
HAL Id: cea-01922847
https://cea.hal.science/cea-01922847

Submitted on 14 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SWARD: A Secure WAke-up RaDio against
Denial-of-Service on IoT devices

Maxime Montoya, Simone Bacles-Min, Anca Molnos, Jacques J.A. Fournier

To cite this version:
Maxime Montoya, Simone Bacles-Min, Anca Molnos, Jacques J.A. Fournier. SWARD: A Secure WAke-
up RaDio against Denial-of-Service on IoT devices. 11th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec’18), Jun 2018, Stockholm, Sweden. �10.1145/3212480.3212488�.
�cea-01922847�

https://cea.hal.science/cea-01922847
https://hal.archives-ouvertes.fr


SWARD: A Secure WAke-up RaDio against Denial-of-Service on
IoT devices

Maxime Montoya
Univ. Grenoble Alpes, CEA, LETI, DACLE

Grenoble, France
maxime.montoya@cea.fr

Simone Bacles-Min
Univ. Grenoble Alpes, CEA, LETI, DACLE

Grenoble, France
simone.bacles-min@cea.fr

Anca Molnos
Univ. Grenoble Alpes, CEA, LETI, DACLE

Grenoble, France
anca.molnos@cea.fr

Jacques J.A. Fournier
Univ. Grenoble Alpes, CEA, LETI, DSYS

Grenoble, France
jacques.fournier@cea.fr

ABSTRACT
Wake-up radios are mechanisms that control the sleep and active
modes of energy-constrained Internet of Things (IoT) nodes. These
radios detect pre-determined wake-up tokens and switch the de-
vices to an active state. Such systems are vulnerable to a kind of
Denial-of-Service attacks called Denial-of-Sleep, where attackers
continuously send wake-up tokens to deplete the battery of the
nodes. We propose a protocol to mitigate these attacks that includes
a novel solution to generate hard-to-guess wake-up tokens at every
wake-up. Simulations show that under standard operating condi-
tions, it has a negligible energy overhead (0.03%), while it increases
the lifetime of an IoT node by more than 40 times under Denial-
of-Sleep attack. Finally, we compare our protocol to related work
against Denial-of-Sleep attacks, and explain why it is both more
resilient and more energy-efficient than existing approaches.

KEYWORDS
Denial-of-Service, Wake-up radio, Network security, Internet of
Things, Wireless Sensor Networks

1 INTRODUCTION
Energy consumption is critical for battery-powered devices in the
Internet of Things (IoT) and Wireless Sensor Networks (WSN),
which have to be operational during a long time. These devices, or
nodes, are usually idle most of the time, and can be switched to
a low-power sleep state during this idle time, with the radio and
most of the processing capabilities being disabled. Wake-up radios
are typical mechanisms to control the sleep and active states of
these nodes [8]. This solution consists of using an ultra-low power
receiver with a low data rate, in addition to the main transceiver,
that continuously monitors a dedicated communication channel
in order to detect wake-up tokens sent by other nodes. When a
wake-up token is received by this low-power receiver on the target
node, it is compared to a reference token previously stored in this
receiver; if they are identical, the node switches to active state. This

WiSec ’18, June 18–20, 2018, Stockholm, Sweden
© 2018 ACM. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive Version of Record
was published in Proceedings of the 11th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ’18).
https://doi.org/10.1145/3212480.3212488

wake-up token is usually a predefined code, identical for every
wake-up, such as the address of the target node [8].

An attacker can easily obtain this token by listening to the com-
munication channel, and replay it many times to the target node
to wake it up continuously. This would rapidly deplete the battery
of the node, and reduce its lifetime. This attack is called a Denial-
of-Sleep attack [4]. In order to prevent Denial-of-Sleep, wake-up
tokens have to be different for every wake-up. Moreover, they have
to be unpredictable: an attacker able to retrieve one or several
tokens should not be able to guess any of the following tokens.

Some methods have been proposed to generate wake-up tokens
[4, 7, 9, 11, 12]. They either require additional communication on the
main radio, or complex computation on data that has to be stored
and sometimes continually updated between two wake-ups, which
is energy-consuming. Most of these mechanisms use extra secret
symmetric keys, dedicated to the wake-up process, in addition
to the keys already required to manage data confidentiality and
authenticity. These additional keys are to be securely initialized,
stored and updated, which has an impact on energy consumption.

