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ABSTRACT
We propose a fully distributed algorithm to solve the Chance Con-
strained Optimal Power Flow (CCOPF), with the advantages of
ensuring the privacy and autonomy of the different operators and
actors of the system. We present, in this paper, a two-step algorithm
that, first, carries out a distributed sensitivity analysis to obtain the
generalized generation distribution factors. With these sensitivity
factors, the second step solves a distributed CCOPF based on an
analytical formulation relying on the Primary Frequency Control
(PFC) of generators and on wind farms, whose forecast errors are
assumed to be Gaussian. This algorithm allows us to schedule mar-
gins and reserves to ensure the security of the system regarding
wind farms deviation from forecast with probabilistic guarantees,
and to assess the cost of this uncertainty. The proposed method
has been implemented and tested on a two-bus test system with
one wind farm, and on the IEEE 14-bus test system, with two wind
farms. Simulation results showed that the proposed algorithm can
efficiently solve the CCOPF in a fully distributed manner.
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1 INTRODUCTION
Traditionally, power grids were designed to handle energy flows
from predictable, controllable and centralized power generation
units to final consumers. Hence, the growing integration of renew-
able energy presents a significant challenge to classical grid opera-
tion due to the unpredictable, uncontrollable and highly variable
nature of the wind. In fact, under large-scale wind generation, the
Optimum Power Flow (OPF), which is solved in a daily basis by the
transmission system operators (TSOs) to re-dispatch controllable
generation at minimum cost while respecting network constraints
(e.g. maximum line capacities and generators), can result in grid
instability, and, potentially, in cascading outages. This risk arises
because OPF dispatch is computed without taking into account the
uncertainty on wind power production (i.e. without considering
potential deviations between the forecast and the actual production
value). In practice, any deviation leading to power imbalance will
be compensated in real-time by the automatic primary frequency
response of controllable generators. Since primary generator re-
sponses to wind power deviation from forecast are not considered
when solving the OPF, this increment of generation can lead to
power flows that significantly exceed transmission line limits and,
potentially, to their tripping.

Recent works have proposed the chance-constrained optimal
power flow (CCOPF) to account for this uncertainty and obtain a
schedule that respects network constraints with a high probability,
as in [2]. Broadly speaking, chance-constrained optimization is
a methodology in which the system security constraints can be
violated with a small predefined level of probability. In general,
chance-constrained optimization problems are computationally
intractable since they require the computation of multi-dimensional
probability integrals.

To overcome this difficulty, a solution consists in assuming that
the forecast error of each wind farm follows a (previously known)
Gaussian probability distribution and that they are mutually in-
dependent, as in [2, 11, 17]. The Gaussianity assumption allows
for an analytical reformulation of the chance constraints, leading
to a deterministic problem with lower computational complexity
than scenario based approaches [14]. The mentioned references
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[2, 11, 17] propose centralized approaches to solve the CCOPF prob-
lems which are very well suited for single regional area systems.
Roald et al. proposed in [17] an exact reformulation of the security
constrained OPF with chance constraints related to the uncertainty
on the wind power forecast, and under the assumption of indepen-
dent Gaussian distributions. Similarly, Bienstock et al. [2] formulate
the CCOPF and propose an efficient cutting-plane algorithm that
proved to be able to solve large problems.

To achieve better overall reliability and economical efficiency,
power systems are interconnected and these advantages are subject
to have an effective cooperation and coordination among TSOs
managing different regions. Unfortunately, the application of cen-
tralized approaches in such large-scale interconnected networks
is undesirable if not impossible due to [20]: the computational and
communication burden of gathering data and taking decisions for
the whole system at a central controller; and the privacy issues
of having TSOs and generation companies disclosing potentially
sensitive information and/or strategic models. Against these draw-
backs, distributed methods are gaining popularity since they can
preserve the independence of regional operators while fully taking
advantage of their interconnection (see [8, 20] for a complete re-
view on distributed approaches). In this context, the Alternating
Direction Method of Multipliers (ADMM) has attracted increasing
attention due to its natural decomposition, its full distributivity
and its improved convergence compared to other state-of-the-art
distributed optimization algorithms. In recent years, ADMM-based
methods have been applied to a wide variety of large-scale power
system optimization problems. More precisely, our work is on the
track of extension of the works on OPF problems from [10, 18] and
of SCOPF problem from [19].

