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Abstract

This paper presents first comparisons of numerical gyrokinetic simulations with analytical theory
to take into account the role of kinetic electrons in the damping rate of Geodesic Accoustic Modes
(GAMs).
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1. Introduction

Zonal Flows (ZFs) and their oscillatory component, the so-called Geodesic Acoustic Mode
(GAMs), play an important role in the saturation of turbulence in tokamaks. Zonal flows are
an essential element to both predict and limit turbulent transport level. In 1998, Rosenbluth
and Hinton [22] showed that Zonal Flows are not damped in the absence of collisions and gave an
analytical estimation of the residual value for the particular case of single ion species with adiabatic
electrons. GAMs have a finite frequency of the order of ion accoustic frequency. Contrary to ZFs,
they can be damped by ion Landau damping, i.e via collisionless wave-particle resonance. The
kinetic theory of GAMs in toroidal plasmas is well documented (see for instance [29, 25, 21] and
a brief review in [20]). Analytical results have been widely compared with simulation results to
validate the correct treatment of GAM and ZF time evolution in adiabatic electron versions of
gyrokinetic codes (see for instance the benchmark done in [1] for ORB5 [16, 3, 2], GENE [8, 9] and
GYSELA [11, 10] European codes). Until very recently there was no available theory to compute the
contribution of kinetic electrons to GAM frequency and damping rate, except one model proposed
for passing electrons [26]. It was numerically found that considering kinetic electrons do not really
change the residual flow and collisionless frequency of GAM [5] but the damping rate is significantly
enhanced by trapped kinetic electrons in regions of the tokamak where the safety factor is high
([28] with GTC [17, 13] code). Similar results have been also recovered in [14] with GT5D [15] code
and in [1] with ORB5 and GENE codes. An effort to provide scaling formulae for GAM frequency
and damping rate has been done [19] with ORB5 simulations.
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An analytical estimate of the kinetic electrons contribution to GAM damping has been very re-
cently proposed by C. Ehrlacher and al. [7]. In this analytical study, based on a variational formula-
tion (close to the one previously used to study EGAMs [27]), it appears that barely trapped/passing
electrons enhance GAM damping, while affecting weakly the real part of the GAM pulsation. In this
paper we compare these analytical results to the numerical ones obtained with the semi-Lagrangian
code GYSELA.

The reminder of this paper is organized as follows. In section 2, the analytical estimate of the
GAM damping due to kinetic electrons used in this paper for comparison with numerical results
is summarized. The global full-f gyrokinetic equations with kinetic electrons used in GYSELA
code are described in section 3. Numerical results exhibiting variations of the GAM damping rate
and frequency according to the ion to electron mass ratio, the electron to ion temperature ratio,
the safety factor and the aspect ratio are compared to analytical results in section 4. Finally, a
conclusion is given in section 5.

2. Analytical estimate of the GAM damping due to electrons

Let us consider a simplified geometry of circular concentric magnetic surfaces, labeled by their
minor radius r in the toroidal coordinates (r, θ, ϕ). The angles (θ, ϕ) are the poloidal and toroidal
angles. The GAM electric potential φ can be expanded in Fourier series with respect to the poloidal
angle and minor radius

φω(r, θ) =
+∞∑

m=−∞

∫ ∞
−∞

dkr
2π

φ̃mω(kr)e
i(krr+mθ) (1)

where the Fourier components φ̃mω(kr) are determined by initial conditions. Contrary to the GAM
pulsation, which is not much changed whether electrons are considered adiabatic or kinetic, numer-
ical simulations have shown that the GAM damping could greatly depend on the kinetic response
of electrons [28] and [19]. This has been recently confirmed by an analytical derivation of the
total dispersion relation with electrons in [7]. This derivation was performed via the computa-
tion of the exchange of energy between the mode and electrons. The dispersion relation leads to
L̄ = L̄i + L̄e = 0, where the ion contribution L̄i is equivalent to that found in Sugama-Watanabe
[25], namely:
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with q the safety factor, τe = Te/Ti the electron to ion temperature ratio and where Ω is the
frequency normalized to the sound frequency, namely Ω = ωR/vT i with vT i the thermal velocity
vT i =

√
Ti/mi. The functions Λ1 and Λ2 are respectively defined as
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The contribution of kinetic electrons L̄e in the dispersion relation (derived in [7]) appears to be
purely imaginary, so that it only affects the damping rate of GAMs, and not their real frequency,
consistently with numerical findings. It is expressed as

