
HAL Id: cea-01896787
https://cea.hal.science/cea-01896787

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Merging the Publish-Subscribe Pattern with the Shared
Memory Paradigm

Loïc Cudennec

To cite this version:
Loïc Cudennec. Merging the Publish-Subscribe Pattern with the Shared Memory Paradigm. Euro-Par
2018: Parallel Processing Workshops, Aug 2018, Turin, Italy. pp.469–480, �10.1007/978-3-030-10549-
5_37�. �cea-01896787�

https://cea.hal.science/cea-01896787
https://hal.archives-ouvertes.fr


Merging the Publish-Subscribe Pattern with the
Shared Memory Paradigm

Löıc Cudennec
[0000−0002−6476−4574]

CEA, LIST,
F-91191, PC 172, Gif-sur-Yvette, France

loic.cudennec@cea.fr

Abstract. Heterogeneous distributed architectures require high-level ab-
stractions to ease the programmability and efficiently manage resources.
Both the publish-subscribe and the shared memory models offer such
abstraction. However they are intended to be used in different applica-
tion contexts. In this paper we propose to merge these two models into a
new one. It benefits from the rigorous cache coherence management of the
shared memory and the ability to cope with dynamic large-scale environ-
ment of the publish-subscribe model. The publish-subscribe mechanisms
have been implemented within a distributed shared memory system and
tested using an heterogeneous micro-server.

Keywords: S-DSM · Publish-Subscribe · Heterogeneous Computing.

1 Introduction

Distributed heterogeneous architectures are considered as a solution for different
computing contexts that provides computational performance while saving the
energy consumption. A mix of high-performance and low-power computing nodes
are used in HPC and data centers, and a mix of low-power processors, specific
accelerators (eg for deep learning), GPUs and FPGAs will be used in future
embedded devices for autonomous vehicles or future industry. As for current
distributed heterogeneous architectures, a part of the main challenges is the
efficient programmability.

In such architectures, memories are physically distributed among the nodes,
which makes the management of data between tasks more complex. For exam-
ple it does not allow regular parallel applications with direct access to shared
data: inter-node access requires explicit message passing from the user, which is
usually addressed using hybrid programming. Distributed shared memory sys-
tems (DSM) offer an abstraction layer by federating memories into a global
logical space. Data management is hidden by the runtime. The shared memory
paradigm is convenient for programming HPC applications with quite a static
topology and regular access patterns. However it is not well adapted to event-
based applications in which volatile tasks get notified whenever an object state
changes.



2 L. Cudennec

Event-based applications are popular in web services, wireless networks and
peer-to-peer (P2P) systems. It can be used to monitor a sensor, the output of a
computation or a decision system. This makes the programming paradigm well
adapted to new fields of computation such as the industry and the automotive
world. The publish-subscribe mechanism relies on a set of mutable objects that
can publish notifications to a set of subscribers. This paradigm fits to dynamic
applications with unexpected and volatile access to shared data. However, what
makes the strength of the paradigm is also a limitation it terms of data coher-
ence management. First, data sharing is usually immutable, meaning that data
is modified by the publisher while the subscribers are read-only. Second, the
protocol is loosely coupled and the data coherence model is very permissive. It
is quite difficult to ensure that the published version read by the subscribers is
the current version in the distributed system, according to the causal model.

Upcoming distributed heterogeneous platforms will also run heterogeneous
applications in terms of programming models. For example we can mix HPC
simulation code with event-based monitoring GUI. In this paper, we propose
to merge the publish-subscribe model with the shared memory model. We start
from an in-house DSM, we extend the API and implement some distributed
mechanisms on the atomic piece of shared data to raise publishing events. We im-
plement a video processing application with the regular shared memory paradigm
and the proposed mixed paradigm. Both implementations are then evaluated on
a Heterogeneous Christmann RECS|Box Antares Microserver.

2 Shared Memory, Synchronization Objects and Events

Shared memory is a convenient programming paradigm in which a set of tasks
can transparently access a set of data. The implementation of such system is
quite straightforward on a physically shared memory but reveals to be complex
on a distributed architecture. Software-Distributed Shared Memory (S-DSM) is
used to federate distributed physical memory and provide a high level of ab-
straction to the application. In a S-DSM, the system is in charge of the location,
the transfer and the management of multiple copies of data. It also provides
objects and primitives to synchronize task execution and concurrent accesses.
DSM in general have been studied since the late eighties to federate computer
memories [12,7,8,14], clusters [1,3,16,17,18] and grids [4].