Nevertheless, all these above references do not account for any
source of uncertainty. Some works [12, 13] accounted for wind un-
certainty when solving an OPF like problem with ADMM but based
on a robust optimization approach. Unlike probabilistic approaches,
robust optimization does not require prior knowledge of the un-
derlying probability distribution but instead capture randomness
by means of uncertainty sets, which can be overly conservative.
Closer to our approach, Hassan et al. also proposes, in [7], a chance-
constrained ADMM approach to minimize power losses and where
actuators are the active and reactive power injections of inverter-
based distributed energy resources.

To the best of our knowledge, this paper proposes the first CCOPF
distributed solution based on the ADMM that relies on an exact
reformulation of the chance constraints. In more detail, the formu-
lation of the CCOPF problem considering the primary frequency
response of generators is provided in section 2 and we propose,
in section 3 a two-step distributed approach to solve this problem
in a fully distributed manner. The first step aims to determine the
sensitivity factors of the system, namely the Generalized Genera-
tion Distribution Factors that measure the line flow changes due to
deviations from generation schedule. The results of this first step
are inputs of the second step that is the CCOPF. Both steps are
distributedly solved by the ADMM algorithm. Hence, this two-step
algorithm ensures the privacy and autonomy of the different system
actors and it is de facto parallel and adapted to high performance
platforms. More details on the background on ADMM based ap-
proach to solve the OPF from [10] can be found in Appendix A and

finally, the results on a 2-bus system and on the IEEE 14-bus test
system are available in Appendix B.

2 CHANCE-CONSTRAINED OPF WITH PFC
FORMULATION

This section presents the different types of devices1 we consider
in this paper, namely, wind farms, chance-constrained dispatch-
able generators participating in the primary frequency control and
chance-constrained lines. The CCOPF formulation presented is sim-
ilar to that of [17], but with a focus on the OPF instead of on the
SCOPF problem and an instantiation of the chance constraints to
take into account the primary frequency control schemes.

2.1 Wind farms
LetW ⊂ D be the set of wind farms, included in the set of devicesD
of the system. For awind farmw ∈W , let µw be its forecast expected
production. Since wind farms are variable and non-dispatchable
sources there is a forecast error that models the uncertainty with
respect to the expected production (i.e. imbalances are expected
between the expected production and the actual production of the
wind farm). Using the same reasoning as in [17], the forecast errors
are represented as Gaussian random variables with zero mean:

∀w ∈W , ∆pw ∼ N

(
0,σ 2

w

)
(1)

where the forecast of different wind farms are assumed to be spa-
tially uncorrelated.2

2.2 Chance-constrained generators
In our formulation, dispatchable generators compensate the devi-
ation of wind farms from the forecasts through the primary fre-
quency control, described next in Section 2.2.1. Once introduced,
we proceed to derive the probabilistic formulation of conventional
generators in Section 2.2.2.

2.2.1 Primary frequency control modeling . LetG ⊂ D be the set
of generators of the system. The primary frequency control (PFC)
aims at regulating the frequency of the power system by adapting
the generation [4]. The contribution of a generator д to primary
response is determined by the ratio of its coefficient, Kд , and the
equivalent speed droop of the system,

∑
д∈G Kд . In turn, the coeffi-

cient Kд is defined as the ratio of the generator maximum active
power (p̄д ) and the speed droop of the generator (both constant
characteristics of the generators). Hence, the response of a genera-
tor to a deviation from the power scheduled, ∆p, can be formally
expressed by the following steady-state equation:

∆pд =
Kд∑

д′∈G Kд′
∆p (2)

2.2.2 Probabilistic formulation . The compensation of the fore-
cast error of the wind farm is achieved by the generators following
the primary frequency control described above. Thus, following
Equation 2, the primary frequency response of a generator д ∈ G
results from the product of a constant and the aggregated fore-
cast error of all wind farms in the system. The aggregated forecast

1Loads are omitted since their formulation does not change w.r.t. OPF
2This assumption holds when wind farms are sufficiently far away from each other.
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error of wind farms, i.e. ∆p =
∑
w ∈W ∆pw , turns into a sum of

uncorrelated Gaussian variables, and hence ∆p ∼ N(0,
∑
w ∈W σ 2

w ).
Hence, the primary frequency response of a generator is also a

random variable, following a normal distribution ∆pд ∼ N(0,σ 2
д )

with a variance correlated with the output power of wind farms as:

σ 2
д =

(
Kд∑

д′∈G Kд′

)2

·
∑
w ∈W

σ 2
w (3)