In this paper, we propose a new way of generating unpredictable
wake-up tokens, using a recursive calculation that depends only on
previous tokens and messages already exchanged with the main
radio. This approach does not require any of the energy-consuming
features of the existing methods. Moreover, generating tokens re-
cursively andwithmore data unknown to attackers ensures that our
solution is more secure than existing ones. The main contributions
of our work are summarized below.

• We present SWARD, a communication protocol for the wake-
up radio which is compatible with many common communi-
cation protocols for the main radio.

• Wedescribe a secure and energy-efficientmethod to generate
wake-up tokens.

• We perform a security analysis which shows that our so-
lution is resilient against both attackers gaining access to
some secret data and brute-force attacks.

• We evaluate, in simulation, the energy and performance
overhead of our solution. In particular, we analyse the ef-
fect of the length of wake-up tokens on the daily energy
consumption of a node with and without Denial-of-Sleep
attacks. Results indicate that with wake-up tokens of 32 bits,
SWARD has an energy overhead of only 0.03% for a typi-
cal IoT node, while increasing its lifetime by more than 40

https://doi.org/10.1145/3212480.3212488


WiSec ’18, June 18–20, 2018, Stockholm, Sweden M. Montoya, S. Bacles-Min, A. Molnos, J. J.A. Fournier

times under Denial-of-Sleep attacks when compared to a
non-secure node.

The remainder of this paper is organized as follows. Section 2
briefly introduces the context and assumptions made in our work,
then describes our solution to compute wake-up tokens and the
proposed communication protocol with the wake-up radio. Then,
Section 3 details the implementation choices and the security and
performance evaluation of our solution. Finally, in Section 4 we
present and analyse related work, and compare it to our solution.

2 SECUREWAKE-UP PROTOCOL
In this section, we describe first the assumptions made on the
network and the nodes, then the method to compute recursively
and initialize wake-up tokens, and finally the proposed process for
wake-ups.

2.1 Preliminaries
We consider an IoT node comprising two subsystems, which we
call "on-demand" and "always-responsive", as it can be seen on
Figure 1. The on-demand part includes the main radio transceiver,
a processor core, memory and potentially several coprocessors, and
can be deactivated in order to save energy. The always-responsive
part contains the ultra-low power wake-up radio, in charge of
waking up the on-demand subsystem upon receipt of a wake-up
token. As explained in [12], such an IoT node with two parts can
be fabricated with commercially available products.

We assume that exchanges on the main radio are secured, which
means they are both encrypted and authenticated, and their in-
tegrity is ensured. Therefore, potential attackers cannot know the
content of the messages exchanged on this radio, nor can they alter
them or forge malicious messages. This is not a strong assumption,
as most of the standard communication protocols for the IoT such
as Bluetooth Low Energy [14], Wi-Fi HaLow [10], LoRaWAN [1], or
Low Rate Wireless Personal Area Networks based on IEEE 802.15.4
[13] (ZigBee, WirelessHART, ISA100.11a) support such secure com-
munication. If communication on the main radio were not secure,
attackers would be able to send requests continuously to it and
prevent the node from going back to sleep mode; thus, mitigating
Denial-of-Sleep on the wake-up radio would be useless. Symmetric
encryption is used in all of these protocols to secure communica-
tion over the main radio. The mechanism to securely exchange the
corresponding keys is handled by each communication protocol
and is out of the scope of this paper.

Our protocol will be described for networks with a star topology,
where only a central node or base station can wake up other nodes.
Exchanges with the main radio are considered bidirectional: any
node can both send and receive messages to and from the base
station. We assume an acknowledgement is sent each time a node
or base station receives a message, which is possible for all of the
communication protocols cited previously.