In a previous work [9], a S-DSM is proposed for heterogeneous distributed ar-
chitectures such as micro-servers. This system allows tasks to allocate and access
memory in a shared logical space. This is a super-peer distributed topology in
which the user code is executed by S-DSM clients, connected to S-DSM servers.
Allocated data can be split into chunks of any size, the atomic piece of data
managed by the S-DSM. While the data is always locally allocated in a contigu-
ous memory space on the clients to allow pointer arithmetic, the corresponding
chunks are not necessarily contiguous in the shared logical space and can also
be managed independently by the S-DSM servers afterwards. Accessing shared
data follows the entry consistency scope paradigm [7]. In this paradigm, access



Publish-Subscribe with Shared Memory 3

must be protected in the user code using 1) the READ or WRITE primitive to
enter the scope and 2) the RELEASE primitive to exit the scope. Outside this
scope, data consistency is not guaranteed. The S-DSM can deploy different data
coherence protocols on different chunks. In this paper we use the home-based
4-state MESI protocol [10], which allows a single writer and multiple readers
(SWMR). The chunk metadata management is distributed among the S-DSM
servers by calculating a modulo on the chunk id.

Fig. 1: Event coding in shared memory. Ap-

plication to the parallel processing of tiles.

As a motivating example, we con-
sider a parallel HPC application as
illustrated in Figure 1. The purpose
is to calculate the sea level for each
time step by applying a wave prop-
agation model. After each iteration,
some specific places on the map are
monitored to detect if there is a threat
to the population. The base map is
represented as a set of chunks in the
shared memory, each chunk covering a
square surface (a tile). Several threads
navigate the chunks to update values.
Some other threads monitor the criti-
cal chunks (represented in red color).
One realistic constraint is that it is
not possible to modify the HPC code
to manage the critical aspect of the

calculation. Instead, we expect a smooth and non-intrusive integration of the
critical code regarding the HPC code.

A first approach is to use one rendez-vous and one monitoring thread per
critical chunk. Each time a HPC thread calculates a critical chunk, it invokes
the corresponding rendez-vous and releases the critical threads. This is a static
approach regarding the number of critical chunks and this requires to modify
the HPC code to invoke rendez-vous. A second approach is based on polling
the critical chunks: a set of monitoring threads continuously access the critical
chunks for new values. It possibly generates useless requests and network activity
in the S-DSM. It is also prone to skipping some updates between two accesses,
unless implementing a dual rendez-vous producer-consumer pattern.

A more elegant approach is to rely on a event-based publish-subscribe (PS)
mechanism. Monitoring threads subscribe to critical chunks and get notified each
time the chunk has been modified. This approach is transparent for the HPC
code and allows dynamic subscription of threads to critical chunks. In this paper,
we propose to design and implement this publish-subscribe mechanism within
the S-DSM runtime.



4 L. Cudennec

3 Event Programming with Memory Chunks

The publish-subscribe paradigm is defined by a set of mutable objects (pub-
lishers) and a set of subscribers. There is a many-to-many relationship between
publishers and subscribers. Each time the mutable object is changed, it publishes
the information to all its subscribers. The information can be a simple notifica-
tion, an update or the complete data. We propose to merge the publish-subscribe
model with the shared memory programming model, with a few modifications to
the user API and the S-DSM runtime. The basic idea is to use chunks as muta-
ble publishing objects and to extend the distributed metadata management for
chunk coherence on the S-DSM servers with publish-subscribe metadata man-
agement. We consider the three following listings.� �

1 void main_publisher () {

2 mychunk = MALLOC(chunkid , size); /* allocate shared data in S-DSM */

3 WRITE(mychunk); /* ask for the write lock */

4 foo(mychunk); /* in this scope it is possible to write chunk */

5 RELEASE(mychunk); /* release the write lock */

6 }� �� �
1 void main_subscriber () {

2 mychunk = LOOKUP(chunkid); /* fetch information about previously allocated chunk */

3 SUBSCRIBE(mychunk , subscriber_handler , parameters);

4 /* subscribe to the chunk with given user handler */

5 }� �� �
1 void subscriber_handler(chunk , parameters) {

2 WRITE(chunk); /* ask for the write lock */

3 foo(chunk , parameters); /* in this scope it is possible to read and write chunk */

4 RELEASE(chunk); /* release the write lock */

5 UNSUBSCRIBE(chunk); /* unsubscribe to the chunk , this handler wont be call */

6 /* afterwards , all publish notifications are discarded , */

7 /* including the RELEASE in this function */

8 }� �
The first listing implements the publisher role. This code only makes use of

regular S-DSM primitives. The publish-subscribe API is used by subscribers, as
presented by the second listing. The subscribe primitive registers a user handler
(a pointer to a local function) and some user parameters to a given chunk. Each
time the chunk is modified -from anywhere in the S-DSM- this handler is called
on the subscribing task. Finally, a handler function example is given in the third
listing. Within the function it is possible to access shared data, subscribe to
other chunks and unsubscribe to any chunk. The same handler function can be
used to subscribe different chunks.