Therefore, under this probabilistic model, the cost function of the
generator is defined as the expectation of the deterministic qua-
dratic cost function (see Eq. 23) applied on the total power gener-
ation output variable (i.e. the initial schedule production, pд plus
the reserve PFC response):

E[f (pд + ∆pд)] = α · σ 2
д + α · p2

д + β · pд + γ (4)

Moreover, following the chance-constrained approach [17], we
constrain that the maximum capacity limit of the generator is not
reached given a certain tolerance to a violation ϵ :

P[pд + ∆pд ≤ p̄д] > 1 − ϵ (5)

where P(·) is the probability to respect the constraint on the gener-
ator production.

Under the assumption of Gaussianity, these constraints are sim-
plified using Φ−1(·) is the quantile function of the standard gaussian
distribution to become:

pд + Φ
−1(1 − ϵ) · σд ≤ p̄д (6)

2.3 Chance-constrained lines
To formulate the chance-constraints on lines, we need to be able to
evaluate the impact of the deviation of a wind farm from its forecast
on the lines flows. We then first introduce the sensitivity factors
that we use to formulate the lines sub-problems.

2.3.1 Generalized Generation Distribution Factors. The General-
ized Generation Distribution factors (GGDFs), first introduced in
[16], are used to determine the lines flow changes due to a deviation
of power injection in the system. Let L ⊂ D be the set of lines of
the system. As we are considering that any deviation of power
injection is linearly compensated by generators that participate in
the primary frequency control, we can determine the GGDF of a
line l ∈ L due to the deviation from forecast ∆pw of a wind farm
w ∈W , i.e. GFwl , through the equation:

∆pwl = GF
w
l · ∆pw (7)

Moreover the linearity of Eq. 7 allows the use of superposition,
so that, for a set of wind farmsW that deviate from their forecast
by ∀w ∈W , ∆pw , we can determine the power flow change in line
l due to all those deviations with :

∆pl =
∑
w ∈W

(GFwl · ∆pw ) (8)

2.3.2 Probabilistic formulation. We use the GGDF to formulate
the probabilistic optimal power flow, as in [17], by adding chance
constraints in the line flow capacity constraints, as described next.

As for generators, the amount of power transmitted through a
line is affected by primary response of generators to the uncertainty

of the wind farms and the line flow changes is a random variable
following a normal distribution:

∆pl ∼ N(0,σ 2
l ) (9)

With the notation of the previous section on GGDF, we can
determine the relationship between the variance on the lines flows
and the variance of the wind farms :

σ 2
l =

∑
w ∈W

(
GFwl · σw

)2
(10)

The chance constraints applied on lines enforce that the line flow
capacity p̄l is not reached given a certain tolerance ϵ to violation:

P[−p̄l ≤ pl1 + ∆pl ≤ p̄l ] > 1 − ϵ (11)

where P(·) is the probability distribution of the amount of power
transmitted through the line.

As for generators, under the assumption of Gaussianity, these
constraints are simplified using Φ−1(·), the quantile function of the
standard Gaussian distribution to become:

− p̄l ≤ pl1 + Φ
−1(1 − ϵ) ·

√ ∑
w ∈W

(
GFwl · σw

)2
≤ p̄l (12)

3 DISTRIBUTED ALGORITHMS
This section presents the two-step distributed algorithm for solv-
ing the CCOPF problem with PFC formulated in previous section.
First, we describe how we determine the sensitivity factors and the
equivalent speed droop of the system. Then, we provide the ADMM
updates for the CCOPF sub-problems.

3.1 Step 1: Distributed computation of
sensitivity factors

Notice that to define lines and generators problems, and in par-
ticular Eq. 12 and 3, line agents need to compute the GGDF with
respect the deviation of the wind farms, as defined in section 2.3.1,
and conventional generators need to compute the equivalent speed
droop

∑
д∈G Kд . We propose in this section a distributed protocol

that determines the GGDF and the equivalent speed droop.
First the equivalent speed droop is determined by computing a

distributed sum, using the efficient Push-Sum protocol [9].
To determine the GGDF of the lines, we need to solve an initial

power flow with a feasible power injection schedule in order to
get the line flows ∀l ∈ L, p