2.2 Wake-up token generation
We assume that at the n-th wake-up, M messages are exchanged
(sent or received) between two nodes, withM ≥ 1. The k-thmessage
exchanged during the n-th wake-up, with 1 ≤ k ≤ M , is reffered

IoT node

Always-responsive 
subsystem On-demand subsystem

Wake-up radio Main radio

CPU

Memory

Coprocessors

Figure 1: Representation of an IoT node separated into two
subsystems.

to asMessaдen,k . The wake-up token (WuT) for the next wake-up,
WuTn+1, is generated according to Equations (1) and (2):

WuTn+1,lonд = hash(WuTn,lonд | |Messaдen,k ) (1)

WuTn+1 = truncate(WuTn+1,lonд) (2)
In Equation (1), hash is a cryptographic hash function, such as

SHA-256 [5] or SPONGENT-88 [3], while || is the concatenation of
the previous long version of the wake-up token with one or several
of the messages exchanged during the n-th wake-up. For example,
it can be the first (k = 1) or the last (k = M) message exchanged,
or a concatenation of several messages; the choice of messages to
consider for wake-up tokens computation, i.e. k, depends on the
communication protocol on the main radio and has to be made for
the whole network prior to any message exchange. Thanks to the
use of a one-way hash function, it is computationally infeasible to
obtain the original messages using the generated wake-up token.
Therefore, an attacker intercepting this token is unable to retrieve
any information about data exchanged between nodes.

In Equation (2), truncate means that the token that will be sent to
thewake-up radio at the next wake-up, i.e.WuTn+1, is the shortened
version of the hashWuTn+1,lonд . For example,WuTn+1 could be
the first 32 bits ofWuTn+1,lonд . As hash is a cryptographic hash
function, it is impossible, knowing onlyWuTn+1, to guess the full
WuTn+1,lonд . An exhaustive study on the size of wake-up tokens
and its effects on security and performance is presented in Section 3.

Though similar to a hash chain, the goal of this method is dif-
ferent, as it aims at preventing attackers from knowing both past
and future values of this chain. Its security relies on a hash of
two elements that are both unknown to attackers,WuTn,lonд and
Messaдen,k , as only short versions of wake-up tokens are sent to
the wake-up radio while messages are encrypted before being ex-
changed with a secret key. A thorough security analysis is detailed
in Section 3.1, and shows that this approach is resilient even with
predictable messages.

2.3 Initialization
Equation (1) is recursive, as every wake-up token needs the previous
one to be computed. Therefore, initialization has to be considered.
As the first wake-up token must also be unknown to attackers, it
has to be generated using secret information shared between nodes.
As stated in Section 2.1, we assume communication is secure on the
main radio, which means there is at least one secret key unknown
to attackers. The first wake-up token is computed immediately



SWARD: A Secure WAke-up RaDio against Denial-of-Service on IoT devices WiSec ’18, June 18–20, 2018, Stockholm, Sweden

WuTn on the wake-up radio

ACK on the main radio

Communication on the main radio

Computing WuTn+1Computing WuTn+1

Next token: WuTn+1

Base station A Node B

Next token: WuTn

Sl
ee

p
in

g
Sl

ee
p

in
g

Waiting for ACK

Waiting for messages

... CommunicatingCommunicating

WuTn+1 on the wake-up radio

Next token: WuTn+1

Next token: WuTn

(a) Standard wake-up process

Base station A Node B

Next token: WuTn

Sl
ee

p
in

g

Waiting for ACK

Waiting for messages

Computing WuTn+1

Next token: WuTn

WuTn (wake-up radio)

ACK (main radio)

Time-out
Computing WuTn+1

Sl
ee

p
in

g

Next token: WuTn+1

WuTn on the wake-up radio

WuTn+1 on the wake-up radio

ACK on the main radioWaiting for ACK

Time-out

...
Time-out

Several attempts with WuTn
...

(b) Separate token update and resynchronization process

Figure 2: Message sequence chart between a base station A and a node B. Figure (2a) shows a wake-up process performed in
standard conditions, while (2b) shows the token update and resynchronization process after an attacker was able to guess one
wake-up token with brute-force attack.

after the network has been set up, which means that nodes are
already able to communicate securely with each other, i.e. addresses
and secret cryptographic keys have been generated. Using this
cryptographic material, the first wake-up token in its long version
WuT1,lonд is computed as follows:

WuT1,lonд = hash(Secret_key | |Node_address) (3)
In this equation, hash is the same cryptographic hash function

as in Equation (1), and Secret_key is a symmetric key used to secure
communication on the main radio which is unknown to attackers
by hypothesis. Node_address is the address of the node and ensures
each node has a different wake-up token, even if several nodes share
the same symmetric key. The first short wake-up tokenWuT1 is then
obtained with a truncation ofWuT1,lonд according to Equation (2).