L̄e = ik2
rρ
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with me/mi the electron to ion mass ratio.
Further notice that L̄e is the same positive sign as the imaginary part of L̄i. Consequently, one

can already predict that kinetic electron effects will amplify the damping of GAMs due to ions. In
the limit of large aspect ratio G is given by
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√
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0
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where θ0 is the poloidal angle at the turning point (θ0 = π for passing particles) and
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with ε the inverse of the aspect ratio and K the complete elliptical function of the first kind. The
function η1 (q, τe) is given by
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[
1 +

2 + τe
q2Ω2

+ o

(
1

q4Ω4

)]
τe
Ω
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The dimensionless parameter σ∗, defined as

σ∗ =

(
me

miτe

)1/2 q

ε1/2
Ω (9)

characterizes the resonance of a GAM with barely trapped/passing electrons. The form factor
D(σ∗) measures the weight of the region in the phase space where σ∗τ(κ)Λ1/2(κ)/v > 1, i.e. the
number of near resonant particles. Normalisations are such that D(σ∗) = 1 when bounce points
of trapped electrons play a prominent role in the electron contribution. In the most general case,
one expects that D(σ∗) ≤ 1.

Figure 1 shows a good agreement of GYSELA simulations with these theoretical resonant
curves. As described in [7], considering that Λ(κ) is smooth near κ = 1 with Λ(1) = 1; using the
fact that a numerical estimate of G(ε) gives G(ε) ' 0.63 + 0.60ε in the range ε < 0.3 and using a
perturbative calculation, a rough estimate of the normalized damping rate due to electrons can be
expressed as
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with vT i the ion thermal velocity. The GAM frequency Ω0 (solution of Re(L̄) = 0) is a function of
q and τe. For comparison with numerical results which follows this value is taken as the numerical
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Figure 1: Contour plot of the resonant curves σ∗τ(κ)Λ1/2(κ) = n2v (magenta lines) with the simulation results of
δfe/fe0 (fe being the electron distribution function) in (v‖, µ) space for two simulation times : (left) t = 5000Ωc0 and
(right) t = 10000Ωc0 . White dotted line (corresponding to 1

2
v2
‖ = µ(Bmax − B(r, θ)) delimit the trapping domain.

Simulation parameters are equivalent to Table 2 except for the mesh discretization which is finer in velocity space,
namely (Nv‖ , Nµ) = (1024, 64).

frequency given by the gyrokinetic simulations. As proposed in the following (see sections 4.3, 4.4
and 4.5), a way to validate this analytical expression Eq.(10) is to perform first a scan on one
parameter among mi/me, τe or q to determine the unknown weight function D(σ∗) ≤ 1 and then
to check the dependency on other parameters .

3. Gyrokinetic models

3.1. GYSELA gyrokinetic global full-f model

The gyrokinetic global full-f model implemented in GYSELA code is briefly described in this
section. It has the particularity to be based on an semi-Lagrangian scheme [24]. A complete
description of the code both in terms of numerics and high performance computing can be found in
the paper [10] as reference. Let us consider the gyro-center coordinate system (xG, v‖, µs; t) where
xG corresponds to the 3D toroidal space coordinates, i.e xG = (r, θ, ϕ) with r the radial position, θ
the poloidal angle and ϕ toroidal angle. (v‖, µs) corresponds to the 2D velocity space where v‖ is the
velocity parallel to the magnetic field B and µs = msv

2
⊥/(2B) is the magnetic moment where v⊥ is

the velocity in the perpendicular direction to B. ms is the mass of species s. The magnetic topology
is fixed and consists of concentric toroidal magnetic surfaces with circular poloidal cross-sections.
Therefore, the magnetic field B is defined as B = (B0R0/R) [ζ(r)eθ + eϕ] with R(r, θ) = R0+r cos θ
the major radius and ζ(r) = r/(qR0) with q(r) the safety factor. B0 and R0 respectively correspond
to the magnetic field and the major radius of the torus, both at the magnetic axis. The vectors
eθ = r∇∇∇θ and eϕ = R∇∇∇ϕ are the unit vectors in the poloidal and toroidal periodic directions,
respectively. Regarding the current, it is decoupled from the field and the magnetic field is assumed
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to satisfy the Ampere’s equation, but not the force balance equation. Then Ampere’s law leads to

a current of the form µ0J = µ0JTR∇∇∇ϕ with µ0JT = B0R0
R

ζ
r

(
1 + r

ζ
dζ
dr −

r
R cos θ

)
.