(0)
l and power injection schedules ∀д ∈

G, p
(0)
д , a base case scenario. We also need to create one case per

wind farm, in which, we apply a deviation ∆pw at one of the wind
farm w ∈W . We determine the new power injection schedule of
conventional generators by spreading ∆pw , and with the equivalent
speed droop of the system. We finally solve the power flow with
this new injection schedule, for each line l ∈ L, we get pwl , the
power flow of line l associated with the wind farm power deviation
∆pw . Then, in each scenario that considers the deviation of one of
the wind farmsw ∈W , we determine the GGDF,GFwl , of each line
l ∈ L by computing :

∀w ∈W , GFwl =
∆pwl
∆pw

=
p
(0)
l − pwl
∆pw

(13)
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In summary, this first step of the algorithm is divided into four
different substeps that can be run by agents sequentially or in
parallel:

1 Run a distributed sum algorithm to calculate the equivalent
speed droop, i.e.

∑
д∈G Kд .

2 Determine a feasible power injection schedule (∀д ∈ G, p
(0)
д )

and power flows (∀l ∈ L, p
(0)
l ) with the ADMM.

3 Create for each wind farm w ∈ W a scenario in which a
deviation ofw (∆pw ) is applied and spread and in which the
frequency response of each generator is computed based on
that deviation (∀д ∈ G, p

(w )
д = p

(0)
д +

Kд∑
д∈G Kд

· ∆pw ).
4 Run the ADMM algorithm to compute the power flows in
each of these scenarios (∀l ∈ L, ∀w ∈W , p

(w )

l ).

After the substep 4, each line agent has all information needed to
compute its GGDF factor for each wind farm, i.e. ∀w ∈W , GF

(w )

l =

p(0)l −p(w )

l
∆pw . Note that those steps can be computed in parallel and

that we can use previous power flow solutions as base case (step 2)
and as warm starts to carry out the distributed power flow (step 4).

3.2 Step 2: Distributed CCOPF
The outputs from the sensitivity analysis are now the input of
CCOPF problem. We provide a description of the sub problems
implemented in devices and nets agents after applying the ADMM.

3.2.1 Net agents. Before updating the scaled dual variables fol-
lowing Eq. 21-22, each net agent solves its sub-problem, Eq. 20.
Since nets agents are not different from [10], the ADMM updates
are the same than the ones provided in [10], namely, for any net
n ∈ N , at iteration k + 1:

Ûpk+1
n = pk+1

n −
1
|n |

·
∑
d ∈n

pk+1
d , Ûθk+1

n =
1
|n |

·
∑
d ∈n

θk+1
d (14)

3.2.2 Wind farm agents. The mean power injections of the wind
farms are constant, there is nothing to optimize. However, the wind
farms spread the value of their variance σ 2

w in a peer to peer fashion.

3.2.3 Chance-constrained generator agents. Each chance con-
strained generator д ∈ G solves, at iteration k + 1, the sub-problem:

min
pд

α · σ 2
д + α · p2

д + β · pд + γ +
ρ

2
| | Ûpkд − ukд − pд | |

2
2 (15a)

S .t . σд =
Kд∑

д′∈G Kд′
·

√ ∑
w ∈W

σ 2
w (15b)

rд = Φ−1(1 − ϵ) · σд pд + rд ≤ p̄д (15c)

The solution to this problem without the constraints is simple as it
is just a polynomial of order 2. When the unconstrained solution
does not meet the constraint, it means that the inequality becomes
an equality and the problem is even simpler, [19].

3.2.4 Chance-constrained line agents. We present the chance
constrained sub-problem solved by lines, keeping in mind that
we determined the GGDF, related to each wind farm, of the lines

through the distributed sensitivity analysis. We then have :

min
(pl1,θl1,pl2,θl2 )

ρ

2
| | Ûpkl1

− ukl1
− pl1 | |

2
2 +

ρ

2
| | Ûpkl2

− ukl2
− pl2 | |

2
2 (16a)

+
ρ

2
| | Ûθkl1

−vkl1
− θl1 | |

2
2 +

ρ

2
| | Ûθkl2

−vkl2
− θl2 | |

2
2 (16b)

S.t. pl1 = −pl2 = b · (θl2 − θl1 ), − p̄l ≤ pl1 + rl ≤ p̄l (16c)

σl =

√ ∑
w ∈W

(
GFwl · σw

)2
, rl = Φ−1(1 − ϵ) · σl (16d)

We solve the line flow problem only considering the equal-
ity constraints without the inequality constraints, as in [19], and
then check that the inequality constraint is satisfied. If one of the
constraints is not respected, let’s say the solution p∗l1

is so that
p∗l1
+ Φ−1(1 − ϵ) · σl ≥ p̄l , we then apply the equality constraint

pl1 = −Φ−1(1−ϵ) ·σl +p̄l and only solve the problem on the voltage
phase angles.

