Ĥt〉Ĥt (179)

where the Gibbs brackets pertain to the effective Hamiltonians (169). From (169) we obtain

Ĥ(ν)
t − Ĥt

=
1

2∆

n2∑
µ=1

(
Γ

(ν)2
t,µ − Γ2

t,µ + 2Zµ(Γ
(ν)
t,µ − Γt,µ)

)
=

1

2∆

(
Γ

(ν)2
t,ν − Γ2

t,ν + 2Zν(Γ
(ν)
t,ν − Γt,ν)

)
.

Notice that
∣∣Γ(ν)2
t,ν − Γ2

t,ν + 2Zν(Γ
(ν)
t,ν − Γt,ν)

∣∣ ≤ 8 sup |ϕ2|2 + 4|Zν | sup |ϕ2|. From (179) we conclude
that g satisfies the bounded difference property:

|g(A2)− g(A
(ν)
2 )| ≤ 2 sup |ϕ2|

∆n0

(
2 sup |ϕ2|+

√
2

π

)
. (180)

Lemma 8 follows then by an application of Proposition 11.

C.1.3 Bounded difference with respect to X1
i

One now proves the last lemma needed to get Theorem 2, i.e.
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Lemma 9. There exists a positive constant C(ϕ1, ϕ2, α1, α2, S) such that

E

[(
EG′,A2

[
1

n0
ln Ẑt

]
− E

[
1

n0
ln Ẑt

])2
]
≤ C(ϕ1, ϕ2, α1, α2, S)

n0
. (181)

Proof. One sees that n−1
0 EG′,A2 [ln Ẑt] is a function ofX1 only. Consider g(x1) = n−1

0 E[ln Ẑt|X1 = x1].
Note that n−1

0 EG′,A2 [ln Ẑt] = g(X1). We will show that g satisfies a bounded difference property,
then an application of Proposition 11 will end the proof.

Let i ∈ {1, . . . , n1} and x1,x(i) ∈ [− sup |ϕ1|, sup |ϕ1|]n1 two vectors such that x(i)
j = x1

j for j 6= i.
For s ∈ [0, 1] we define ψ(s) = g(sx1 + (1− s)x(i)). Hence ψ(1) = g(x1) and ψ(0) = g(x(i)). If we
can prove that

|ψ′(s)| ≤ C(ϕ1, ϕ2, α1, α2, S)

n0
∀s ∈ [0, 1] , (182)

then the bounded difference property follows, namely

sup
x1,x(i)

|g(x1)− g(x(i))| ≤ C(ϕ1, ϕ2, α1, α2, S)

n0
.

Let Ẽ[ · ] := E[ · |X1 = sx1 + (1− s)x(i)]. The derivative of ψ satisfies

|ψ′(s)| = |x
1
i − x

(i)
i |

n0
Ẽ
[〈

∂Ĥt
∂X1

i

〉
Ĥt

]
≤ 2 sup |ϕ1|

n0

n2∑
µ=1

∣∣∣∣Ẽ[〈(Γt,µ +
√

∆Zµ)∆−1∂Γt,µ
∂X1

i

〉
Ĥt

]∣∣∣∣
+

2 sup |ϕ1|
n0

∣∣∣∣Ẽ[√rt〈√rtX1
i −
√
rtϕ1

([W1x√
n0

]
i

)
+ Z

′
i

〉
Ĥt

]∣∣∣∣
One has ∣∣∣∣Ẽ[√rt〈√rtX1

i −
√
rtϕ1

([W1x√
n0

]
i

)
+ Z

′
i

〉
Ĥt

]∣∣∣∣ ≤ Ẽ
[√

rt(
√
rt 2 sup |ϕ1|+ |Z

′
i |)
]

≤ rt 2 sup |ϕ1|+
√

2rt

π
,

while for every µ ∈ {1, . . . , n2} integration by parts w.r.t. (W2)µi gives∣∣∣∣Ẽ[〈(Γt,µ +
√

∆Zµ)∆−1∂Γt,µ
∂X1

i

〉
Ĥt

]∣∣∣∣
=

∣∣∣∣Ẽ[〈(Γt,µ +
√

∆Zµ)

