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Abstract

We consider a model for thermal contact through a diathermal interface between two
macroscopic bodies at different temperatures: an Ising spin chain with nearest neighbor in-
teractions is endowed with a Glauber dynamics with different temperatures and kinetic pa-
rameters on alternating sites. The inhomogeneity of the kinetic parameter is a novelty with
respect to the model of Ref.[1] and we exhibit its influence upon the stationary non equilib-
rium values of the two-spin correlations at any distance. By mapping to the dynamics of spin
domain walls and using free fermion techniques, we determine the scaled generating function
for the cumulants of the exchanged heat amounts per unit of time in the long time limit.

Keywords : exact analytical results, thermal contact, Glauber spin dynamics, current fluctu-
ations

PACS numbers : 05.70.Ln, 02.50.Ga, 05.60.Cd

1

http://arxiv.org/abs/1712.02273v1


1 Introduction

Thermal contact between two macroscopic bodies initially at different temperatures corresponds
to a situation where the heat transfer between the two bodies is ensured by a thin diathermal
interface. The latter may be an immaterial interface between two solids or a diathermal wall
between two fluids. Over a time window during which the two macroscopic bodies have negligible
energy variations, they behave as thermostats with constant thermodynamic temperatures, while
the interface is a mesoscopic system with traceable configurations. After a long enough time inside
the considered time window the interface tends to a stationary non equilibrium state where the
instantaneous heat current which it receives from a thermostat has a non-vanishing mean value.
Even if the interface is described by a model where its degrees of freedom obey a (deterministic
or stochastic) microscopic dynamics, there is no general framework, such as Gibbs equilibrium
ensemble theory, which would allow to determine the probability distribution of the interface con-
figurations and the corresponding mean instantaneous heat current. Therefore it is most valuable
to exhibit solvable models which would shed some light into the dependence of the heat instanta-
neous current upon the model parameters and the temperatures of the two thermostats.

Such a solvable model has been introduced by Racz and Zia in 1994 [1]. They consider a
chain of classical spins with periodic boundary conditions and interacting with a nearest-neighbor
ferromagnetic (Ising) interaction. They endow it with a Glauber stochastic dynamics with single-
spin flips at a time and such that the spins on odd and even lattice sites are flipped by thermostats
at two different temperatures. In our view, the model may be seen as a zig-zag shaped chain
inside a very thin strip between two half-planes occupied by two different thermostats, and where
the odd (even) sites are located on the left (right) side of the strip. The stationary two-spin
correlations at any distance as well as higher order spin correlations have been extensively studied
in Refs.[1, 2, 3, 4].

We point out that the latter model indeed satisfies two requirements needed for a correct
description of a thermal contact between two macroscopic bodies during a transient time window
where their temperature can be considered as constant. First the contact must be mediated by
changes in the internal energy of the spin interface. Second, if the energies of the macroscopic
bodies were kept tracked of, the transition rates for both the interface configurations and these
two energies would obey the detailed balance with the microcanonical equilibrium probability
distribution for these variables of the whole system. Then, in the infinite time limit the two
bodies and the interface would be at the same temperature; in a time window where the energy
variations of the macroscopic bodies are negligible, the transition rates for the interface depend only
on the temperatures of the macroscopic bodies and they obey the local detailed balance [5, 6]1. In
the case of a spin interface the two corresponding requirements become: 1) a transition between
two spin configurations involves only one thermostat; 2) the transition rate involving a given
thermostat obey the detailed balance at the same temperature. For the present two-temperature
Ising chain the first requirement is obviously fulfilled2, and the simplest transition rates which
fulfill the second requirement are those chosen by Glauber in the case of an Ising chain in contact
with a unique thermostat[8]. (We recall that Glauber looked for single-spin flip dynamics such
that in the infinite time limit the spin chain indeed relaxes to the canonical equilibrium state at
the thermostat temperature and then he chose the simplest transition rates.)

On the other hand, the quantities of interest for exchange processes which have been considered
over the last three decades, both theoretically and experimentally, are amounts of microscopically
conserved entities (matter, energy, ...), which are exchanged over a very long time (in the case of
thermal contact the corresponding quantities are the heat amounts received by the interface from
each thermostat during a fixed long time interval). They have been focused on because the scaled
generating function for their cumulants per unit of time in the long time limit as well as its Laplace
transform, the large deviation function of the corresponding time-integrated current, have been

1In Ref.[5] the terminology "generalized" detailed balance is used.
2We notice that the first requirement is not satisfied by the Ising chain model of Ref.[7], where two thermostats

at different temperatures act on every spin : the latter model does not describe a situation of thermal contact.
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shown to obey generic symmetry relations, the so-called fluctuation relations. The latter relations
are derived from properties of the system dynamics and they are a milestone of the stochastic
thermodynamics theory (For a review see Ref.[9].)

In this context it is also interesting to have at hand solvable models where the statistics of
the time-integrated currents can be calculated. For instance, such a model has been exhibited
in the case where the heat transfer between two thermostats is ensured by a wire. The energy
quanta are represented as particles whose stochastic dynamics is a Symmetric Simple Exclusion
Process (SSEP) with adequate boundary conditions: particles with hard cores hop on the sites
of a one-dimensional lattice with the same hopping rate in both directions, but have different
in-coming and out-going rates at the two lattice ends in contact with two particle reservoirs with
different chemical potentials. Then all cumulants of the heat coming out of one thermostat per
unit of time can be calculated in the long time limit [10, 11] .

In the present paper we consider a generalized version of the diathermal interface model of
Ref.[1]: the two Glauber dynamics which flip the spins on sites with odd or even indices respectively
have not only different temperatures but also different kinetic parameters (see Sec.2). Our aim is
to calculate the scaled generating function of the joint cumulants per unit of time for the heats
flowing out of the two thermostats in the long time limit.

The difference between the kinetic constants is relevant for two macroscopic bodies made with
different materials. Some of the corresponding kinetic effects have been previously investigated in
our study of a very simple model for a one-dimensional interface between two half-planes occupied
by bodies at two different temperatures : a model of independent two-spin pairs where the left-
side (right-side) spin in each pair is flipped only by the thermostat on the same side according
to a Glauber dynamics. The whole statistics for the spin configurations and the heat amounts
exchanged by every pair with the thermostats have been calculated explicitly [12].

The method which we use to obtain the scaled generating function for the heat cumulants in
the present model is the following. From its definition this function can be obtained as the largest
eigenvalue of the modified Markov matrix which rules the evolution of the joint probability for the
system configurations and the heat amounts Qo and Qe received on each (odd or even) sublattice.