Let Fs(xG, v‖, µs; t) be the particle distribution function of species s at time t and F̄s the one
associated to the guiding-centers. The global gyrokinetic code GYSELA models for each species
s, the time evolution of the guiding-center distribution function F̄s, with no separation between
equilibrium and perturbation. The non-linear time evolution of F̄s is governed by the 5D collisional
gyrokinetic equation described by Brizard and Hahm [4]

B∗‖s
∂F̄s
∂t

+∇∇∇ ·
(
B∗‖s

dxG
dt

F̄s

)
+

∂

∂v‖
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dv‖

dt
F̄s

)
= B∗‖s

(∑
s′

C(F̄s, F̄s′) + S∫

)
(11)

For more details on the multi-species collision operator C(F̄s, F̄s′) including accurate treatment of
ion-electron collisions see [6]. Source term S∫ description can be found in [23, 10]. In the present
paper we only consider non collisional simulations without sources. The evolution of the gyro-center
coordinates of species s is described by:

dxiG
dt
≡ v‖b∗s · ∇∇∇xiG + vE×Bs · ∇∇∇xiG + vDs · ∇∇∇xiG (12)
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≡ 1
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where b∗s is defined as

b∗s =
B

B∗‖s
+
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qsB∗‖sB
∇∇∇×B (14)

with B∗‖s = B∗s · b and B∗s given by B∗s ≡ B + ms
qs
v‖∇∇∇× b, b = B/‖B‖ being the unit vector along

the magnetic field line at the guiding-center position. The i-th contravariant components of the
‘E×B’ drift and of the ‘grad–B’ and ‘curvature’ drifts read

vE×Bs · ∇∇∇xiG =
1

B∗‖s

[
φ̄, xiG

]
; vDs · ∇∇∇xiG =

(
msv

2
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)[
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with the Poisson Bracket [F,G] = b · (∇∇∇F ×∇∇∇G). φ̄ = Jµs .φ is the gyro-average of the fluctuating

electrostatic potential φ, i.e Jµs .φ =
∮ 2π

0 φdϕcs
2π , where ϕcs stands for the cyclotron phase. The

gyrokinetic equation Eq.(11) is self-consistently coupled to a quasi-neutrality equation whose ex-
pression depends on the numerical treatment of electrons. Until recently, electrons were assumed
adiabatic in GYSELA code. There exist now two new models for electron treatment: (i) the first
one where all electrons are treated kinetically (called “full kinetic electron” (FKE) model) and (ii)
the second one where only trapped electrons are considered kinetic while passing electrons are still
assumed adiabatic (called “trapped kinetic electron” (TKE)). For both models, the full-f gyroki-
netic equation Eq.(11) is solved for all electrons with no distinction between trapped and passing
particles. In this paper we use the FKE model, therefore the quasi-neutrality equation reads∑

i

Zi (nGi + npol,i) = nGe + npol,e (16)

where the gyrocentre and polarization densities are defined, respectively, by

nGs =

∫
dv Jµs .δF̄s ; npol,s =∇∇∇⊥ ·

(
ns0
B0Ωs

∇∇∇⊥φ
)

(17)
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Note that, for real-mass electrons, both the gyro-average and the polarization density can be
neglected for electrons. The GYSELA code is written in SI units and uses a thermal energy scale
in electron volts (1eV = 1.6022 10−19J). The four fundamental dimensional normalizing quantities
are: a reference ionic mass m0 = A0mp (kilogram), a reference ionic charge q0 = Z0e (Coulomb), a
reference magnetic induction B0 (Tesla) and a reference thermal energy T0 (eV ). Here, A0 and Z0

are the (dimensionless) mass number and charge state of the Hydrogen and e the modulus of the
electron charge. The reference ion cyclotron frequency Ωc0 , the reference thermal speed vT0 and
the reference Larmor-radius ρ0 are defined as Ωc0 = Z0 eB0/m0, vT0 =

√
T0/m0 and ρ0 = vT0/Ωc0 .

Then, the normalized quantities used in the code (denoted with a hat symbol) are the following:
As = A0Âs with ms = m0Âs, qs = Z0 e Ẑs, l = ρ0 l̂, t = t̂/Ωc0 , B = B0B̂, Ts = T0T̂s, vs = vTs0 v̂s

with vTs0 = vT0/
√
Âs, µs = (T0/B0)µ̂s and φ = (T0/Z0e)φ̂ with ms, qs, Ts, vs, µs being respectively

the mass, charge, temperature, velocities and magnetic momentum associated to species s while l
and t denote length and time.