√
1− t
n1

(W2)µiϕ
′
2

(√1− t
n1

[
W2X

1
]
µ
+ k1(t)Vµ + k2(t)Uµ,A2,µ

)〉
Ĥt

]∣∣∣∣
≤ C(ϕ1, ϕ2, α1, α2, S)

n1

for some positive constant C(ϕ1, ϕ2, α1, α2, S). Hence the condition (182) is satisfied, ending the
proof of the lemma.
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C.1.4 Proof of Theorem 2

From Lemmas 4, 8, 9 above, one obtains the bound

Var

(
ln Ẑt
n0

)
= E

( ln Ẑt
n0
− EG′

[
ln Ẑt
n0

])2
+ E

(EG′
[

ln Ẑt
n0

]
− EG′,A2

[
ln Ẑt
n0

])2


+ E

(EG′,A2

[
ln Ẑt
n0

]
− E

[
ln Ẑt
n0

])2


≤ C(ϕ1, ϕ2, α1, α2, S)

n0
,

where the equality of the first line follows simply of the Pythagorean theorem. As mentioned before,
this implies Theorem 2 thanks to (167).

C.2 Concentration of the overlap

This section presents the main steps towards proving Lemma 3. The interested reader can find more
details in Section V of [38] where the proof method has been streamlined.

One denotes by 〈−〉t,ε the Gibbs measure associated to the perturbed Hamiltonian

Ht(x,a1,u;Y,Y′,W1,W2,V) +

{
n1∑
i=1

ε

2
ϕ2

1

([W1x√
n0

]
i
,a1,i

)
− εϕ1

([W1X
0

√
n0

]
i
,A1,i

)
ϕ1

([W1x√
n0

]
i
,a1,i

)
−√εϕ1

([W1x√
n0

]
i
,a1,i

)
Ẑi

}
i.e., the sum of (98) and (109). As already explained, the addition of the second term can be seen
as having an extra Gaussian side-channel, described by (110). Hence the Nishimori identity (Propo-
sition 8) is preserved. The corresponding average free entropy is denoted fn,ε(t) and we call Fn,ε(t) the
free entropy for a realization of the quenched variables, that is Fn,ε(t) = n−1

0 lnZt(Y,Y′, Ŷ,W1,W2,V).
Let

Lε :=
1

n1

n1∑
i=1

1

2
ϕ2

1

([W1x√
n0

]
i
,a1,i

)
− ϕ1

([W1X
0

√
n0

]
i
,A1,i

)
ϕ1

([W1x√
n0

]
i
,a1,i

)
− 1

2
√
ε
ϕ1

([W1x√
n0

]
i
,a1,i

)
Ẑi .

Up to the prefactor n−1
1 this quantity is the derivative of the perturbation term in (109). The

fluctuations of the overlap Q̂ = 1
n1

n1∑
i=1

ϕ1

([
W1x√
n0

]
i
,a1,i

)
ϕ1

([
W1X0
√
n0

]
i
,A1,i

)
and those of Lε are related

through the identity

E
〈
(Lε − E〈Lε〉t,ε)2

〉
t,ε

=
1

4
E〈(Q̂− E〈Q̂〉n,t,ε)2

〉
t,ε

+
1

2
E[〈Q̂2〉t,ε − 〈Q̂〉2t,ε]

+
1

4n2
1ε

n1∑
i=1

E

[〈
ϕ2

1

([W1x√
n0

]
i
,a1,i

)〉
t,ε

]
. (183)
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To see it, first note that Lε = 1
n1

n1∑
i=1

1
2(x1

i )
2 − X1

i x
1
i − 1

2
√
ε
x1
i Ẑi where x1

i := ϕ1

([
W1x√
n0

]
i
,a1,i

)
,

Xi
i := ϕ1

([
W1X0
√
n0

]
i
,A1,i

)
. Then the full derivation in Appendix IX of [38] can be reproduced exactly

by doing the identifications X1
i ↔ Si, x1

i ↔ Xi, n1 ↔ n. Indeed, the proof in Appendix IX of [38]
only involves some algebra using the Nishimori identity (here x1 plays the role of a sample obtained
from the conditional distribution P (X1 = ·|Y,Y′, Ŷ,W1,W2,V)) and integration by parts w.r.t.
the Gaussian Ẑi in the perturbation term. Besides, Appendix F.2 of [35] already remarked that
the precise form of the first term Ht does not matter as long as it is a Hamiltonian whose Gibbs
distribution satisfies Nishimori identity. To illustrate this, we are going to prove the following lemma,
that is used to obtain (183) and is also useful to prove Lemma 2.