In order to study energy exchanges more conveniently, instead of considering the spin config-
urations, we rather formulate the problem in terms of the position configurations for the domain
walls, which sit on the dual lattice. In other words we consider the well-known lattice gas represen-
tation on the dual lattice (‘antiparallel adjacent spin pair’ ↔ ‘particle’ and ‘parallel adjacent spin
pair’ ↔ ‘hole’) where a particle is in fact a domain wall. The mapping of Glauber spin dynamics
to the particle dynamics then includes the possibility for the creation and annihilation of adjacent
particle pairs, which correspond to the injection or the loss of energy in the chain respectively3.
Our model with two temperatures and two kinetic parameters is mapped to a reaction-diffusion
system with two different creation (annihilation) rates as well as two different hopping rates on
spatially alternating sites4.

The crucial point is that, in a suitable basis for the representation of the configurations of do-
main wall positions, the Markov matrix for the evolution of the configuration probability involves
only products of two operators : the Markov matrix is mapped to a free fermion Hamiltonian [14].
Moreover the mapping can be readily generalized for the modified Markov matrix which rules the
evolution of the joint probability for a configuration of domain wall positions and the amounts
of heat Qo and Qe. The latter matrix can be diagonalized by using free fermions techniques:
Jordan-Wigner transformation and antiperiodic Fourier transform. Thus we obtain a block di-
agonal matrix, made of 4 × 4 blocks, which can be straighforwardly diagonalized by introducing
four pseudo-fermion operators. (In the case of two pseudo-fermion operators and the associated

3The latter correspondance has been used for instance in Ref.[13] for the calculation of the scaled generating
function of the energy injected in an Ising spin ring through the random flips of one spin while all other spins evolve
according to a Glauber dynamics at zero temperature which dissipates energy along the ring.

4In Ref.[4] the mapping has been used in the reverse sense in order to study the relaxation towards the stationary
state for the reaction-diffusion system from results obtained for the Ising spin chain dynamics with two temperatures
but a unique kinetic parameter.
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Bogoliubov-like transformation, see for instance Ref. [15, 16].) The largest eigenvalue of the modi-
fied Markov matrix is obtained by filling up all pseudo-fermion states associated with an eigenvalue
with a positive real part.

The paper is organized as follows. The model is defined in Sec.2 and the relaxation time for
the mean global magnetization on each sublattice is calculated. Moreover by solving a hierarchy
of equations for the stationary global two-spin correlations at any distance (see Appendix A), we
determine the mean instantaneous energy current which flows from each thermostat into the spin
lattice in the stationary state. The mapping to the dynamics of domain walls on the dual lattice
and the associated modified matrix is derived in Sec.3. Its eigenvalues are determined in Sec.4
by free fermion techniques. The cumulants are obtained in Sec.5 and various physical regimes are
discussed. In conclusion we summarize some finite-size effects and their possible cancellation in
heat cumulants.

2 Model

2.1 Description of a thermalization process

We consider a one-dimensional lattice with a finite even number of sites L = 2N , where each site
j is occupied by a classical spin sj (sj = ±1, j = 1, . . . , 2N) with periodic boundary condition
sj+2N = sj . Spins interact via the Ising ferromagnetic nearest-neighbor interaction with coupling
K > 0: the energy of a spin configuration s is

E(s) = −K

2N∑

j=1

sjsj+1. (2.1)

When the spin at site j is flipped, the energy variation of the Ising chain is equal to

∆E(sj → −sj) = sj
sj−1 + sj+1

2
∆E, (2.2)

with ∆E = 4K. This variation can take the values +∆E, 0, or −∆E,
The model is endowed with a stochastic dynamics where the spin flips at odd (even) sites

are due to energy exchanges with a macroscopic body at temperature To (Te) in the course of
a thermalization process of the two macroscopic bodies. The transition rates must obey local
detailed balance [5, 6]: the transition rates w(sj → −sj) and w(−sj → sj) for two reversed flips
of the spin at site j, while all other spins are kept fixed, must obey the ratio

w(sj → −sj)

w(−sj → sj)
= e−βj∆E(sj→−sj), (2.3)

where βj is the inverse temperature of the thermostat acting on site j : βj = 1/(kBTj) where kB

is Boltzmann constant and Tj is equal either to To or Te, depending on the parity of j. As shown
by Glauber [8] in the case of a unique temperature, the simplest transition rates which obey the
constraint (2.3) read

w(sj → −sj) =
νj
2

[
1− γj

sj (sj−1 + sj+1)

2

]
, (2.4)

while w(−sj → sj) is given by the latter expression where sj is replaced by −sj . In (2.4) γj is the
thermodynamic parameter at site j,

γj = tanh

(
βj∆E

2

)
(2.5)

where γj = γo or γe, depending on the parity of the site index, and νj is the kinetic parameter νj
at site j. The latter is not determined by the local detailed balance; it can be interpreted as the
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mean frequency at which the macroscopic body tries to flip the spin at site j. Therefore we set
νj = νo or νe, depending on the parity of the site index (note that when the two kinetic parameters
are equal the present model coincides with that of Ref.[1]). Since the time scale is arbitrary, it is
convenient to introduce the dimensionless kinetic parameters νa, with a = o or e, defined as

νa =
νa

νo + νe

. (2.6)

They satisfy the relation νo + νe = 1 and, apart from the arbitrary time scale, the model has only
three independent parameters, γo, γe and νo.

The probability P (s; t) for the system to be in spin configuration s at time t evolves according
to the master equation

dP (s; t)

dt
=

2N∑

j

w(−sj → sj)P (sj ; t)−




2N∑

j

w(sj → −sj)


P (s; t) (2.7)

where sj denotes the spin configuration obtained from s by changing sj into −sj. The number of
configurations is finite, and the transition rates allow the system to evolve from any configuration
to any other one after a suitable succession of transitions. Therefore there is a unique stationary
solution of the master equation. In the following we focus on the mean values of global quantities
and denote 〈· · · 〉 and 〈· · · 〉st the expectation values calculated with the time-dependent probability
P (s; t) and the stationary probability Pst(s) respectively.

2.2 Relaxation of the mean global sublattice magnetizations

The transition rates are invariant under a global flip of the spins, so that a configuration and the
corresponding one where all spins are flipped have the same probability in the stationary state.
As a result all stationary correlations for an odd number of spins vanish identically; in particular
〈sj〉st = 0. As a consequence the mean values of the global magnetizations on the two sublattices,
Mo =

∑N
n=1 s2n−1 and Me =

∑N
n=1 s2n respectively, vanish in the stationary state,

〈Mo〉st = 〈Me〉st = 0. (2.8)

The relaxation of the mean values of global sublattice magnetizations is readily studied. As in
the case of the homogeneous spin chain considered by Glauber [8], the evolution equation for the
mean value of the spin at site j reads

d〈sj〉
dt

= −2〈sjw(sj → −sj)〉. (2.9)

According to the expression of the transition rates (2.4)

d〈sj〉
dt

= −νj

[
〈sj〉 − γj

〈sj−1〉+ 〈sj+1〉
2

]
. (2.10)

Then the coupled evolutions of the magnetizations on the two sublattices read

d〈Mo〉
dt

= −νo [〈Mo〉 − γo〈Me〉] (2.11)

d〈Me〉
dt

= −νe [〈Me〉 − γe〈Mo〉] .