3.2.5 Loads. The loads are considered constant, the sub-problem
solution is fixed.

4 SIMULATIONS
The proposed distributed algorithm was implemented and tested
on a two-bus test system and on the IEEE 14-bus test system; the
results of these simulations are provided in Appendix B. The ability
of the proposed algorithm to accurately determine the GGDF and
solve CCOPF problem with no central coordination is validated.
Moreover, the results show that solving the second step of the
algorithm does not necessitate significantly more iterations than
solving the OPF problem.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a two-step algorithm that solves, with
distributed methods, the Chance-Constrained Optimal Power Flow
problem (CCOPF) based on an exact reformulation of the prob-
lem assuming that wind power forecast errors follow independent
Gaussian distributions.

The proposed method employs a distributed solution to cope
with the inter-regional OPF problem, while previous works (i.e.
[2, 11, 17] ) need to adopt centralized strategies for both the com-
putation of the sensitivity factors and the CCOPF solution. The
distributivity ensures the privacy and autonomy of the actors of
interconnected systems and enables the parallelization of the com-
putation. The first step of the algorithm aims at determining the
generalized generation distribution factors and the equivalent speed
droop of the system, when the second step is the distributed CCOPF
solution in its self. We provide simulation results on a two-bus test
system and on the IEEE 14-bus test system, and show the ability of
this algorithm to solve our problem.

As a future work, we plan to extend this distributed framework
to consider other non-Gaussian distributions to model the wind
forecast errors, e.g.Weibull distributions. Another natural extension
would be to consider the probabilistic security-constrained optimal
power flow that considers potential contingencies on devices of the
system, in addition to the uncertainty on some elements.
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A BACKGROUND
We review in this section the methodology for decomposing the
OPF problem and its mapping to the ADMM algorithm from [10] as
well as the objective function of the main components of interest
in the OPF problem. The models use the DC power flow equations
(linearized) and thus the variables of the system are active power
injections or flows, denoted as p, or voltage phase angles at the
buses, denoted as θ .

A.1 OPF network decomposition and ADMM
Given a power system, the network decomposition from [10] clas-
sifies the power system components into two sets: (i) the set of nets
(N ), that similar to the electrical bus concept connect devices and
enforce Kirchhoff’s physical laws and phase consistency; and (ii)
the set of devices (D), that is composed of all power components
that are not buses. Each component c ∈ D ∪ N is associated with a
local objective function (fc (·)) and local constraints (Cc ) that apply
on a set of local variables (xc ). Considering the DC power flow
equations (linearized), the local set of variables will contain the
corresponding two types of variables: xc = (pc ,θc ). For the sake
of concision, we say that fc (xc ) = ∞ if xc < Cc , otherwise fc (xc )
represents the cost associated with the set of variables xc for the
component c . Now, we create an edge for every pair of components
whose objective function have some variable in common (i.e. the
cost and/or the feasibility of both components depends on at least
some shared variables). We will refer to this set of edges as terminals
(T ). For each component c ∈ N ∪ D, we use c to refer to both the
component itself as well as to the set of neighbours associated with
it, i.e., we say c ′ ∈ c if component c ′ is linked with component c by
means of a terminal. Accordingly, |c | is the number of components
connected to c .

Under this model, the global objective function of the OPF prob-
lem can be expressed as the sum of local objective functions:

min
p,θ

∑
d ∈D

fd (pd ,θd ) +
∑
n∈N

fn (pn ,θn ) (17)

The global objective function is intended to find the active power
and voltage phase angles that minimize the overall operating cost
while satisfying the power flow equations. Basically, nets objective
functions encodes the Kirchhoff’s laws and phase consistency, while
devices objective functions include the cost of generation and local
constraints on the devices.

Following [10], this optimization problem can be solved by a
message-passing protocol based on theAlternatingDirectionMethod
of Multipliers (ADMM) [3]. Under ADMM formulation, first, the
nets objective functions are defined over a duplicated copy of the
original variables (i.e. denoted as Ûp, Ûθ ) and equality constraints
(p = Ûp, θ = Ûθ ) are added to keep the equivalence with Eq. 17.