4. Numerical results for Rosenbluth-Hinton simulations

The so-called “Rosenbluth-Hinton test”–which became an inescapable test for gyrokinetic codes
to check the validity of ZFs and GAMs treatment– was firstly verified in 2008 for the GYSELA
code. It consists in computing the linear evolution of the zonal flow component φ00 for an initial
electrostatic perturbation. This initial state leads to the development of GAMs which correspond
to the (m,n) = (0, 0) mode coupled to side-bands (m,n) = (±1, 0) as a result of toroidal coupling.
These GAMS are Landau-damped because of the finite poloidal wave-number of the side-band
while the zonal flows relax towards a residual value which has been analytically predicted in the
case of large aspect ratio and small ρ∗ in [12].

4.1. Numerical parameters

Numerical parameters for all the following simulations are the same as those used in [1] for
previous cross-code benchmark performed between GYSELA, ORB5 and GENE codes on the
linear collisionless dynamics of the GAM. Namely for all GYSELA simulations, the value of ρ∗ =
ρs/a is chosen as ρ∗ = 1/160 (taken at the magnetic axis). The 3D toroidal space (r, θ, ϕ) is
defined as 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ 2π. The velocity phase space is given by
−nbvmaxvTs0 ≤ v‖ ≤ nbvmaxvTs0 with nbvmax = 7 and 0 ≤ µ ≤ µmaxT0/B0 with µmax = 12. The

radial density profile is defined by its gradient as d log ns0(r)/dr = −κns0 cosh−2 ((r − rpeak)/∆rns0)
with rpeak the radial position of maximum gradients, namely the middle of the simulation box here
(i.e rpeak = 0.5(rmax − rmin)). The same analytical expression is used for the temperature with
κTs0 and ∆rTs0 . Density and temperature shapes are chosen the same for both ions and electrons
and quasi-constant with κns0 = κTs0 = 10−7, ∆rns0 = 0.2 and ∆rTs0 = 0.1. The ion charge Zi
(resp. electron charge Ze) is equal to Zi = 1 (resp. Ze = −1). The remaining parameters are
scanned in the simulations presented in the following. In the following, the so-called “standard
case” corresponds to the following set of parameters: (i) the ion to electron mass ratio is equal to
mi/me = 1600, (ii) the electron to ion temperature ratio τe = Te/Ti is fixed to 1, (iii) the safety
factor profile is flat with q(r) = 3.5 and (iv) the inverse of aspect ratio ε = a/R0 is chosen as ε = 0.1.
In practice, in gyrokinetic codes, the Rosenbluth-Hinton (R-H) test corresponds to initializing the
distribution function F̄s as a Maxwellian distribution only perturbed by a zonal component (i.e
independent of the poloidal and toroidal angle) generating a scalar potential φ with a sine (or
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more rarely a cosine) dependence on the radius r. One of the difficulties of R-H tests for global
codes (compared to local ones) is to preserve the radial initial structure of the zonal component
in time. As described in [1], for GYSELA code the cosine structure φ(r, t = 0) = 1 − cos(krr)
is preferred because more stable in time (see time evolution in Figure 2) than the standard one
φ(r, t = 0) = sin(krr). So the distribution function is initialized as F̄s = F̄s,eq(1 + ε0(1− cos(krr))
with krρs = 2πρ∗ ' 0.039 and a perturbation amplitude ε0 equal to 10−7 in this paper. For

Figure 2: Radial structure of the electrostatic po-
tential φ at different simulation times for a GY-
SELA simulation with parameters given in Table 2.
krρi ' 0.039 is almost preserved between initial time
(black line) and final time t = 24800Ωc0 .

Figure 3: Time evolution of the five Fourier modes
of the electrostatic potential φ̃m0(r = 0.5a, t) with
m = {0, 1, 2, 3, 4} for a simulation which parameters
are described in Table 2.

the following the damping rate will be approximated by the slope of the best fitting line of the
maximum values of log(φ(rp, t) − 〈φ00〉r(t)) with 〈·〉r the radial average (see Figure 4 (a) for an
example with the previous reference parameters). The frequency amplitude will be approximated
by the maximum value of the Fourier transform in time of φ(rp, t) (see Figure 4 (b)). Finally,
the time evolution of the five Fourier modes of the electrostatic potential φm0(r = 0.5a, t) for
m = {0, 1, 2, 3, 4} is plotted in Figure 3. This confirms that conserving only the first harmonics
m = 0,±1 of the potential in the analytical derivation in [7] to obtain the simplified analytical
expression (5) is licit. Indeed, as already found analytically (cf. Appendix C of Nguyen’s thesis
[18] or [25]) we recover that φ̃mω(kr) scales approximately as (−ikrρi)mφ̃0ω.