Publish-subscribe events are sequentialized on each client and the correspond-
ing handlers are called in the notification message delivering order. This choice
has several ins and outs. First, the user code is easier to write because there is
no local concurrency to manage. Second, this implies a tight design of the mes-
sage handling in the S-DSM runtime: the main issue being that if a user code
is currently running, and if it waits for a particular message from the S-DSM
servers (eg a read or write acknowledgment message), then it has to postpone
the treatment of this publish notification. The message is then pushed to an
event pending list, to be later replayed. We propose the following task model,
illustrated by the sequence diagram given in Figure 2.



Publish-Subscribe with Shared Memory 5

Fig. 2: Sequence diagram for shared memory access

and publish-subscribe events. S-DSM server can be

replicated.

A user task is defined by
a mandatory main user func-
tion and several optional han-
dler functions. The S-DSM
runtime bootstraps on the
main function. At the end of
this function, it falls back to
the builtin S-DSM client loop
function that waits for incom-
ing events such as publish no-
tifications. If there are mes-
sages postponed in the event
pending list, then they are lo-
cally replayed. If the task has
no active chunk subscriptions,
nor postponed messages in
the pending list, then it effec-
tively terminates.

The PS mechanism can
work in two modes: 1) the
notification mode only trig-
gers a call to the user handler
and 2) the push mode embeds
a chunk update. This second
mode can prefetch data if the
user handler accesses the chunk. In the remaining of this paper we only consider
the notification mode. The PS mechanism is not allowed to by-pass the consis-
tency protocol and it is not possible to access the chunk outside the consistency
scope. PS is a loosely coupled protocol and, for a given chunk, the only causal
dependency between a PS notification and an access to the chunk within the
handler is that the chunk version accessed is greater or equal to the chunk ver-
sion that triggered the publish event. The notification and the shared access are
not atomic, and several writes can occur on the chunk in-between. However, it is
possible to implement a producer-consumer pattern with PS using two chunks
as implemented in the application used for the experiments.

4 Experiments with an Heterogeneous Micro-server

Experiments have been conducted onto a RECS|Box heterogeneous micro-server.
The form factor is a standard 1U rackable server that is composed by a backplane
onto which it is possible to plug computing nodes. Figure 3 presents the micro-
server configuration used for all experiments. Two Intel i7 nodes and two Arm-
based nodes, the latter embedding 4 Cortex A15 processors each. We do not use
the FPGA with Cortex A9 processor. The network is heterogeneous in terms
of latencies and bandwidth. The ethernet interface of Cortex A15 processors is



6 L. Cudennec

implemented over USB with an internal switch within the node to connect the
4 processors. This explains the poor network performances when accessing these
processors. Power consumption is monitored by contacting the remote control
unit using the REST protocol.

Fig. 3: Heterogeneous Christmann

RECS|Box Antares Microserver. La-

tencies are given by Ping and throughputs

by Iperf. If not specified, we assume roughly

the same performances as similar links.

We consider a video processing
application composed by one input
task for video decoding and frame
scheduling, N frame processing tasks,
and one task for video encoding. The
processing tasks perform edge detec-
tion using a 3 ∗ 3 stencil convolu-
tion, followed by line detection us-
ing a hough transform. While the
convolution complexity is constant,
the hough transform complexity is
data-dependent: the complexity dif-
fers from one frame to another. Above
a detection threshold, a pixel is rep-
resented as a sinusoid in the inter-
mediate transformed representation.
In this intermediate representation,
above a second detection threshold, a
pixel is represented as a line in the
final output image. Both transform
operations require the use of double-
precision sinus and cosinus functions,
which is quite demanding in terms of

computational power. To illustrate the software heterogeneity, the processing
task has been written in different technologies: sequential C, Pthread (4 threads),
OpenMP, OpenCL and OpenCV (using the builtin OpenCV functions).