The scaled form of the augmented Lagrangian is then formed by
relaxing the equality constraints:

L(p, Ûp,θ , Ûθ ,u,v) =
∑
d ∈D

fd (pd ,θd ) +
∑
n∈N

fn ( Ûpn , Ûθn )

+
ρ

2
(| |p − Ûp + u | |22 + | |θ − Ûθ +v | |22)

(18)

where ρ > 0 is the scaling parameter, u and v are the dual variables
associated, respectively, with the active power schedule p and the
voltage angle schedule θ .

Following [10], the local problems then become separable using
the fact that set of devicesD and the set of netsN are both partitions
of the set of terminals T , and we can apply the ADMM algorithm
that consists in the following three-step iterative process:
The device-minimization step (i.e. parallelized among devices):

(pk+1
d ,θk+1

d ) = arg min
pd ,θd

(fd (pd ,θd )+

ρ

2
| |pd − Ûpkd + u

k
d | |

2
2+

ρ

2
| |θd − Ûθkd +v

k
d | |

2
2), ∀d ∈ D

(19)

The net-minimization step (i.e. parallelized among nets):

( Ûpk+1
n , Ûθk+1

n ) = arg min
Ûpn, Ûθn

(fn ( Ûpn , Ûθn )+

ρ

2
| |pk+1

n − Ûpn + u
k
n | |

2
2+

ρ

2
| |θk+1

n − Ûθn +v
k
n | |

2
2), ∀n ∈ N

(20)

The (price) scaled dual variables update (i.e. parallelized among
nets):

uk+1
n = ukn + (p

k+1
n − Ûpk+1

n ), ∀n ∈ N (21)

vk+1
n = vkn + (θ

k+1
n − Ûθk+1

n ), ∀n ∈ N (22)

The problem is, by construction, already separated in local sub-
problems which allows each agent (either net or device) to solve
its sub-problem in parallel and to coordinate via message-passing
through terminals. Hence, at each iteration, each device agent com-
putes a minimization step for its local objective function (Eq. 19)
that minimizes its operating cost (i.e. encoded by fd ), and a penalty
that depends on messages passed to it through its terminals by
its neighboring nets in the previous iteration ( Ûpk+1

n , Ûθk+1
n , uk+1

n
and vk+1

n ). Similarly, each net component computes its minimiza-
tion (Eq. 20) and scaled dual variables update steps (Eq. 21 and 22)
with an argument that depends on messages passed to it through
its terminals by its neighboring devices in the previous iteration
(pk+1
n , θk+1

n ). This is done iteratively until a sufficient consistency
is reached at each net.

ADMM is guaranteed to converge to the optimal solution when
all devices have convex, closed, proper objective functions and a
feasible solution to the problem exists.

A.2 Objective functions of nets and main
devices

We present, in this section, the devices and the nets objective func-
tions mentioned in Eq. 17, that were previously presented and
solved in [10, 19]. We consider generators, loads, lines and nets.
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A.2.1 Dispatchable generators. A dispatchable generator д in-
jects on request some power pд to the system at a cost determined
by its quadratic objective function :

f (pд) = α · p2
д + β · pд + γ (23)

where α , β and γ are respectively quadratic, linear and constant
cost coefficients.

Moreover, the power output of the generator has to remain
within its production limits, i.e. pд ≤ p̄д where p̄д is the maximum
power output.

A.2.2 Lines. A line incurs no cost by itself, but it must enforce
the power flow equations, so that, for line l , with susceptance bl ,
we have :

pl1 = −pl2 = bl · (θl2 − θl1 ) (24)
with θl1 and θl2 the voltage phase angles respectively at buses l1
and l2, and, pl1 and pl2 the power flows from l1 and l2 respectively.

Moreover, the power flows have to remain within the transmis-
sion limits, i.e. −p̄l ≤ pl1 ≤ p̄l where p̄l is the maximum capacity
of the line.

A.2.3 Loads. Loads are assumed to consume a fixed amount,
providing no flexibility or further constraints.