Lemma 10 (Formula for E〈Lε〉t,ε). For any ε > 0,

E〈Lε〉t,ε = −1

2
E〈Q̂〉t,ε . (184)

Proof. From Lε definition we directly get

E〈Lε〉t,ε =
1

n1

n1∑
i=1

1

2
E[〈(x1

i )
2〉t,ε]− E[X1

i 〈x1
i 〉t,ε]−

1

2
√
ε
E[〈x1

i 〉t,εẐi] . (185)

The expectation E[X1
i 〈x1

i 〉t,ε] in the sum easily simplifies to

E

[
ϕ1

([W1X
0

√
n0

]
i
,A1,i

)〈
ϕ1

([W1x√
n0

]
i
,a1,i

)〉
t,ε

]

= E
[
X1
i E
[
ϕ1

([W1X
0

√
n0

]
i
,A1,i

)∣∣∣∣Y,Y′, Ŷ,W1,W2,V

]]
= E

[
E
[
X1
i E
[
X1
i

∣∣∣Y,Y′, Ŷ,W1,W2,V
]∣∣∣Y,Y′, Ŷ,W1,W2,V

]]
= E

[
E
[
X1
i

∣∣∣Y,Y′, Ŷ,W1,W2,V
]
· E
[
X1
i

∣∣∣Y,Y′, Ŷ,W1,W2,V
]]

= E
[〈
x1
i

〉2

t,ε

]
. (186)

These lines of computation just correspond to the Nishimori identity. We detailed them here to
make clear how Nishimory identity still applies to the random variables x1, X1.
The third expectation is dealt with an integration by parts w.r.t. Ẑi:

E[〈x1
i 〉t,εẐi] = E

[
∂〈x1

i 〉t,ε
∂Ẑi

]
= E

[√
ε(〈(x1

i )
2〉t,ε − 〈x1

i 〉2t,ε)
]
. (187)

Combining (185), (186), (187) gives the desired result:

E〈Lε〉t,ε =
1

n1

n1∑
i=1

−1

2
E[〈x1

i 〉2t,ε] = −1

2

1

n1

n1∑
i=1

E[〈x1
i 〉t,εX1

i ] = −1

2
E〈Q̂〉t,ε .

Lemma 3 is then a direct consequence of the following:
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Proposition 12 (Concentration of Lε on). Under assumptions (H1), (H2) and (H3) we have for
any 0 < a < 1,

lim
n0→+∞

∫ 1

a
dεE

〈
(Lε − E〈Lε〉t,ε)2

〉
t,ε

= 0. (188)

As for the one-layer case, the proof of this proposition is broken in two parts. Notice that

E
〈
(Lε − E〈Lε〉t,ε)2

〉
t,ε

= E
〈
(Lε − 〈Lε〉t,ε)2

〉
t,ε

+ E
[
(〈Lε〉t,ε − E〈Lε〉t,ε)2

]
. (189)

Thus it suffices to prove the two following lemmas. The first lemma expresses concentration w.r.t.
the posterior distribution (or “thermal fluctuations”).