The application has been implemented using rendez-vous (RR for round-
robin scheduling) and publish-subscribe (PS) synchronization functions over the
S-DSM. Figure 4 represents the task interactions in both implementations. For
each processing task, the input and output frames are stored into memory buffers
that are allocated within the S-DSM chunks. The scheduling and buffer synchro-
nization patterns differ in the RR and PS implementations: in the top half part
of the figure, frames are written into the input buffers following a round-robin
scheduling strategy implemented by the producer-consumer pattern based on
rendez-vous synchronization. In the RR implementation, tasks will process the
same number of frames (plus one extra frame depending on the video length). If
there is a small parallelism degree -a small number of processing tasks- and if a
task performs slowly, then this task becomes a bottleneck due to the round-robin
strategy that will hang on this particular task until it has finished the job. In the
second half part of the figure, the PS implementation, processing tasks are noti-
fied each time a new frame has been written into their associated input buffer. In



Publish-Subscribe with Shared Memory 7

Fig. 4: Description of the video processing application. Top half part is the round-
robin (RR) synchronization pattern while the second half part is the publish-
subscribe (PS) pattern. The producer-consumer pattern is implemented using a
mix of PS notification events and R/W shared memory access.

turn, both encoding and decoding tasks are notified each time a processed frame
has been written to an output buffer. In that case, the encoding task reads this
buffer and writes to the output, while the decoding task decodes the next frame
and writes to the corresponding input buffer. This synchronization implements
an eager scheduling strategy based on a mix of publish-subscribe notifications
and S-DSM write events. The input is a 1-minute video file, with a total of 1730
frames and a resolution of 1280x720 pixels. Processing a frame using Pthread or
OpenMP takes around 0.2s on a Core i7 (346s if we extrapolate to 1730 frames)
and 0.9s on a Cortex A15 (1557s for 1730 frames). In OpenCV, it takes 0.05s on
the Core i7 without external GPU (86.5s for 1730 frames). However, the OpenCV
implementation provided by libopencv differs from other implementations and
delivers quite different results.

Different configurations and mappings of the application are presented in
Figure 5 and labeled from A to F . The heterogeneity is given for processing
tasks only. For technical reasons, decoding and encoding tasks are implemented
in OpenCV and are always deployed on Core i7. For each configuration, Figure 6
presents the number of frames processed by each task. The RR scheduling policy
evenly distributes the workload among the tasks while the PS implementation
reveals how tasks can process at different speeds depending on the hardware and
the software choices.

PS performs better with software heterogeneity. In configuration A, a
set of 4 processing tasks implemented with similar technologies -Pthread and
OpenMP- are deployed on two i7 processors. Processing times are very close for
both RR and PS implementations with a quite similar distribution of frames
among the tasks. In configuration B, two tasks are implemented in OpenMP



8 L. Cudennec

NODES TASKS HETEROGENEITY TIME (s) W
i7 A15 Proc Serv Hardware Software RR PS

A 2 0 4 1 i7 Pthread OpenMP 220 218 58
B 2 0 4 1 i7 OpenMP OpenCV 177 153 58
C 1 8 8 1 A15 Sequential Pthread OpenMP 286 401 85
D 2 8 10 1 i7 A15 Pthread OpenMP 233 359 114
E 2 8 10 2 i7 A15 Pthread OpenMP 221 209 114
F 2 8 8 4 i7 A15 Pthread OpenMP 286 198 114

Fig. 5: Different configurations of the video processing application. For each con-
figuration, the table gives the number of Intel Core i7 and Arm Cortex A15 pro-
cessors used, the number of processing tasks (Proc), S-DSM data servers (Serv),
the heterogeneity in terms of hardware and software, the total processing time
for round-robin (RR) and publish-subscribe (PS) and the average instantaneous
power consumption of the RECS|Box micro-server.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

A B C D E F

N
u
m
b
e
r
 
o
f
 
f
r
a
m
e
s

OPENCV OPENMP PTHREAD SEQUENTIAL

RR PS RR PS RR PS RR PS RR PS RR PS

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

A15

A15

A15

A15

A15

A15

A15

A15

A15

A15

A15

A15

A15

A15

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

i7

A15

A15

A15

A15

i7

A15

A15

i7

A15

A15

A15

A15

Fig. 6: Number of frames processed by each task for both RR and PS implemen-
tations. The software technology and the processor type into which the task is
mapped are also displayed.



Publish-Subscribe with Shared Memory 9

and two tasks in OpenCV, the latter being a faster code. All tasks are running
on two i7 processors. The PS version performs better than RR by allowing the
OpenCV tasks to process more frames than OpenMP.