A.2.4 Nets. Each net n ∈ N requires power balance and phase
consistency to be enforced as follows:∑

d ∈n

Ûpd = 0

∀d,d ′ ∈ n, θd − θd ′ = 0
(25)

B SIMULATION RESULTS
The proposed distributed algorithm was implemented in the Java
Agent DEvelopment3 (JADE) platform [1], where each agent solves
its corresponding sub-problem in parallel. We tested our algorithm
on two power systems: a small 2-bus test system to illustrate its
operation and the IEEE 14-bus test system for validation on a re-
alistic system. For each circuit, we tested it under scenarios with
different percentages of wind forecast error, where the percentage
forecast error is defined by setting the standard deviation (i.e. the
square root of the variance) of the wind error distribution to a
percentage of its mean value (e.g. a 10% of forecast error fir a wind
farm with an expected value of 100MW leads to an error prediction
distribution with a variance of 102). For each scenario we enforce
that the reserves and margins are sufficient in 99.7% of the time, i.e.
ϕ−1(0.997) = 3.

B.1 2-bus test system
We tested our algorithm on a 2-bus test system with two conven-
tional generators, a line, a load and a wind farm, as depicted in
Figure 1a. The two conventional generators are identical (same
capacity limits, same coefficients i.e. KG1 = KG2 = KG ), except
that the cost of generation of G1 is cheaper than G2. We selected
this circuit because it is simple enough to allow for an analytical
solution.

First, we focus on the solution of the OPF problem (i.e. the one
that minimizes the cost of operation and enforces the line and
3jade.tilab.com

(a) 2-bus test system.

(b) IEEE 14-bus test system.

Figure 1: Test systems.

generators constraints). The wind farm in this case is supposed to
generate its mean power µ, i.e. 40MW. To minimize the cost, we
need to maximize the use of generator G1 (cheaper than G2), but
we also must ensure that the line L1 is not overloaded. G1 then
generates the maximum power the line can carry p̄L1 , i.e. 50MW,
and finally G2 covers the remaining power needed, i.e. 10MW.

Second, we consider the uncertainty in the wind farm forecast
and the case in which the generatorsG1 andG2, and line L1 enforce
that they have sufficient reserves or margins to cover most of the
wind farm deviations.
See that, in this simple example, there is only one line that transmits
all the power generated by generator G1 to the rest of the system,
i.e. bus 2. The GGDF reflects the impact of a deviation of the wind
farm on the line flow and thus, on the generation of generator G1.
Then from Eq. 2, we get :
∆pL1 = ∆pG1 =

KG
KG+KG · ∆pw =

1
2 · ∆pw = GF

w
L1

· ∆pw .
The standard deviation for the (equal) generators is calculated using
Eq. 15b as σG1 = σG2 =

KG
KG+KG · σw =

1
2 · σw whereas for lines is

computed through Eq. 16d asσL1 = GF
w
l ·σw . Then the reserves and

margins are defined in Eq. 15c and Eq. 16d so that rG1 = rG2 =
3
2 ·σw

and rL1 =
3
2 · σw .
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(a) Percentage error compare to theory.

(b) Power scheduled in generators, in the line and the margin needed for the
line.

Figure 2: Results on the 2-bus test system.

The limiting constraint, in this example, is the capacity of line L1
because all the power generated by G1 is flowing through L1 that
have lower capacity than G1. It follows that the scheduled power
output of generator G1 is pG1 = p̄L1 −

3
2 · σw , and as this power

can only be transmitted through line L1, the expected power flow
in line L1 is equal to pG1 . Generator G2 covers the rest of power
needed to fulfill the load consumption pG2 = p̄L1 −

3
2 ·σw + µw −pd .

We propose to compare the theoretical results, provided above,
with the results obtained with our algorithm using a scaling param-
eter ρ = 1 and a tolerance equal to 10−4.
Figure 2a depicts the cost of uncertainty, that represent the cost
increase when considering the uncertainty on the wind production,
for the analytical solution and for the two-step ADMM algorithm
when varying the wind forecast error. The cost of uncertainty found
by our algorithm matches well the analytical results, and the rela-
tive error of our results compared to the analytical solution is below
0.1% for all cases. It took 50 iterations for the ADMM algorithm
to solve the OPF and between 57 and 59 iterations (i.e. depending
on the particular wind forecast error) to find the solutions of the
CCOPF, which shows that the addition of the chance constraints
do not increase significantly the number of iterations needed.

Figure 2b depicts the generation of both generators and the
margin of line L1. We observe that when the uncertainty grows, the
margin needed increases and thus the power generation is more
and more scheduled on generator G2 which increases the cost of
operations.

Gen. p̄ p β γ
(MW) (MW) ($ /MWh2) ($ / MWh)

G1 332.4 0 0.043 20
G2 140 0 0.25 20
G5 100 0 0.01 40

Table 1: Generators parameters used in the IEEE 14-bus test
system.