2.4 Wake-up process
Figure 2 presents the message sequence chart of communication
and wake-up between a central base station A and a resource-
constrained node B with our proposed approach. Initially, node B is
in sleep mode, and the next wake-up will be the n-th. If A needs to
communicate with B, it sends the wake-up tokenWuTn , as shown
in Figure 2a. When B receives it, it wakes up its main radio and
sends an acknowledgement to A, which initiates the communica-
tion. According to the communication protocol used for the main
radio, several messages can be exchanged downlink (from A to B)
and/or uplink (from B to A). As soon as the whole communication
is over, A and B each compute the next wake-up token using ex-
changed data. In order to calculate wake-up tokens, only messages
that have received an acknowledgement can be considered by the
sender node, while the receiver node can calculate the next token
with any received message, after having sent the corresponding
acknowledgement. On node B, the generation of the next token
takes place in the on-demand part, which has more computing
capabilities and a direct access to messages exchanged on the main

radio. This token is then stored in the always-responsive part of
node B, while the on-demand part goes into sleep mode, and the
whole process can start again.

However, A and Bmay become desynchronized at some point, i.e.
they will not have the same wake-up token anymore. This desyn-
chronization may happen in two cases: (1) an acknowledgement
is lost, including the wake-up acknowledgement, and (2) node B
receives a wake-up token illegitimately, for example if an attacker
found it by brute force or if two nodes in the network happen to
have the same wake-up token. Note that as tokens are only cal-
culated by the sender node upon receipt of an acknowledgement,
lost messages cannot cause desynchronization: either messages are
received by both nodes, or they are not considered to compute the
next token. This ensures that even when nodes get desynchronized
for any of the reasons cited previously, the messages used by one
node to compute the next token are also known to the other node,
and resynchronization will be possible.

As stated previously, if an acknowledgement is lost when nodes
are communicating with the main radio, the corresponding message
will not be used to calculate the next token by the sender node.
Furthermore, if node B wakes up illegitimately, or if the wake-
up acknowledgement is lost, there might be no communication
between nodes, and B will go back to sleep after a time-out, which
is described in Figure 2b. In both cases, it is likely that no valid
message can be used to compute the next wake-up token. In that
case, node B must still compute an unpredictable token and go back
to sleep mode after a time-out. This next token,WuTn+1,lonд , is
computed with Equation 1 considering that messages are empty,
which means that only the previous long token, WuTn,lonд , is
used as input to the hash function. This previous long token being
unknown to attackers, they still cannot guess the next token, which
will be explained more thoroughly in Section 3.1.

If desynchronization happens, A will temporarily try to wake up
B with the wrong token. After several attempts without receiving



WiSec ’18, June 18–20, 2018, Stockholm, Sweden M. Montoya, S. Bacles-Min, A. Molnos, J. J.A. Fournier

a wake-up acknowledgement, A will assume that its stored wake-
up token is not the one used by B anymore, and calculate another
possible token based on the underlying protocol with themain radio
and on assumptions on the possible causes for desynchronization. A
will send this token several times again, and repeat the process with
other possible tokens, until it assumes that communication with
B is broken. The calculation of possible tokens and the number of
attempts with different tokens depend on the protocol used on the
main radio; for example, the number of messages exchanged uplink
and/or downlink and the robustness of the protocol regarding lost
acknowledgements are important parameters to calculate possible
tokens. All in all, the resynchronization process is entirely carried
out by the base station A which is not as resource-constrained as
the node B, while the latter is asleep and waiting for its next wake-
up token. Therefore, the resynchronization process introduces no
energy overhead for B.

3 IMPLEMENTATION AND EVALUATION OF
THE PROPOSED SOLUTION

In order to evaluate the performance of SWARD, we implemented
it on a circuit that we developed for energy-constrained IoT nodes
in ASIC in technology 28nm FDSOI. The circuit includes both an
always-responsive part with an integrated wake-up radio, and an
on-demand part where power gating is used to switch to sleep
mode. The main radio is external, though it can be deactivated as
part of the on-demand subsystem. Our IoT node is powered with a
1000 mAh battery.