From these equations we retrieve that both mean magnetizations vanish in the stationary state,
as predicted by symmetry arguments. The matrix associated with this system of linear equations

has two strictly negative eigenvalues 1
2 (νo + νe)

[
−1±

√
(νo − νe)2 + 4νoνeγoγe

]
, each of which

is associated with a couple of right and left eigenvectors (the eigenvalues are negative because
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(νo− νe)
2+4νoνeγoγe = 1− 4νoνe(1−γoγe) < 1). For generic values of the initial magnetizations

Mo and Me, the inverse relaxation time 1/trel to their stationary value is given by the opposite of
the negative eigenvalue with the smallest modulus, and the relaxation time trel reads

trel =
2

νo + νe

[
1−

√
(νo − νe)2 + 4νoνeγoγe

]−1

. (2.12)

2.3 Mean global heat current in the stationary state

The mean instantaneous heat current 〈jk〉 received by the spin chain at site k from the thermostat
at temperature Tk is equal to the expectation value of the variation of the chain energy when the
spin sk is flipped times the transition rate for the flip. According to the expressions for the energy
variation (2.2) and for the transition rates (2.4), the mean instantaneous current reads

〈jk〉 = Kνk [−γk − γk〈sk−1sk+1〉+ 〈sk−1sk〉+ 〈sksk+1〉] . (2.13)

Therefore the stationary mean value of the global heat current coming from the thermostat acting
on spins at even sites, namely Je =

∑N
n=1 j2n, is determined as

〈Je〉st = NKνe [−γe − γeD
oo

2 +Doe

1 +Deo

1 ] (2.14)

with the following definitions : Doo
2 is the average over the sublattice of odd sites of the stationary

correlation between two spins separated by two sites,

Doo

2 =
1

N

N∑

n=1

〈s2n−1s2n+1〉st, (2.15)

Doe
1 = (1/N)

∑N
n=1〈s2n−1s2n〉st and Deo

1 has an analogous definition. Similarly the stationary
mean value of the global heat current coming from the thermostat acting on spins at odd sites,
Jo =

∑N
n=1 j2n−1, reads

〈Jo〉st = NKνo [−γo − γoD
ee

2 +Doe

1 +Deo

1 ] (2.16)

with Dee
2 = (1/N)

∑N
n=1〈s2ns2n+2〉st.

The values of the stationary global two-spin correlations Doo
2 , Dee

2 , Doe
1 and Deo

1 can be deter-
mined from a hierarchy of equations for similar quantities with two spins at any distance on the
lattice. Details are given in Appendix A with the results (A.11), (A.12), (A.19), and (A.20) for
any distance between spins. From the latter results we get

Dee

2 =
γη−
γo

1 + ηN−2
−

1 + ηN−
(2.17)

with
γ = νoγo + νeγe, (2.18)

where the dimensionless kinetic parameters have been defined in (2.6), and η−, with 0 < η− < 1,
is defined by

√
η− =

1−√
1− γoγe√
γoγe

. (2.19)

Moreover Doo
2 = (γo/γe)D

ee
2 , while

Doe

1 = Deo

1 =
γ
√
η−√

γoγe

1 + ηN−1
−

1 + ηN−
. (2.20)

We notice that the dependence upon the kinetic parameters νo and νe occurs only through the
parameter γ defined in (2.18).
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Eventually the stationary mean value of the global heat current received on even sites can be
calculated from expression (2.14) and relation (A.18); we get

〈Je〉st = NK
νoνe

νo + νe

(γo − γe). (2.21)

Similarly the stationary mean value of the global heat current received on odd sites can be obtained
from the expression (2.16) ; it proves to be opposite to that on even sites, 〈Jo〉st = −〈Je〉st, as it
should in the stationary state where the mean energy of the chain is constant.

We point out the following remarkable property : though Dee
2 , Doo

2 , Doe
1 and Deo

1 involve finite
size corrections (see (2.17) and (2.20)), these corrections cancel one another in the value of the
mean global current 〈Je〉st : 〈Je〉st is exactly proportional to the size L = 2N of the ring. Moreover
it happens to be equal to L times the mean current received by a spin in the independent pair
model of Ref.[12].

3 Mapping to a reaction-diffusion system with pair creation-

annihilation

To prepare the study of the heat amounts exchanged with the thermostats we consider a mapping
to another model for which the evolution operator is quadratic.

3.1 Domain wall system

When two spins on neighboring sites are antiparallel, one may consider that there is a domain
wall between them, whereas there is no domain wall when they are parallel. The domain walls sit
on the edges of the initial lattice. Labeling each edge by its mid-point, one gets another lattice
which we call the dual lattice in what follows. The edge (j − 1, j) and the corresponding site on
the dual lattice are labeled by j. If sj−1 and sj are antiparallel, sj−1sj = −1, then the occupation
number by a domain wall at site j on the dual lattice is nj = 1, whereas if sj−1 and sj are parallel
nj = 0. Thus the correspondance reads

nj =
1− sj−1sj

2
. (3.1)

On a ring the number of domain walls is even and
∑L

j=1 nj is even.
As a result a spin configuration can be characterized either by the set s = {s1, · · · sL} of spin

configurations or by the knowledge of the value of s1 and the set of the positions of the domains
walls, namely the set of occupations numbers n = {n1, · · · , nL}. The energy of the system can be
expressed solely in terms of domain walls as

E(n) = −2NK + 2K

2N∑

j=1

nj . (3.2)

3.2 Quantum mechanics notations

In the following we use the quantum mechanics notations, as commonly done in the literature.
Then a column vector is denoted as a “ket”, | . . .

)
and a row vector is denoted as a “bra”

(
. . . |.

The configuration of occupation numbers by domain walls n = {n1, · · · , nL} is represented as a
tensor product

|n
)
= ⊗L

j=1|nj

)
, (3.3)

where |nj

)
is a two-component column vector. The convention used for kets associated to vacant

and occupied states is (
1
0

)

j

= |nj = 0
)

and

(
0
1

)

j

= |nj = 1
)
. (3.4)
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This convention is the standard choice of basis in the condensed matter literature on quantum
spin chains. With the representation (3.3)-(3.4) the row-column product

(
n
′|n
)

takes the form(
n
′|n
)
=
∏L

j=1 δn′

j
,nj

. Therefore the probability of the domain wall configuration n at time t,

P (n; t), can be represented as a row-column (scalar) product P (n; t) =
(
n|Pt

)
, where |Pt

)
is the

column vector defined as
|Pt

)
=
∑

n

P (n; t)|n
)
. (3.5)

With the latter definitions the master equation for the stochastic evolution of the probability
P (n; t), which takes the generic form written in (2.7) in the case of P (s; t), can be represented as
the evolution of the column vector |Pt

)
under the Markov matrix M

d|Pt

)

dt
= M|Pt

)
(3.6)

with
(
n
′|M|n

)
= w(n → n

′) if n
′ 6= n (3.7)

(
n|M|n

)
= −

∑

n
′ 6=n

w(n → n
′),

where w(n → n
′) denotes the transition rate from configuration n to configuration n

′.