B.2 IEEE 14-bus test system
This section tests the performance of the proposed algorithm on the
IEEE-14-bus test system with the transmission data from the Power
System Test Case Archive 4, where we replace the generators on
bus 3 (G3) and on bus 6 (G4) by identical wind farms. The system,
represented in Figure 1b, is composed of 11 loads, 20 lines, 3 con-
ventional generators and 2 wind farms. We completed the model
by setting the line capacity limits to 50MW, except for lines 1-2, 1-5,
2-3, 7-8 and 7-9 that were set to 110MW because those lines carry
most of the power of the system. Table 1 details the parameters used
for the different generators. We compare the results obtained with
our algorithm with the solution found by a centralized solver using
MATLAB [15] and CVX a package for solving convex programs
[5, 6]. Depending on the step of the algorithm, we use different
scaling parameters but we set for all ADMM processes a tolerance
equal to 10−4.

As the first substep s1.1 of the algorithm, agents compute the
equivalent speed droop of the system distributedly, in 25 iterations,
via the Push-Sum algorithm. In the substep s1.2, agents run ADMM
to calculate an optimal power flow in a distributed manner. This
initial feasible point was found in 761 iterations with a scaling
parameter ρ = 1. This solution is then reused by agents as a warm
start to solve the scenarios in which the wind farms deviate (substep
s1.3), i.e. the power flow variables are initialized to the previously
calculated solution. With two wind farms, this means to solve two
power flows with deviations of the power injection schedule ruled
by a shift of a wind farm and the primary frequency control. Solving
these two scenarios in parallel by ADMM with a scaling parameter
set to ρ = 10−2 took 556 iterations until convergence.

Hence, it took a total of 1342 iterations for the agents to compute
the GGDF in a distributed manner. The results of the first step of
the proposed algorithm are summarized and compared in Figure 3.
We compare the GGDF obtained, for each wind farm (G3 and G4)
and at each line, from our distributed algorithm with those from
the reference calculated in a centralized manner. The lines most
impacted by generatorG3 are lines 1-2, 2-3 and 3-4, when the most
impacted by G4 are lines 1-2, 5-6 and 7-9, then these lines see their
capacity shrinks more than the other lines of the system when the
uncertainty grows.
Note that this first step needs to be computed again only if the
generators connected or the topology change and that we could
have used a previous power flow solution instead of running an
OPF in substep s1.2.

4https://www2.ee.washington.edu/research/pstca/
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Figure 3: IEEE 14-bus GGDF and relative error compared to centralized calculation.

(a) Comparison of theoretical results and via our method based on ADMM.

(b) Percentage error compare to theory.

(c) Iterations needed to reach convergence.

Figure 4: Results on the 14-bus test system.

Finally, for the second step of the algorithm we perform sim-
ulations with different wind penetrations levels (the term wind
penetration level is defined here as the ratio of the wind production
and the total consumption of the system) and with different wind
forecast errors. In particular, we used 10%, 20%, 30% and 40% wind
penetration levels and we vary the percentage forecast error be-
tween 0% (no forecast error, i.e. OPF) and 40% The scaling parameter
for ADMM in this case was set to ρ = 10.
We present the cost of uncertainty, in Figure 4a, defined as the
cost increase in percentage of the OPF solution, for each wind
penetration level and for different forecast errors. Observe that as
the forecast error grows, the margin and reserves needed increase
which leads to higher costs. Under a wind penetration level as low
as 10%, the impact of the uncertainty on the cost of operation is
limited, even with a 40% forecast error does not exceed 1.4%. How-
ever, with high wind penetration and a forecast error of 40%, the
cost of security goes up to 11% of the OPF cost of operation.

Figure 4b presents the relative error of our simulation compared
to the reference. The error is below 0.2% and is more conserva-
tive than the reference for wind penetration below 40%. For the
case with a wind penetration of 40%, the underestimation can be
explained by the fact that, depending on the wind penetration, dif-
ferent constraints imposes the power injection schedule. In the 40%
wind penetration case, line 4-5 is the limiting line and this line
GGDF is underestimated compared to the reference for generator
G4.
Finally, the number of iterations for each case is presented in Figure
4c. The number of iterations needed does not vary significantly and
is not greater than the number of iterations to solve the optimal
power flow (the OPF is 0% forecast error).
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