The always-responsive part includes the wake-up radio and a
wake-up controller that initiates the wake-up of the on-demand
part. Our wake-up radio has a variable data rate between 1 kbps and
1 Mbps and is able to cover all frequency bands from 433 MHz to 2.4
GHz with a sensitivity of -60 dBm, which makes it suitable to use
with most RF protocols for the IoT. The average power consumption
of the whole always-responsive part, including the wake-up radio,
is 54.3 µW and has been obtained using post-synthesis simulation.

The on-demand subsystem consists of a main transceiver, a 32-
bit RISC-V CPU [15] clocked at 150 MHz, sensors, and an AES
coprocessor which is used to cipher and authenticate messages
exchanged with the main transceiver. According to post-synthesis
simulations, this part consumes on average 3 mW. As long wake-
up tokens generated in the on-demand part are truncated before
being stored in the always-responsive part and used for wake-ups,
a lightweight hash function with a short hash size is sufficient to
compute these tokens. Therefore, the hash function SPONGENT-88
which outputs a hash-code of 88 bits [3] has been implemented
on the RISC-V. According to [2], SPONGENT requires about twice
less memory and RAM than the more common hash algorithm
SHA-256 [5].

In Section 3.1, we discuss the security of SWARD, and show that
the complexity of attempting to guess the next wake-up token is
prohibitive for attackers, using either knowledge of some secret
data or a mere brute-force attack. Then, Section 3.2 provides an
evaluation of the energy and time overheads of our solution through
simulation for a typical use case for the IoT.

Table 1: Time needed to perform a brute-force attack on a
single wake-up token with a data rate of 10 kbps on the
wake-up radio, for several lengths of wake-up tokens

Wake-up token length Time for a single brute-force attack

8 0.1 second
16 52.4 seconds
24 5.6 hours
32 2.6 months
64 1.9 ∗ 109 years

3.1 Security analysis
As detailed in Equations (1) and (2), eachwake-up token is generated
using a hash of two elements that are both unknown to attackers:
encrypted messages exchanged on the main radio, and the previous
long wake-up token. Without these two elements, attackers are
unable to calculate the next token.

First of all, we detail the security of our solution when all mes-
sages exchanged on the main radio since the first wake-up of the
node are either empty or predictable, which is the best case for
an attacker. Empty messages correspond to the situation when no
messages are exchanged during a whole wake-up, as explained in
Section 2.4. In that case, at the n-th wake-up, the only unknown
quantity to attackers is the previous longwake-up tokenWuTn,lonд .
We assume attackers know all previous short tokens sent on the
wake-up radio up toWuTn . However, as SPONGENT-88 is a cryp-
tographic hash function, it is computationally impossible, knowing
only a truncation ofWuTn,lonд such asWuTn , to guess the full
hashWuTn,lonд . This is true as long as the size ofWuTn,lonд is
large enough compared to that ofWuTn : short tokens on 64 bits
should be avoided when long tokens are 88-bit long, because the
search space for a brute force attack on the remaining unknown bits
would be reduced enough to make such an attack possible. Using
a short token on 32 bits is secure enough, as a brute force attack
on the remaining bits of the long tokenWuTn,lonд would still be
much more expensive than the plain brute force attack on the short
tokenWuTn described below. All in all, with a 32-bit or less short
tokenWuTn , the only way attackers could predict the next token
without performing an expensive brute force attack is to obtain the
encryption key used to generate the first wake-up tokenWuT1,lonд
and to calculate each token recursively.

The complexity of this attack further increases when messages
exchanged on the main radio are unpredictable, and thus unknown
to attackers without the adequate encryption key(s). In that case,
attackers still need the original encryption key used to generate
the first tokenWuT1,lonд , but they also need all the messages ex-
changed on the main radio since the first wake-up of the node,
which implies a continuous listening of the channel used by the
main radio. In addition, attackers need the secret symmetric keys
used to decrypt all of these messages, which is particularly challeng-
ing if more than one key have been used, for example if ephemeral
session keys are used by the communication protocol on the main
radio. Therefore, though such an attack is not strictly impossible, it
is costly and complex enough to be prohibitive in most cases.