4.2. Convergence tests

Convergence tests in space and time have already been performed with the GYSELA code in
the case of adiabatic electrons in [11]. Let Nx be the number of points in x direction, then it
appeared that the best compromise is a 5D mesh (Nr, Nθ, Nϕ, Nv‖ , Nµ) = (64, 64, 8, 128, 8) with a
time step Ωc0∆t = 25. Knowing that fully kinetic electrons simulations are more demanding in
terms of mesh and time discretization, the same kind of convergence study has been completed for
a relatively large mass ratio mi/me = 1600. At such mass ratio, previous simulations have shown
that a time discretization equal to ∆t = 0.5Ω−1

c0 is reasonable. So ∆t is fixed at this value for the
whole convergence study. As for adiabatic electrons, the number of toroidal points Nϕ is fixed to
Nϕ = 8 due to the toroidal axisymmetry of the test. Finally, the convergence study consists in
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(a) (b)

Figure 4: Simulation results for numerical parameters given in Table 2: (a) Time evolution of log(φ(rp, t)−〈φ00〉r(t))
(rp = 0.5a) with an approximate value of the damping rate γΩ−1

c0 ' 4.4 1e−5 given by the slope of the red line ; (b)
Fourier transform in time of φ(rp, t) which gives an approximation of the GAM frequency equal to ωΩ−1

c0 ' 0.0015.

13 simulations where the 4 mesh discretization parameters (Nr, Nθ, Nv‖ , Nµ) vary. The results for
damping rate γGAM, frequency ωGAM and time average of krρi are summarized in Table 1. Each
simulation corresponds to 60000 iterations, so these three quantities are computed from initial
time t = 0 to final time t = 30000 Ω−1

c0 . All simulations have been performed on Skylake partition
of Marconi supercomputer (CINECA/Bologna) with 24 threads and Nµ MPI process (see [11] for
detailed OpenMP/MPI parallelization of the code). The poloidal discretization is almost always
the same for all simulations: (Nr, Nθ) = (64, 128) except one with (Nr, Nθ) = (128, 256). Indeed,
by comparing simulations 7 and 13 in Table 1, we see that increasing the number of points by a
factor 2 in both directions r and θ does not change significantly the γGAM value. So more attention
is paid to the velocity phase space discretization where Nv‖ varies in power of 2 from 128 to 1024
and Nµ from 32 to 128. With a mean value equal to 〈ωGAM〉 ' 0.001524 and a standard deviation
σ(ωGAM) = 4.2 e−6, the frequency is not affected by the mesh discretization. In the same way,
the time average of krρi is almost unchanged (mean value: 0.03908, standard deviation: 8.3 e−5).
Conversely as expected, the damping rate is more affected. It seems more sensitive to the number
of points in v‖ direction. Indeed, independently of the number of points in µ direction, γGAM is
40% larger with Nv‖ = 128 than with Nv‖ ≥ 512. From this analysis, we consider that using a
5D mesh of (Nr, Nθ, Nϕ, Nv‖ , Nµ) = (64, 128, 8, 512, 64) is a good compromise between accuracy
and CPU cost. Thus, all following simulations are performed with such a mesh of 2.14 billions of
points, requiring ∼ 150k hours/monoprocessor for 60k iterations. The main parameters of what
will be called in the following standard R-H case are summarized in Table 2.

4.3. Dependency on the ion to electron mass ratio mi/me

Previous simulations performed both with ORB5 and GENE codes indicate that the damping
rate due to trapped electrons scales as (me/mi)

1/2 [1]. This suggests that D(σ∗) is constant and
close to D(σ∗) ' 1.0. Such a scan in mi/me (varying from mi/me = 100 to the more realistic
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CPU time

simu. Nr Nθ Nv‖ Nµ γGAM(
√

2vT i/R) ωGAM(
√

2vT i/R) 〈krρi〉t (h./monoproc.)