Lemma 11 (Concentration of Lε on 〈Lε〉 E〈Lε〉 ). Under assumptions (H1), (H2) and (H3), we
have for any 0 < a < 1,

lim
n0→+∞

∫ 1

a
dεE

[〈
(Lε − 〈Lε〉t,ε)2

〉
t,ε

]
= 0 . (190)

Proof. The result is a consequence of the convexity properties of the free energy and the Nishimori
identity. The proof is similar to the one of Lemma 5.2 in Sec. V of [38]. Here we go quickly through
those steps just to illustrate the minor changes.
Let Fn,t(ε) = n−1

0 lnZt(Y,Y′, Ŷ,W1,W2,V) and fn,t(ε) = EFn,t(ε). Note that in [38] the authors
work with free energies instead of free entropies, i.e. Fn,t is defined with a minus sign in front of the
logarithm. Here we have:

dFn,t(ε)

dε
= −n1

n0
〈Lε〉 ,

1

n0

d2Fn,t(ε)

dε2
=

(
n1

n0

)2

(〈L2
ε 〉 − 〈Lε〉2)− 1

4n2
0ε

3/2

n1∑
i=1

〈x1
i 〉Ẑi ,

dfn,t(ε)

dε
= −n1

n0
E〈Lε〉 =

1

2n0

n1∑
i=1

E[〈x1
i 〉2] ,

1

n0

d2fn,t(ε)

dε2
=

(
n1

n0

)2

E[〈L2
ε 〉 − 〈Lε〉2]− 1

4n2
0ε

n1∑
i=1

E[〈(x1
i )

2〉 − 〈x1
i 〉2] ,

where we made use of (184), (187) and dropped the indices in 〈−〉t,ε to lighten the notations. From
the last equation we get

E[〈L2
ε 〉 − 〈Lε〉2] =

n0

n2
1

d2fn,t(ε)

dε2
+

1

4n2
1ε

n1∑
i=1

E[〈(x1
i )

2〉 − 〈x1
i 〉2] ≤ n0

n2
1

d2fn,t(ε)

dε2
+

supϕ2
1

4n1ε

where the last line follows from E[〈(x1
i )

2〉] ≤ supϕ2
1. An integration over ε ∈ [a, 1] gives∫ 1

a
dεE[〈L2

ε 〉 − 〈Lε〉2]

≤ n0

n2
1

dfn,t(ε)

dε

∣∣∣
ε=1
− n0

n2
1

dfn,t(ε)

dε

∣∣∣
ε=a

+
supϕ2

1

4n1
| ln a| ≤ n0

n2
1

dfn,t(ε)

dε

∣∣∣
ε=1

+
supϕ2

1

4n1
| ln a| ,
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where to obtain the last inequality we used that the derivative dfn,t(ε)
dε is non-negative. Finally

n0

n2
1

dfn,t(ε)

dε

∣∣∣
ε=1

=
1

2n2
1

n1∑
i=1

E[〈x1
i 〉2] ≤ supϕ2

1

2n1

leads to ∫ 1

a
dεE[〈L2

ε 〉 − 〈Lε〉2] ≤ supϕ2
1

2n1

(
1 +
| ln a|

2

)
.

The second lemma expresses the concentration of the average overlap w.r.t. the realizations of
quenched disorder variables.

Lemma 12 (Concentration of 〈Lε〉 on E〈Lε〉 ). Under assumptions (H1), (H2) and (H3), we have
for any 0 < a < 1,

lim
n0→+∞

∫ 1

a
dεE

[
(〈Lε〉t,ε − E[〈Lε〉t,ε])2

]
= 0 . (191)

Proof. It is a consequence of the concentration of the free energy (see Theorem 2 in Appendix C.1).
The proof is similar to the one of Lemma 5.3 in Sec. V of [38], the main change being in the definition
of the functions F̃ (ε), f̃(ε):

F̃ (ε) := Fn,t(ε)−
√
ε

n0

n1∑
i=1

(sup |ϕ1|) · |Ẑi| , f̃(ε) := fn,t(ε)−
√
ε

n0

n1∑
i=1

(sup |ϕ1|) · E|Ẑi| .

The addition of the second term makes F̃ (ε) convex, while f̃(ε) is convex too (note that fn,t(ε) was
already convex, as it can be shown by the same method than the one in Sec. V of [38]). The proof
of Lemma 5.3 in [38] can then be reproduced and choosing δ = n

−1/4
0 leads to the bound∫ 1

a
dεE

[
(〈Lε〉t,ε − E[〈Lε〉t,ε])2

]
≤ C

n
1/4
0

· (sup |ϕ1|)2 ·
(

1 +

√
2

π · a

)
,

for some positive constant C and n0 large enough.
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