3.3 Markov matrix for the model

For the present model of domain walls the matrix elements of M can be expressed in terms of Pauli
matrices. Indeed the operator for the occupation number at site j reads

n̂j =
1
2

(
1j − σz

j

)
(3.8)

where 1j denotes the identity 2 × 2 matrix at site j, and σ
z
j =

(

1 0

0 −1

)

j

; the operator which

changes the occupation number at site j is σ
x
j =

(

0 1

1 0

)

j

. By inspection of the transition rates for

the spin configurations w(s → s
′) given by (2.4), every transition rate for the occupation numbers

by domain walls, w(n → n
′), can be written as a matrix element

(
n
′|W|n

)
, where

- for a hop of a domain wall from site j to site j + 1

W =
νj
2
σx
j σ

x
j+1n̂j (1j − n̂j+1) (3.9)

- for a hop of a domain wall from site j + 1 to site j

W =
νj
2
σx
j σ

x
j+1 (1j − n̂j) n̂j+1 (3.10)

- for the annihilation of two domain walls at sites j and j + 1

W =
νj
2
(1 + γj)σ

x
j σ

x
j+1n̂jn̂j+1 (3.11)

- for the creation of two domain walls at sites j and j + 1

W =
νj
2
(1− γj)σ

x
j σ

x
j+1 (1j − n̂j) (1j − n̂j+1) . (3.12)

The latter expressions can be written in a more compact form by using the spin- 12 ladder operators

σ
+
=

(

0 1

0 0

)

j

and σ
−

=

(

0 0

1 0

)

j

. They are such that σxn̂ = σ+ and σx(1 − n̂) = σ−. With the

convention (3.4) σ+
j annihilate a domain wall at site j, while σ−

j creates a domain wall at site j.

8



Eventually the Markov matrix M derived from the master equation for the evolution of the
probability of spin configurations (2.7) reads

M =
ν1 + ν2

2
(3.13)

×


−(1− γ)N1 − γ

2N∑

j=1

n̂j +
2N∑

j=1

νj
[
σ+
j σ

−
j+1 + σ−

j σ+
j+1 + (1 + γj)σ

+
j σ

+
j+1 + (1− γj)σ

−
j σ−

j+1

]

 ,

where 1 denotes the identity 2N × 2N matrix and γ has been defined in (2.18). The advantage of
the domain wall representation with respect to the spin representation is that the Markov matrix
is quadratic in terms of operators acting on different sites instead of involving three operators
acting on different sites (for the latter case see for instance Ref.[17, 18]).

4 Eigenvalues of the modified Markov matrix

4.1 Modified Markov matrix

We are interested in the joint cumulants per unit of time for the heat amounts Qo and Qe which
are received by the chain from the thermostat acting on spins at odd and even sites during a time
t in the long time limit. The corresponding scaled generating function is

g2N (λo, λe; t) = lim
t→∞

1

t
ln〈eλoQo+λeQe〉, (4.1)

where λo and λe are real parameters. In fact an evolution equation can be written for the proba-
bility P (n, Qo, Qe; t) for the system to be in configuration n at time t and to have received heat
amounts Qo and Qe between times 0 and t. Therefore the expectation value in the definition
(4.1) can be expressed in terms of the discrete Laplace transform of P (n, Qo, Qe; t), and then
g2N (λo, λe; t) reads

g2N (λe, λo; t) = lim
t→∞

1

t
ln
∑

n

P̂ (n, λo, λe; t) (4.2)

with
P̂ (n, λo, λe; t) =

∑

{Qo,Qe}

eλoQo+λeQeP (n, Qo, Qe; t). (4.3)

By inspection of the transition rates (2.4) and according to the correspondence (3.1), when the
spin at site j is flipped under the action of the thermostat at temperature Tj , the variation of Qj

is equal to +∆E if a pair of domain walls is created at sites j and j+1 , −∆E if a pair of domain
walls is annihilated at these sites, 0 if a domain wall jumps either from j to j + 1 or from j + 1
to j. As a consequence, with a definition for |P̂t(λo, λe)

)
analogous to that for |Pt

)
given in (3.5),

namely
(
n|P̂t(λo, λe)

)
= P̂ (n, λo, λe; t), we get the evolution equation

d|P̂t(λo, λe)
)

dt
= M̂(λo, λe)|P̂t(λo, λe)

)
, (4.4)

where the so-called modified Markov matrix M̂(λo, λe) reads

2

ν1 + ν2
M̂(λo, λe) = −(1− γ)N1 − γ

2N∑

j=1

n̂j +

2N∑

j=1

νj
[
σ+
j σ

−
j+1 + σ−

j σ+
j+1 + bjσ

+
j σ

+
j+1 + cjσ

−
j σ

−
j+1

]
.

(4.5)
The coefficient bj (cj) is equal either to bo or be (co or ce) according to the parity of j; with the
notation a = o or e

ba = (1 + γa) e−λa∆E (4.6)
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and
ca = (1 − γa) eλa∆E. (4.7)

According to the evolution equation (4.4) the Laplace transform P̂ (n, λo, λe; t) is equal to(
n| exp[M̂(λo, λe)t]|P̂t=0(λo, λe)

)
. Thus the scaled generating function g2N(λo, λe; t) given by (4.2)

is equal to the largest eigenvalue of the matrix M̂(λo, λe) which rules the evolution of |P̂t(λo, λe)
)
.

4.2 Jordan-Wigner transformation

In order to find the eigenvalues of the modified Markov matrix M̂(λo, λe) given by (4.5) we take
advantage of its structure analogous to a free fermion Hamiltonian and we introduce the following
Jordan-Wigner transformation [19]

f †
j =

(
j−1∏

k=1

σz
k

)
σ−
j and fj =

(
j−1∏

k=1

σz
k

)
σ+
j . (4.8)

The operator f †
j is indeed the adjoint of fj, because (σz)† = σz and (σ−)† = σ+. Operators σ

acting on different sites commute, whereas σz
j anticommutes with σ+

j and σ−
j ; moreover (σ+

j )
2 = 0

and (σ−
j )2 = 0. Therefore the operators fj and f †

j obey the fermionic anticommutation relations

{fj, fj′} = 0 {f †
j , f

†
j′} = 0 {fj, f †

j′} = δj,j′ . (4.9)

The occupation number of site j by a domain wall, given by (3.8), also reads n̂j = σ−
j σ+

j = f †
j fj .