1 64 128 128 32 -0.00002541001 0.00153248422 0.03906082336 16184.26
2 64 128 255 32 -0.00003999614 0.00152071958 0.03906082032 38375.69
3 64 128 512 32 -0.00004367136 0.00152256142 0.03906082012 76835.65
4 64 128 1024 32 -0.00004360795 0.00152256142 0.03906082011 156134.16
5 64 128 128 64 -0.00002620166 0.00153093312 0.03906082331 32985.67
6 64 128 255 64 -0.00003985935 0.00152071958 0.03906082026 78809.84
7 64 128 512 64 -0.00004371152 0.00152256142 0.03906082006 156300.98
8 64 128 1024 64 -0.00004401435 0.00152256142 0.03906082005 317991.70
9 64 128 128 128 -0.00002619368 0.00153093312 0.03906082328 70301.22
10 64 128 255 128 -0.00003986099 0.00152071958 0.03906082023 158906.56
11 64 128 512 128 -0.00004381998 0.00152256142 0.03906082003 315340.87
12 64 128 1024 128 -0.00004400764 0.00152256142 0.03906082002 639803.72
13 128 256 512 64 -0.00004309582 0.00152412071 0.03936013940 406066.57

Table 1: Values of numerical damping γGAM, frequency ωGAM and time average 〈krρi〉t for 13 R-H simulations with
GYSELA code (using reference parameter defined in section 4.1, i.e ρ∗ = 1/160, ε = 0.1, q = 3.5, mi/me = 1600
and τe = 1) varying according to the 4 mesh discretization (Nr, Nθ, Nv‖ , Nµ) while Nϕ is fixed to Nϕ = 8. The

time discretization is also a fixed parameter such as ∆t = 0.5Ω−1
c0 . The last column corresponds to CPU time in

hours/monoprocessor per simulation on Marconi Skylake partition.

ρ∗ ε0 = a/R0 Zi Ze Ai Ai/Ae q(r) τe = Te/Ti κns0 ∆rns0 κTs0 ∆rTs0
1/160 0.1 1 −1 1. 1600. 3.5 1. 1.e−7 0.2 1.e−7 0.1

Lr Lθ Lϕ nbvmax µmax Nr Nθ Nϕ Nv‖ Nµ Ωc0∆t

1/ρ∗ 2π 2π 7. 12. 64 128 8 512 64 0.5

Table 2: Standard parameters for Rosenbluth-Hinton test with fully kinetic electrons in GYSELA code. The 3D
(r, θ, ϕ) phase space is defined as 0 ≤ r ≤ Lrρ

−1
0 , 0 ≤ θ ≤ Lθ and 0 ≤ ϕ ≤ Lϕ. The velocity phase space is defined

by −nbvmaxvTs0 ≤ v‖ ≤ nbvmaxvTs0 and 0 ≤ µ ≤ µmaxT0/B0. The safety factor radial profile q(r) is constant. The
radial density and temperature shapes are the same for both ions and electrons and defined by their gradients as
d log ys0(r)/dr = −κys0 cosh−2 ((r − rpeak)/∆rys0) with y = {n, T} and rpeak = 0.5(rmax − rmin).
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value 3200) has been performed with GYSELA code and compared to the analytical result of the

damping rate due to kinetic electrons given by (γelec = − Im(L̄e)
Re(L̄)Ω=Ω0

) as derived in Eq.(10) assuming

D(σ∗) = 1

γelec (R0 2−1/2v−1
T i ) '

√
2(0.315 + 0.3ε)

(
1 + (2 + τe)/(q

2Ω2
0)
)2
qτ1/2
e (me/mi)

1/2 (18)

For these simulations all the parameters are the same as those given in Table 2 except that the
discretization time step is adapted according to the mass ratio: Ωc0∆t = 2.0 for mi/me = 100,
Ωc0∆t = 1.0 for mi/me = {200, 400}, Ωc0∆t = 0.5 for mi/me ∈ [800, 1600] and Ωc0∆t = 0.25 for
mi/me = {2000, 3200}. Numerical results presented in Figure 5 show a good agreement between

(a) (b)

Figure 5: Damping rate (a) and frequency amplitude (b) of the radial electric field versus mi/me measured with
GYSELA code (blue line) and compared to ORB5 (green triangles) and GENE (red stars) codes published in [1].
The dotted magenta line in (a) corresponds to the analytical expression of γ given by Eq.(18).

the three codes both for damping rate and frequency. On the same Figure 5 (a), we can also see a
fairly good agreement amongst numerical damping rates and analytical prediction formi/me ≥ 400.
The deviation observed for smaller (less realistic) mass ratio is due to the limit of validity of the
theory in this region. Indeed, at small ion to electron mass ratio it seems that most resonant
particles are passing particles (see Figure 6 for mi/me = 100). At time t = 5000Ωc0 (Fig 6
(left)), most resonant particles are outside the trapping domain (region inside the white dotted
line corresponding to 1