SWARD: A Secure WAke-up RaDio against Denial-of-Service on IoT devices WiSec ’18, June 18–20, 2018, Stockholm, Sweden

Most of the time, attackers have no knowledge of the secret
key used by the AES to cipher messages exchanged on the main
radio, and they have no way of guessing the previous long tokens.
Therefore, they have to perform a brute-force attack on the current
short tokenWuTn to wake up the target node. The time needed to
guess this token depends only on its length and the data rate of the
wake-up radio. With a data rate of 10 kbps, the average time needed
to brute-force a single wake-up token for various token sizes is
shown in Table 1. On average, several months are needed to find a
single 32-bit wake-up token, which makes the cost of brute-force
attacks prohibitive. In addition, even if attackers managed to wake
up a node by brute force without knowing its secret key, MAC-layer
authentication on the main radio would reject any forged message
and the node would compute a new wake-up token after a time-
out, as described in Section 2.4, before entering into sleep mode
again. Attackers would then have no choice but to start another
brute-force attack to wake the node up again.

3.2 Performance evaluation
Integrating SWARD into an IoT node introduces a small overhead
on its energy consumption, as it requires to compute a new token
in the on-demand part at every wake-up. In the following analysis,
we assume that there are on average 10 genuine wake-ups per day
for a node and that a node stays awake for 60 seconds, which is a
reasonable use case for the IoT and the same than in related work by
Liu et al. [11]. Moreover, we consider that the encrypted payload of
the messages exchanged on the main radio is 16 bytes long, which
is compatible, for example, with Bluetooth Low Energy [14] and
IEEE802.15.4-based networks [13].

The time needed to compute a wake-up token with the hash
function SPONGENT-88 on the RISC-V has been obtained with a
cycle-accurate simulation at RTL level. In our target platform, 60.3
milliseconds are necessary to calculate each token. Therefore, the
added energy consumption is 181 µJ. This overhead is independent
of the wake-up token size, as all sizes are different truncations of
the same hash-code. There is also a small energy and time overhead
in the always-responsive subsystem: the non-secure node uses
constant 8-bit wake-up tokens by default, while our secure node
uses longer tokens that are updated at every wake-up. Nevertheless,
this overhead is too small to be obtained with simulations.

With the node parameters and assumptions on the network de-
scribed previously, Figure 3 shows the energy consumption per
day for our secure node with various token sizes, as well as for
a non-secure implementation with a constant 8-bit token, with
and without attack. These values have been obtained with the
assumption that no message or ACK is lost, which is an ideal sit-
uation; as the whole resynchronization process is performed by
the base station, the energy cost for the node should be close to
these numbers in real conditions. With a 32-bit token calculated
at every wake-up, our solution decreases by more than 40 times
the energy consumption of the node under Denial-of-Sleep attack
compared to the non-secure implementation, while it increases its
overall energy consumption by only 0.03% in case there is no attack.
Under Denial-of-Sleep, the daily energy consumption of SWARD in-
creases by only 0.06%. Therefore, 32-bit tokens are a good trade-off

Figure 3: Energy consumption per day for our secure node
with various token sizes, and for a non-secure implementa-
tion, with and without Denial-of-Sleep attacks.

between the lifetime and performance of an IoT node both under
Denial-of-Sleep attacks and in standard operating conditions.

4 RELATEDWORK AND DISCUSSION
Several methods have been proposed until now to mitigate Denial-
of-Sleep attacks. The first solution was presented by Falk and Hof
[7]. In this approach, wake-up tokens are generated only on the
node entering into sleep mode, and these tokens are then sent on a
secure channel to other nodes in the network. This solution requires
additional communication with the main radio in order to exchange
tokens, which can be very energy-consuming. For more energy-
efficiency, wake-up tokens should be computed locally on each
node, using shared information and without any communication
overhead, which is the approach selected in other related work as
well as in our solution.