The expression (4.5) of the modified matrix M̂(λo, λe) is rewritten in terms of fermionic operators
as

2

ν1 + ν2
M̂(λo, λe) = −(1− γ)N1 − γ

2N∑

j=1

f †
j fj +

2N−1∑

j=1

νj

[
f †
j fj+1 − fjf

†
j+1 + cjf

†
j f

†
j+1 − bjfjfj+1

]

− νe(−1)Nf

[
f †
2Nf1 − f2Nf †

1 + cef
†
2Nf †

1 − bef2Nf1

]
(4.10)

where Nf =
∑2N

j=1 f
†
j fj is the total number of fermions.

Since the spin system is on a ring, there can be only an even number of domain walls in
the system. As noticed above, the operator for the occupation number by a domain wall n̂j

coincides with the number of fermions at site j, f †
j fj. Therefore we have to consider the restriction

M̂+(λo, λe) of M̂(λo, λe) to the sector with an even number of fermions. According to (4.10) the
expression of this rectriction is invariant by translation along the ring if the fermionic operators
are chosen to satisfy the antiperiodic boundary conditions

f2N+1 = −f1 and f †
2N+1 = −f †

1 . (4.11)

Then the restriction reads

2

ν1 + ν2
M̂+(λo, λe) = −(1− γ)N1 − γ

2N∑

j=1

f †
j fj +

2N∑

j=1

νj

[
f †
j fj+1 − fjf

†
j+1 + cjf

†
j f

†
j+1 − bjfjfj+1

]
.

(4.12)
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4.3 Antiperiodic Fourier transform

The next step to the diagonalization is to rewrite the fermionic operators as antiperiodic Fourier
transforms which satisfy the antiperiodic boundary conditions (4.11) The wave numbers are of the
form q = (2k + 1)π/(2N) and we work with a complete family of representatives in the set

B(2N) = {q = (2k + 1)
π

2N
, k = −N,−N + 1, · · · ,−1, 0, 1, · · ·N − 1}, (4.13)

namely

B(2N) = {−π +
π

2N
,−π +

3π

2N
, · · · − π

2N
,
π

2N
, · · ·π − π

2N
}. (4.14)

The operator fj can be written as the antiperiodic Fourier transform

fj =
1√
2N

∑

q∈B(2N)

eıqjηq (4.15)

in terms of the wave fermions

ηq =
1√
2N

2N∑

j=1

e−ıqjfj . (4.16)

Going from (4.15) to (4.16) relies on the identity

2N∑

j=1

eı(q−q′)j = 2N 1q−q′≡0(2π), (4.17)

where 1q−q′≡0(2π) = 1 if q − q′ is equal to 0 modulo 2π and 1q−q′≡0(2π) = 0 otherwise. All q′s in
B(2N) satisfy eıq2N = −1, and subsequently fj does obey the antiperiodic boundary conditions
(4.11). The adjoint operator f †

j reads

f †
j =

1√
2N

∑

q∈B(2N)

e−ıqjη†q . (4.18)

These representations are inserted in the expression (4.12). In the term
∑2N

j=1 f
†
j fj there occurs

a summation over all sites of the ring and one uses the identity (4.17). In the other summations
one has to distinguish the two sublattices ; for instance one has to consider the sum

∑N
n=1 f

†
2nf

†
2n+1

and then one uses the identity

N∑

n=1

eı(q+q′)2n = N 12(q+q′)≡0(2π) = N 1q+q′≡0(π). (4.19)

According to definition (4.13), the set B(2N) does not contain the value 0 and the solution of
q + q′ = 0 corresponds to two distinct values q and −q.

In order to simplify the following discussion, we assume from now on that N is even. Then
B(2N) does not contain π/2 and all values q and π − q, are also distinct. After a symmetrization
over the values q and π− q the matrix M̂+(λo, λe) appears as a sum of contributions each of which
involves only the operators associated with the wave numbers q, π − q, −q and −(q − π). Let us
introduce the first quadrant in the set B defined as

QB(2N) = {q = (2k + 1)
π

2N
, k = 0, 1, · · · (N/2)− 1} = { π

2N
,
3π

2N
· · · π

2
− π

2N
}. (4.20)

Then the expression (4.12) for M̂+(λo, λe) can be rewritten as

2

ν1 + ν2
M̂+(λo, λe) = −N1 +

∑

q∈QB

[
V †
q

]T
Aq(λo, λe)Vq , (4.21)
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where Vq is the column vector

Vq =




ηq
ηq−π

η†−q

η†π−q


 , (4.22)

[
V †
q

]T
denotes the transposed row vector corresponding to the column vector V †

q built with the
adjoints of the components of Vq, and

Aq(λo, λe) =




−γ + cos q ıaq sin q ıc′q sin q cq cos q
−ıaq sin q −γ − cos q −cq cos q −ıc′q sin q
−ıb′q sin q −bq cos q γ − cos q −ıaq sin q
bq cos q ıb′q sin q ıaq sin q γ + cos q


 , (4.23)

with

aq = νo − νe (4.24)

bq = νobo − νebe

b′q = νobo + νebe

cq = νoco − νece

c′q = νoco + νece,

where the ba’s and the ca’s are defined in (4.6) and (4.7).

4.4 Diagonalization of Aq(λo, λe)

The characteristic polynomial of Aq, det (Aq − α1q), proves to be a second order polynomial in α2,
with a constant which is a squared quantity,

det (Aq − α1q) = α4 − 2Dα2 + F 2. (4.25)

Moreover both coefficients D and F 2 depend on the parameters λo and λe only through the
difference

λ = (λe − λo)∆E. (4.26)

They read
D = 1 + (νo − νe)

2 + νoνe

[
4γoγe cos

2 q + (1− 2 cos2 q)θ(λ)
]

(4.27)

and
F = νoνe

[
4(1− γoγe cos

2 q) + θ(λ)
]
, (4.28)

where the function θ(λ) vanishes when λ is set to zero :

θ(λ) = 2
[
(1− γoγe)(coshλ− 1) + (γo − γe) sinhλ

]
. (4.29)

The coefficient F can be rewritten as

F = νoνe

[
2 + 2γoγe(1− 2 cos2 q) + (1 − γoγe) coshλ+ (γo − γe) sinhλ

]
, (4.30)

and the property (1 − γoγe) > |γo − γe| for γo < 1 and γe < 1 ensures that F > 0. The squared
roots of the characteristic polynomial are

α2 = D ±
√
D2 − F 2 =

(√
D + F

2
±
√

D − F

2

)2

. (4.31)

where
√· · · denotes a possibly complex square root. Let us introduce the notations R±(q, λ) =

1
2 (D ± F ), namely

R+(q, λ) = 1 + νoνeθ(λ) sin
2 q (4.32)
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R−(q, λ) = (νo − νe)
2 + νoνe

[
4γoγe − θ(λ)

]
cos2 q. (4.33)

We notice that, since F is positive, R+ > R−.
Note that 1 + νoνeθ(λ) > 0 because of the definition (4.29) of θ(λ) and the identities 1 −

2νoνe(1 − γoγe) > 0 and (1 − γoγe) > |γo − γe| for γo < 1 and γe < 1. According to (4.32), R+

can be rewritten as R+ = 1− sin2 q +
(
1 + νoνeθ(λ)

)
sin2 q and we conclude that R+ > 0.