2v
2
‖ = µ(Bmax − B(r, θ)) on the figure). This is even more evident at later

time t = 15000Ωc0 (see Figure 6 (right)). These results can be compared with what was previoulsy
obtained for mi/me = 1600 on Figure 1. In this situation where passing particles play the main
role, the analytical expression proposed in [7] –which considers that bounce integrals are dominated
by locations where particles slow down or bounce back (turning points)– is no more valid. With
such parameters, the required condition σ∗ < 1 is no more satisfied (i.e σ∗ ' 3.5

√
0.01 1.7√

0.1
= 1.88

for mi/me = 100) and D(σ∗) is no more equal to 1. The numerical curve is below the theoretical
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one. This observation is in qualitative agreement with the theory which states that D(σ∗) ≤ 1 in
this regime. Finally, we can also notice that the present simulation with smaller mass ratio requires
less discretization in velocity space. For Figure 6, (Nv‖ , Nµ) = (512, 64) are sufficient while twice
more points are required in v‖ direction for previous Figure 1.

Figure 6: Contour plot of the resonant curves σ∗τ(κ)Λ1/2(κ) = n2v (magenta lines) compared to simulation results
of δfe/fe0 (fe being the electron distribution function) in (v‖, µ) space for two simulation times : (left) t = 5000Ωc0
and (right) t = 15000Ωc0 . White dotted line (corresponding to 1

2
v2
‖ = µ(Bmax−B(r, θ)) delimit the trapping domain.

Simulation parameters correspond to Table 2 with mi/me = 100.

4.4. Dependency on the electron to ion temperature ratio τe = Te/Ti

The results in previous section consolidate the dependency of the damping rate with respect

to (mi/me)
−1/2. We perform now a scan in τe = Te/Ti to see if the variation in τ

1/2
e is recovered.

For this, four simulations based on the parameters given in Table 2 are run by varying τe from
0.25 to 3.0 values. The ion temperature profile Ti(r) is fixed for the four simulations while the
electron temperature profile varies. Namely, Te(r) is chosen homothetic to Ti(r) (i.e κTe0 = κT i0
and ∆rTe0 = ∆rT i0) and such that Te(r) = τeTi(r). Results in Figure 7 exhibit a good agreement
between numerical damping rate and its analytical expression Eq.(18), especially for τe ∈ [0.5, 2].
As already pointed out by previous simulations [5], we recover that the GAM frequency is not
affected by non adiabatic electrons. Indeed, in Figure 7 (b) the GAM frequency is in excellent
agreement with Sugama-Watanabe [25] prediction –where electron contribution is not taken into
account– given by

ω2
GAM =

(
7 + 4τe

2

)(
1 +

23 + 16τe + 4τ2
e

q2 (7 + 4τe)
2

)
(19)

4.5. Dependency on the safety factor q

In this section, we perform a scan in q for fully kinetic electrons (FKE) GYSELA simulations
with the same parameters as previously (see Table 2) where only the safety factor value is changed

11



(a) (b)

Figure 7: Damping rate (a) and frequency amplitude (b) of the radial electric field versus τe measured with GYSELA
code (blue line). The dotted magenta line in (a) corresponds to the analytical expression of γ given by Eq.(18) while
the dotted green line in (b) is the analytical prediction given by Sugama & Watanabe in [25].

q = [1.5, 2, 3, 3.5, 4, 5]. The results for the GAM damping rate (blue solid line) are reported and
compared with analytical expressions (dotted lines) in Figure 9. There are two different regions
depending on wether the safety factor is smaller or larger than q = 3.5. For q values larger
than 3.5, the trend is close to the analytical expression but the agreement is better if D(σ∗) is
taken equal to 0.94 in Equation (10) (red dotted line in Fig. 9) instead of D(σ∗) = 1 (magenta
dotted line in Fig. 9) as assumed until now. For q values smaller than 3.5, there is no match
between theory and simulation. This is expected since at low q values, the damping due to ions
is no longer negligible. Indeed, if we compare these simulations (GYSELA FKE: blue points in
Fig. 8 (a)) with the six same simulations but where electrons are assumed adiabatic (GYSELA
AE: red points in Fig. 8 (a)) we observe that the ratio of the GAM damping rate between FKE
and AE simulations varies from a few units for q ≤ 2 to a few tens for larger safety factors
(γFKE