Another approach relies on one-time passwords (OTP), with two
different implementations in [9] and [12]. OTP use time synchro-
nization between nodes: each node regularly wakes up to com-
pute a new wake-up token based on the current time, either with
symmetric encryption or with a keyed-hash function. In [12], a
new wake-up token is computed every 30 seconds by all nodes in
the network, which is quite energy-consuming. Moreover, these
mechanisms suffer from issues inherent to time synchronization
in constrained devices, such as clock drift and resynchronization.
Therefore, they might not be best suited for resource-constrained
devices such as sensor networks.

Finally, another method to generate wake-up tokens as consid-
ered in [11] and [4] uses wake-up counters and secret symmetric
keys dedicated to the wake-up process. The counter and the ad-
dresses of the sender and receiver nodes are either encrypted, or
concatenated with a secret symmetric key and hashed. Using a se-
cret symmetric key dedicated to the wake-up process is necessary,
as the counter and addresses are easy-to-obtain data. According
to simulations described in [4], this method is much more energy-
efficient than the approach relying on one-time passwords.

Table 2 summarizes the main features of the methods proposed
in related work and those of our solution. Methods relying on



WiSec ’18, June 18–20, 2018, Stockholm, Sweden M. Montoya, S. Bacles-Min, A. Molnos, J. J.A. Fournier

Table 2: Summary of the main features of our solution compared to related work.

Feature Secure exchange [7] One-time password [9, 12] Dedicated counter [4, 11] SWARD

Additional communication Yes No No No
Management of extra symmetric keys Unknown Yes Yes No

Time synchronization No Yes No No
Lightweight algorithm Unknown [9]: Yes / [12]: No No Yes

Complexity of known-key attacks Low Low Low High

wake-up counters [4, 11] and one-time-passwords [9, 12] all require
extra symmetric key(s) dedicated to the generation of wake-up
tokens, in addition to the key that is already used to encrypt and
authenticate data exchanged on the main radio. This implies the
secure initialization, storage and update of additional symmetric
keys, which is energy-consuming. If these additional symmetric
keys are not managed securely enough, existing solutions would
be vulnerable to Denial-of-Sleep attacks. SWARD, on the other
side, does not require any additional key management, as it relies
on the security of the encryption key used by the main radio to
produce data unknown to attackers, i.e. the first long wake-up
tokenWuT1,lonд and encrypted messages. As several independent
elements unknown to attackers are required to calculate wake-up
tokens, our solution is more secure than existing ones. Indeed, even
if attackers were able to obtain the current encryption key used
for the communication on the main radio, they would still need
additional data to guess the next wake-up token, though other
security issues would surely arise in that case. In Table 2, we refer
to this added security of SWARD compared to related work as
"complexity of known-key attacks".

In all previous related work, only [9] uses a lightweight algo-
rithm, adapted for resource-constrained nodes, to compute tokens,
while other implementations rely on traditional encryption and
hash algorithms such as the AES [6] or SHA-256 [5]. Furthermore,
existing solutions, especially those based on wake-up counters, may
as well suffer from desynchronization issues as described in Sec-
tion 2.4. SWARD proposes a more exhaustive wake-up protocol and
a resynchronization process that solves these issues. All in all, our
solution is more energy-efficient, more robust and more resilient
to Denial-of-Sleep attacks than previous ones.

5 CONCLUSION
This article presents SWARD, a novel solution to prevent Denial-
of-Sleep attacks on IoT networks that utilise wake-up radios. The
solution has three main features: (1) it generates an unpredictable,
new wake-up token at every wake-up of an IoT node, (2) the token
computation is recursive requiring only local node information,
namely the previous token and the messages exchanged securely
on the main radio, and hence no extra information is exchanged
between nodes, and (3) it integrates a protocol to keep nodes syn-
chronized and to compute tokens when no messages are exchanged.
Simulation results indicate that our solution has a negligible energy
cost, while it greatly increases the lifetime of a node under Denial-
of-Sleep attacks. Furthermore we carry out a security analysis that
shows that our method is also slightly more secure than related
work because it relies on several secret elements instead of only

one. Our solution relies on the assumption that secure communi-
cation exists on the main radio, and hence it is dependent on the
underlying communication protocol. We believe this is not a strong
limitation, as most of the standard IoT protocols support secure
communication, which is needed anyway to ensure confidentiality
and authenticity and to prevent other types of Denial-of-Service
attacks. Future work includes the integration of SWARD on an IoT
node together with a standard communication protocol such as
LoRaWAN, in order to evaluate more precisely its overhead under
real Denial-of-Service attacks. The study of other hash functions to
replace SPONGENT-88, and of hardware implementations of these
functions, is another point for further investigation to enhance the
energy-efficiency and/or security of SWARD .