On the other hand, by virtue of definitions (2.5) and (4.29),

4γoγe − θ(λ) = 2
cosh ((βe + βo)∆E/2)− cosh

(
λ− (βe − βo)∆E/2

)

cosh (βe∆E/2) cosh (βo∆E/2)
, (4.34)

so that 4γoγe − θ(λ) > 0 only if −βo∆E < λ < βe∆E, and we infer from (4.33) that R− can take
both signs.

Eventually the four eigenvalues of Aq(λo, λe) are

α1 =
√
R+ +

√
R− α2 =

√
R+ −

√
R− α3 = −α2 α4 = −α1, (4.35)

In these expressions
√
R+ denotes the usual positive square root of the positive number R+,

whereas
√
R− is either real positive or purely imaginary depending on the sign of R−, i.e. on the

values of λ and q. As noticed previously R+ > R−, and in the case where
√
R− is real, all αk’s,

with k = 1, . . . , 4, are real and α1 > α2 > 0 > α3 > α4.

4.5 Largest eigenvalue of the modified matrix M̂+(λo, λe)

For the sake of conciseness we omit all dependences upon λo and λe in the present section. We de-
note by Dq the diagonal matrix built with the eigenvalues α1(q), . . . , α4(q) of the matrix Aq(λo, λe).
The matrix Aq reads

Aq = PqDqP
−1
q , (4.36)

where the kth column of Pq is made with the components of a (column) right eigenvector of Aq

associated with the eigenvalue αk(q), and P
−1
q is the inverse matrix of Pq. Let ξk(q) denote the

kth component of the column vector P
−1
q Vq, while ξ⋆k(q) denotes the kth component of the row

vector
[
V †
q

]T
Pq, where Vq and

[
V †
q

]T
are defined in (4.22). With these definitions, the relation

(4.36) implies that
[
V †
q

]T
AqVq =

4∑

k=1

αk(q) ξ
⋆
k(q) ξk(q). (4.37)

The operators ξk and ξ⋆k obey the anticommutation rules {ξk, ξk′} = 0, {ξ⋆k, ξ⋆k′} = 0 and {ξk, ξ⋆k′} =
δk,k′ . However, since Aq is not hermitian (for the usual scalar product), Pq is not unitary and the
operator ξ⋆k is not the adjoint of ξk.

Nevertheless the anticommutation rules are enough to ensure that the spectrum of the operator
ξ⋆kξk is the set {0, 1}. Then, according to the expressions (4.35) of the αk’s, the value of the right-
hand side of (4.37) with the largest real part is equal to the sum of two eigenvalues and proves to
be real positive,

α1 + α2 = 2
√
R+(q) > 0. (4.38)

Eventually, according to (4.21), the largest eigenvalue of M̂+(λo, λe) is

νo + νe

2


−N + 2

∑

q∈QB

√
R+(q)


 , (4.39)

where R+(q) is given by (4.32).
We notice that if λo = λe = 0, the modified Markov matrix M̂(λo, λe) becomes the usual Markov

matrix for the evolution of P (n; t); since θ(0) = 0, we retrieve that the largest eigenvalue of the
Markov matrix is 0. Moreover the eigenvalue closest to 0 is obtained by setting ξ⋆3(q)ξ3(q) equal to
1 for q = 0, and we retrieve the value (2.12) for the inverse relaxation time of the magnetizations
on the two sublattices.

13



5 Cumulants of heat amounts per unit of time in the long

time limit

5.1 Scaled generating function for joint cumulants

According to the remark at the end of section 4.1, the scaled generating function for the joint
cumulants of Qo and Qe coincides with the largest eigenvalue of M̂+(λo, λe). By virtue of (4.39)
it reads

g2N(λo, λe) =
νo + νe

2


−N + 2

∑

q∈QB

√
1 + νoνeθ(λ) sin

2 q


 , (5.1)

where QB(2N) is defined in (4.20) and θ(λ) is given in (4.29). The joint cumulants per unit of
time in the long time limit are determined from the relation

lim
t→∞

1

t
〈Qp

eQ
p′

o 〉c =
∂p+p′

g2N(λe, λo; t)

∂λp
e∂λ

p′

o

∣∣∣∣∣
λe=λo=0

, (5.2)

where the index c refers to the truncation of the mean value 〈Qp
eQ

p′

o 〉 involved in the definition of
the cumulant. The fact that g2N depends only on the difference λe − λo entails the properties

lim
t→∞

1

t
〈Qp

eQ
p′

o 〉c = (−1)p
′

lim
t→∞

1

t
〈Qp+p′

e 〉c (5.3)

and, in particular,

lim
t→∞

1

t
〈Qp

o〉c = (−1)p lim
t→∞

1

t
〈Qp

e〉c. (5.4)

These properties are linked to the fact that the interface energy can take only a finite number of
values whereas the cumulants have no upper bounds in the infinite time limit.

For the sake of completeness we point out that, according to (4.34), θ(λ) depends on λ through
the function cosh

(
λ− (βe − βo)∆E/2

)
; therefore the scaled generating function satisfies the sym-

metry g2N (λo, λe) = g2N (βo − λo, βe − λe), which is in fact a consequence of the local detailed
balance (2.3). Since g2N (λo, λe) depends only on the difference λe − λo, this entails a symmetry
for the scaled generating function for the cumulants of Qe, ge

2N(λe) = g2N (0, λe), namely the
symmetry ge

2N(λe) = ge

2N (βe − βo − λe). Then the corresponding large deviation function for the
time-integrated current Je = Qe/t, which can be obtained as the Legendre-Fenchel transform of
ge

2N (λe), obeys the fluctuation relation f(Je)− f(−Je) = (βo − βe)Je.