GAM/γ
AE
GAM ' [2.33, 3.1, 6.89, 14.0, 31.27, 64.73] for q = [1.5, 2, 3, 3.5, 4, 5]). Pursuing this idea,

if we subtract the contribution of ions –given by the adiabatic electrons simulations– to the fully
kinetic electron simulations we see (black points in Figure 9) that the agreement with the analytical
expression is clearly improved for 2 < q ≤ 5 with a deviation of 6%. For q smaller than 2 we meet
the same limitations as the ones observed for analytical/simulation comparisons in the case of
adiabatic electrons (see Fig. 3 in Biancalani’s paper [1]). The differences between the GYSELA
simulations with adiabatic electrons performed in paper [1] and the ones plotted in Figure 8 only
deal with the adopted mesh sizes: the (r, θ, ϕ) mesh is coarser in present GYSELA simulations,
while the mesh is finer in the velocity space. Therefore, the deviation of the numerical values
to Equation (10) for q < 2 could be partly explained by the deviation already observed with
Sugama-Watanabe damping rate estimation [25] in the case of adiabatic electrons.

Finally, let us notice that we recover once again (see Figure 8 (b)) the fact that the GAM
frequency is not affected by electrons. Indeed, results between GYSELA fully kinetic electron
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simulations (blue solide line) and adiabatic electron simulations (red solid line) are much the same
and comparable to Sugama-Watanabe expression [25] (green dotted line).

(a) (b)

Figure 8: Damping rate (a) and frequency (b) of the radial electric field versus the safety factor q measured with GY-
SELA code for two types of simulations: adiabatic electrons (GYSELA AE-red line) and kinetic electrons (GYSELA
FKE-blue line). The dotted green lines correspond to the explicit formulas of the damping rate and the frequency
given by Sugama and Watanabe in [25] (see Eq. (19)).

4.6. Dependency on aspect ratio

Finally, a last scan in aspect ratio A is done. For this, the same parameters (Table 2) are used
except the aspect ratio which varies from 4. to 10. with a step of 2. We should point out that we
have faced some difficulties with the smallest aspect ratio 4 and 6. The reason is not clear but these
two simulations were not possible without decreasing the time step by a factor 2., i.e ∆t = 0.25Ω−1

c0 .
The results of the GAM damping rate for these four simulations are summarized in Figure 10. We
see a good agreement for A = 6 and A = 8. Apart from the fact that simulations with small
aspect ratio are difficult to perform, we have to keep in mind that the analytical expression derived
in [7] is only valid for small ε = 1/A. The terms in o(ε2) are neglected. This could explain the
discrepancy observed in Figure 10 for A = 4. The deviation for A = 10 is however less understood.
Concerning the GAM frequency we recover, as predicted by the theoretical expression (19), that it
does not depend on the aspect ratio. For the four GYSELA simulations, ωGAM is quasi-constant
with ωGAM[21/2vTs0/R] = 1.7198 and a standard deviation σ = 0.00374.

5. Conclusion

Numerical simulations based on a “Rosenbluth-Hinton” test [22] have been performed with
the global gyrokinetic code GYSELA including the kinetic treatment of all electrons. Results
are compared with the recent analytical theory derived in [7] showing that the contribution of
electrons to GAM damping in tokamak plasmas is not negligible due to a resonance between barely
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Figure 9: Damping rate of the radial electric field
versus the safety factor q measured with GYSELA
code (blue line). The dotted lines correspond to the
analytical expression of γ given by Eq.(10): with
D(σ∗) = 1 (magenta line) and with D(σ∗) = 0.94
(red line).

Figure 10: Damping rate of the radial electric field
versus aspect ratio measured with GYSELA code
(blue line). The dotted magenta line on the left
graph corresponds to the analytical expression of γ
given by Eq.(18).

trapped/passing electrons bounce/transit frequency and the mode pulsation. These comparisons
show a fair agreement especially in the limit of the validity of the theory where trapped particles are
assumed dominant. The weight function that measures the number of resonant trapped electrons
participating in mode damping is found constant and equal to 1 as expected from theory. Besides, in
accordance with theory and previous numerical simulations it is recovered that the GAM frequency
is weakly affected by the presence of electrons.

Finally we want to point out that the tests proposed in this paper provide an interesting
verification for gyrokinetic codes that deal with non adiabatic electrons.
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