REFERENCES
[1] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley. 2016. A Study of LoRa: Long

Range and Low Power Networks for the Internet of Things. Sensors 16, 9 (2016).
[2] J. Balasch et al. 2012. Compact Implementation and Performance Evaluation

of Hash Functions in ATtiny Devices. In Smart Card Research and Advanced
Applications (Lecture Notes in Computer Science). Springer, 158–172.

[3] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı, and I. Verbauwhede.
2011. spongent: A Lightweight Hash Function. In Cryptographic Hardware and
Embedded Systems - CHES 2011. Springer, 312–325.

[4] A. T. Capossele, V. Cervo, C. Petrioli, and D. Spenza. 2016. Counteracting Denial-
of-Sleep Attacks in Wake-Up-Radio-Based Sensing Systems. In 13th Annual IEEE
Int. Conference on Sensing, Communication, and Networking (SECON). 1–9.

[5] Q. H. Dang. 2015. Secure Hash Standard. Federal Inf. Process. Stds. (NIST FIPS) -
180-4 (Aug. 2015).

[6] M. J. Dworkin et al. 2001. Advanced Encryption Standard (AES). Federal Inf.
Process. Stds. (NIST FIPS) - 197 (Nov. 2001).

[7] R. Falk and H. J. Hof. 2009. Fighting Insomnia: A Secure Wake-Up Scheme for
Wireless Sensor Networks. In 2009 Third International Conference on Emerging
Security Information, Systems and Technologies. 191–196.

[8] V. Jelicic, M.Magno, D. Brunelli, V. Bilas, and L. Benini. 2012. Analytic Comparison
of Wake-up Receivers for WSNs and Benefits over the Wake-on Radio Scheme.
In Proc. 7th ACM Workshop on Performance Monitoring and Measurement of
Heterogeneous Wireless and Wired Networks (PM2HW2N ’12). ACM, 99–106.

[9] A. Kavoukis and S. Aljareh. 2013. Efficient time synchronized one-time password
scheme to provide secure wake-up authentication on wireless sensor networks.
International Journal of Advanced Smart Sensor Network Systems 3, 1 (2013), 1–11.

[10] E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin. 2015. A survey on IEEE
802.11ah: An enabling networking technology for smart cities. Computer Com-
munications 58, Supplement C (March 2015), 53–69.

[11] J.-W. Liu, M. Al Ameen, and K.-S. Kwak. 2010. Secure Wake-Up Scheme for
WBANs. IEICE Transactions on Communications E93.B, 4 (2010), 854–857.

[12] O. Stecklina, S. Kornemann, and M. Methfessel. 2014. A secure wake-up scheme
for low power wireless sensor nodes. In 2014 International Conference on Collabo-
ration Technologies and Systems (CTS). 279–286.

[13] J. Suhonen, M. Kohvakka, V. Kaseva, T. D. Hämäläinen, and M. Hännikäinen.
2010. Low-power Wireless Sensor Network Platforms. In Handbook of Signal
Processing Systems. Springer, 123–160.

[14] R. Want, B. Schilit, and D. Laskowski. 2013. Bluetooth LE Finds Its Niche. IEEE
Pervasive Computing 12, 4 (Oct. 2013), 12–16.

[15] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovíc. 2014. The RISC-V In-
struction Set Manual, Volume I: User-Level ISA, Version 2.0. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2014-54 (May 2014).


	Abstract
	1 Introduction
	2 Secure wake-up protocol
	2.1 Preliminaries
	2.2 Wake-up token generation
	2.3 Initialization
	2.4 Wake-up process

	3 Implementation and evaluation of the proposed solution
	3.1 Security analysis
	3.2 Performance evaluation

	4 Related Work and discussion
	5 Conclusion
	References