5.2 Cumulants for heat amount Qe

We give the explicit expressions for the first four cumulants of Qe per unit of time. They are
determined as ∂ng2N(0, λe)/∂λ

n
e |λe=0 = ∆En × ∂ng2N (0, λe)/∂λ

n|λ=0, where λ = (λe − λo)∆E

and ∆E = 4K is the energy gap in the chain energy. The function θ(λ) defined in (4.29) can be
rewritten as

νoνeθ(λ) = 2A[coshλ− 1] + 2B sinhλ (5.5)

where the parameters A and B are those introduced in Ref.[12] for a model with only two spins,
namely

A = νoνe(1− γoγe) (5.6)

B = νoνe(γo − γe). (5.7)

14



Then, according to (5.1), the first four cumulants of Qe read

lim
t→∞

〈Qe〉
(νe + νo)t

=
N

2
BS2 ×∆E (5.8)

lim
t→∞

〈Q2
e〉c

(νe + νo)t
=

N

2

[
AS2 −B2S4

]
×∆E2

lim
t→∞

〈Q3
e〉c

(νe + νo)t
=

N

2
B
[
S2 − 3AS4 + 3B2S6

]
×∆E3

lim
t→∞

〈Q4
e〉c

(νe + νo)t
=

N

2

[
AS2 − (3A2 + 4B2)S4 + 18AB2S6 − 15B4S8

]
×∆E4,

where

S2n(N) =
2

N

(N/2)−1∑

k=0

sin2n
(
(2k + 1)π

2N

)
. (5.9)

The structure of the cumulants in terms of the coefficients A and B is similar to the structure
found for the two-spin model of Ref.[12] as well as for the ring of Ref.[7]; indeed, in the three cases
the scaled cumulant generating function depends on λe only through the same function θ(λe∆E).

The coefficients S2n(N) (with N even) can be calculated explicitly. In the special case N = 2,
a direct calculation leads to S2n(2) = (1/2)n. For any N ≥ 2, by extending the summation up to
N , rewriting sinu = [eıu− e−ıu]/(2ı), using the binomial formula and an identity similar to (4.17),
we get that

if n < N S2n(N) =

(
1

2

)2n
[2n]!

(n!)2
= W2n, (5.10)

where W2n denotes the normalized Wallis integral, W2n = (2/π)
∫ π/2

0 (sin q)2ndq. The first four
values of the latter integrals are

W2 =
1

2
, W4 =

3

8
, W6 =

5

16
, and W8 =

35

128
. (5.11)

For n larger than N , a finite-size correction arises. For instance,

if N ≤ n < 2N S2n(N) = W2n

[
1− 2

[n!]2

(n−N)!(n+N)!

]
. (5.12)

From the study of the S2n(N) we get that all cumulants of order n smaller than N , the number
of sites connected to a given thermostat, are strictly proportional to the size L = 2N of the chain.
Finite-size corrections appear only in cumulants of order n ≥ N .

In particular, S2(N) = 1/2 for all N , by virtue of (5.10)-(5.11) valid for all N ≥ 2 with N
even. Therefore the first cumulant limt→+∞〈Qe〉/t given in (5.8) does coincide with the expression
(2.21) of the mean global instantaneous current 〈Je〉st in the stationary state. We have already
pointed out that the latter mean global current contains no finite-size corrections. If N > 4 the
first four cumulants are given by (5.8) where the S2n(N) are to be replaced by the corresponding
W2n given in (5.11).

Eventually the dependences upon the thermodynamic parameters, γo and γe, and the kinetic
parameters, νo and νe, arise only through the coefficients A and B. This is in contrast with
what happens for another Ising chain model, where both thermostats act on every spin [7]: for
this model the dependence upon the combination γ of the thermodynamic and kinetic parameters
defined in (2.18) also arises in the coefficients Σn(N, γ) which replace the coefficients Sn(N) in
the expressions (5.8) for the cumulants.
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5.3 Various physical regimes

According to the last remark of the previous section, the discussion of the various physical regimes
is the same as that performed in the case of the two-spin model of Ref.[12].

At equilibrium γo = γe and, according to (4.29), θ(λ) = 2(1− γ2
e )(coshλ− 1). Therefore only

cumulants of even order do not vanish. According to (5.8) the first two cumulants of even order
read

lim
t→∞

〈Q2
e〉c

(νe + νo)t
=

1

4
νoνe

(
1− γ2

e

)
×N∆E2 (5.13)

lim
t→∞

〈Q4
e〉c

(νe + νo)t
=

1

4
νoνe

(
1− γ2

e

) [
1− 9

4
νoνe

(
1− γ2

e

)]
×N∆E4.

The probability distribution of Qe is not a Gaussian, since all cumulants of even order have non-
vanishing values.

When a thermostat has a kinetic parameter far larger than the other one, the scaled generating
function becomes proportional to θ(λ),

g2N(λ) =
1

8
Nνsθ(λ), (5.14)

where νs is the kinetic parameter of the slower thermostat. As a consequence g2N (λ) coincides with
the scaled generating function of a continuous-time random walk, because θ(λ) can be rewritten
as

θ(λ) = 2
[
p+eλ + p−e−λ − (p+ + p−)

]
(5.15)

with the probabilities p+ = (1 + γo)(1− γe)/2 and p− = (1− γo)(1 + γe)/2. As a consequence all
cumulants of even (odd) order are equal to the same value when they are measured in unit of ∆E:
for all p ≥ 1

lim
t→∞

〈Q2p−1
e 〉c

t∆E2p−1
=

1

4
νs(γo − γe)N (5.16)

lim
t→∞

〈Q2p
e 〉c

t∆E2p
=

1

4
νs(1 − γoγe)N.

In the same kinetic regime, if one thermostat is at zero temperature, for instance γo = 1, then the
scaled generating function coincides with that of a continuous-time Poisson process, because

θ(λ) = 2(1− γe)
[
eλ − 1

]
. (5.17)

As a consequence all cumulants of Qe in unit of ∆E are equal to the same value: for all p ≥ 1

lim
t→∞

〈Qp
e〉c

t∆Ep
=

1

4
νs(1 − γe)N. (5.18)

6 Conclusion

In the present paper we have investigated the heat currents in an Ising spin ring where alternating
spins are coupled to two macroscopic bodies at different temperatures and with different kinetic
parameters. The stationary mean values of the global two-spin correlations at any distance have
been calculated. The dependence upon the kinetic parameters arises only through the linear
combination γ defined in (2.18)5. The finite-size corrections in the global two-spin correlations
disappear in the mean instantaneous global heat current coming out of one thermostat.

The scaled generating function of the joint cumulants per unit of time for the heat amounts
exchanged with the two thermostats over a long time have been calculated exactly. At leading

5When the kinetic parameters are set equal, our result are compatible with those of Ref.[2].
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order in the ring size they prove to be proportional to the ring size, as it is the case for the model
where two thermostats act on the same site [7]. Moreover, if the order of the cumulant is lower
than the number of spins connected to one thermostat, the finite-size corrections again disappear
exactly, and the cumulant is strictly proportional to the ring size.

We notice that the proportionality to the ring size at leading order in the size has already been
observed for the cumulants of two other kinds of cumulative quantities when the system is homo-
geneous (only one temperature and one kinetic parameter) and seen as a Simple Exclusion Process
with pair creation and annihilation [20]: the two cumulative quantities are the difference between
the numbers of domain wall jumps in the clockwise and anticlockwise directions respectively, and
the number of pair annihilations. This is in contrast with the case of the purely diffusive Simple
Exclusion Process on a ring, where the cumulants for the difference between the numbers of jumps
in the two directions and the cumulants for the total number of jumps are proportional to powers
of the ring size which increase with the order of the cumulants [21].

An interesting open problem is the calculation of the heat cumulants in another solvable model
for thermal contact : two joined semi-infinite Ising chains coupled to thermostats at two different
temperatures [22, 23]. Then the mean global current which flows from one thermostat to the
other through the junction between the two half-chains is obtained by summing the mean currents
received by all spins in a semi-infinite Ising chain. The intrinsic inhomogeneity of these currents
would have to be dealt with by specific methods.

A Two-spin correlations

By analogy with the homogeneous case [8] the evolution equation for the two-spin correlations
reads

d〈sjsk〉
dt

= −2〈sjsk [w(sj → −sj) + w(sk → −sk)]〉. (A.1)

Inserting the expression (2.4) for the transition rates we get

d〈sjsk〉
dt

= −(νj + νk)〈sjsk〉+ 1
2νjγj [〈sj−1sk〉+ 〈sj+1sk〉] + 1

2νkγk [〈sjsk−1〉+ 〈sjsk+1〉] . (A.2)

The latter equations imply that Dee
2 , Doo

2 , Doe
1 and Deo

1 involved in the expressions (2.14) and
(2.16) for the mean global currents 〈Je〉st and 〈Jo〉st are to be determined from a hierarchy of
equations for the two-spin quantities

Doo

2p =
1

N

N∑

n=1

〈s2n−1s2n−1+2p〉st, (A.3)

Doe

2p+1 =
1

N

N∑

k=1

〈s2n−1s2n+2p〉st (A.4)

with an analogous definition for Deo
2p+1, and

Dee

2p =
1

N

N∑

n=1

〈s2ns2n+2p〉st. (A.5)

We notice that if the initial probability distribution for the spin configurations is translationally
invariant, this property is conserved by the evolution under the transition rates and the stationary
two-spin correlation 〈sksk+p〉st depends only on the difference p between the site indices; then it
is equal to one of the D’s defined in (A.3), (A.4) and (A.5). From the latter definitions we get the
boundary conditions

Dee

0 = 1 and Doo

0 = 1. (A.6)
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From the evolution equation for the spin correlations (A.2) we get that, in the stationary state
where the D’s are defined, for 2 ≤ 2p ≤ 2(N − 1)

0 = −4νeD
ee

2p + νeγe

[
Doe

2p+1 +Doe

2p−1 +Deo

2p−1 +Deo

2p+1

]
(A.7)

0 = −4νoD
oo

2p + νoγo

[
Deo

2p+1 +Deo

2p−1 +Doe

2p−1 +Doe

2p+1

]
, (A.8)

while for 1 ≤ 2p+ 1 ≤ 2N − 1

0 = −2Doe

2p+1 + νoγo

[
Dee

2p+2 +Dee

2p

]
+ νeγe

[
Doo

2p +Doo

2p+2

]
(A.9)

0 = −2Deo

2p+1 + νoγo

[
Dee

2p+2 +Dee

2p

]
+ νeγe

[
Doo

2p +Doo

2p+2

]
. (A.10)

Comparison of equations (A.7) and (A.8) leads to the relation valid for 2 ≤ 2p ≤ 2(N − 1)

Doo

2p =
γo

γe

Dee

2p, (A.11)

while comparison of equations (A.9) and (A.10) leads to the relation valid for 1 ≤ 2p+1 ≤ 2N − 1

Deo

2p+1 = Doe

2p+1. (A.12)

By taking into account these relations in (A.7) and (A.9) we have to solve the coupled equations
for the Dee’s and the Doe’s

−2Dee

2p + γe

[
Doe

2p−1 +Doe

2p+1

]
= 0 for 2 ≤ 2p ≤ 2(N − 1) (A.13)

−2Doe

2p+1 + γo

[
Dee

2p +Dee

2p+2

]
= 0 for 2 ≤ 2p ≤ 2(N − 2),

where the second equation is to be supplemented by the extra boundary conditions for p = 0 and
p = N − 1 respectively. The latter conditions are derived from (A.9) and (A.6),

−2Doe

1 + γoD
ee

2 + γ = 0 (A.14)

−2Doe

2N−1 + γoD
ee

2(N−1) + γ = 0,

where γ is defined in (2.18). The equations (A.13) allow to determine recursivelyDoe
3 , Dee

4 , . . . , Doe

2N−1

from a given set (Doe
1 , Dee

2 ), and then the boundary conditions (A.14) determine the values of Doe
1

and Dee
2 .

The recursive equations (A.13) are linear and their generic solution, which depends on the two
parameters Doe

1 and Dee
2 , can be looked for as linear combinations of two linearly independent

solutions. Because of the invariance of these equations under the translation over two sites, one
can look for independent solutions which are also eigenfunctions of the translation operator on
each sublattice, namely solutions of the form f ee

2p+2 = ηf ee
2p and foe

2p+3 = ηfoe
2p+1. These solutions

can be written as

f ee

2p = ηp−1a (A.15)

foe

2p+1 = ηpb.

By inserting the latter expressions into the recursive equations (A.13) one gets two coupled linear
equations for a and b. The latter do not vanish if η is equal to one of the two values

η± =
2− γoγe ± 2

√
1− γoγe

γoγe

=

[
1±√

1− γoγe√
γoγe

]2
. (A.16)

The model is defined for 0 < γo < 1 and 0 < γe < 1, so that η+ 6= η−. Then in the two solutions
of (A.15) with η+ and η− respectively, b± = 1

2γo[1 + η−1
± ]a±. Then the generic solution of (A.13)

reads

Dee

2p = a+η
p−1
+ + a−η

p−1
− (A.17)

Doo

2p = 1
2γo(1 + η−1

+ )a+η
p
+ + 1

2γo(1 + η−1
− )a−η

p
−,
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In fact the solution can be written only in terms of η− (with 0 < η < 1) by using the relation
η+η− = 1. Then the boundary conditions (A.14) determine the values of a+ and a−. After
straightforward calculations and use of the relation

√
η− +

1√
η−

=
2√
γoγe

, (A.18)

we get that for 2 ≤ 2p ≤ 2(N − 1)

Dee

2p =
γ

γo

1

1 + ηN−

[
ηp− + ηN−p

−

]
, (A.19)

and for 1 ≤ 2p+ 1 ≤ 2N − 1

Doe

2p+1 =
γ√
γoγe

1

1 + ηN−

[
η
p+1/2
− + η

N−p−1/2
−

]
. (A.20)

The latter formulae are compatible with the expressions of the stationary two-spin correlations
determined in Ref.[2] in the case where νo = νe.
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