RR performs better with low-performance network. In configuration C,
8 tasks are deployed over eight A15 processors. For technical reasons the de-
coding and encoding tasks require to be deployed on the i7 processor. Two
processing tasks are implemented in a sequential C code, two in Pthread and
four in OpenMP. While we were able to get the expected speedup between the
sequential and the parallel implementations on Core i7 (almost 4 times faster),
we observe that the sequential implementation performs slightly better than the
parallel ones onto Cortex A15. However, the PS implementation is not adapted
to this configuration, due to the poor network capabilities of our testbed, espe-
cially considering the latencies with the Arm baseboards. In that case, the RR
implementation provides a better use of the network by avoiding bursts of small
messages. In configuration D, 10 processing tasks are deployed over the two i7
and eight A15 processors. The PS implementation distributes more frames to
the tasks running on the i7 processors than to the A15. However, as for con-
figuration C, it does not perform well compared to the RR implementation.
The S-DSM is deployed using one server and all memory access requests and
publish-subscribe notifications are converging to the same i7 node.

PS benefits from distributed metadata management. Configurations E
and F respectively use 2 and 4 S-DSM servers to manage data and metadata. In
configuration E, S-DSM servers are deployed over the two i7 processors. The PS
implementation largely benefits from this configuration, going from 359s with
one server to 209s with two servers. In configuration F , two more S-DSM servers
are deployed, with a total of one server per baseboard. While this approach in-
volves more communications between servers and slows down the RR implemen-
tation, it is well adapted to the PS event-based implementation which performs
slightly better than configuration E. This is quite a new result for the proposed
S-DSM for which it is rarely worth to distribute the data and metadata man-
agement among different servers at this scale when using regular shared access
primitives. Instead, we notice that the publish-subscribe mechanism requires a
better load balance of events if the network is slow, even for small configurations.

PS balances idle times among tasks. Figure 7 presents the execution time
per task for both RR and PS implementations using configuration F . For each
task the time is decomposed into three parts: 1) the Sync MP corresponds to the
time spent in the message passing receive primitive. This mainly happens while
waiting for a ack message when accessing the shared memory, a rendez-vous
release or a publish-subscribe notification. For HPC applications, this Sync MP
time should be avoided because it reveals that the task is waiting rather than
processing data. 2) The S-DSM code time corresponds to the local S-DSM data
management. It is usually not significant, with less than 0.7% of the task total
execution time in this example. 3) The User code corresponds to the time spent



10 L. Cudennec

 0

 50

 100

 150

 200

 250

 300

i7
PTHREAD

i7
OPENMP

A15
PTHREAD

A15
OPENMP

A15
OPENMP

A15
PTHREAD

A15
OPENMP

A15
OPENMP

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

 

Sync MP S-DSM code User code

(a) RR

i7
PTHREAD

i7
OPENMP

A15
PTHREAD

A15
OPENMP

A15
OPENMP

A15
PTHREAD

A15
OPENMP

A15
OPENMP

 0

 50

 100

 150

 200

 250

 300

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

 

Sync MP S-DSM code User code

(b) PS

Fig. 7: S-DSM and application time per task for both RR and PS implementa-
tions using configuration F . Figures 7a and 7b use the same vertical scale.

in the user code execution, excluding S-DSM calls. In the RR implementation,
tasks running on i7 processors spend up to 86% of the time waiting on S-DSM
rendez-vous, compared to 12% to 28% for tasks running on the A15 processors.
In the PS implementation, while drastically decreasing the total computing time
(more than 1.5 faster), all tasks spend between 27% and 51% of their time waiting
for the next S-DSM events.

5 Related Works

Distributed shared memory and publish-subscribe systems have been widely
studied in the literature for the past decades. Most of the DSM systems, start-
ing with IVY [12] only provide mechanisms for implementing the shared memory
paradigm. Cache coherence protocols based on write-invalidate or write-update
policies such as MESI [10] are quite close to the publish-subscribe pattern: mem-
ories that host a copy of the data are in fact subscribing to its modifications.
However, the event is defined by the sole protocol, whether it is a change of the
data status in the metadata structure or the update of the data in the memory.
There is no third-party application nor user code that can be called on such event.
Event-based programming can be used to implement a DSM, as proposed in this
system [13], which describes a DSM implemented using the Java event-based dis-
tributed system. Our contribution is to implement an event-based distributed
system on top of the S-DSM, which is the opposite approach. Publish-subscribe
systems have been successfully used for GUIs, internet services, multicasting
in mobile networks [6,2] and managing immutable shared data in peer-to-peer
(P2P) systems [11,15]. The PS programming paradigm is quite different from
shared memory and as far as we know, there is no such system that merge
both paradigms. These two paradigms are shaped for very different computing



Publish-Subscribe with Shared Memory 11

contexts: homogeneous reliable computing nodes with HPC code for DSM and
heterogeneous volatile devices with service-oriented code for PS. With the emer-
gence of heterogeneous systems mixing both HPC and event-based applications,
we think that our contribution can ease the programmability of the platform.
One example is the integration of the event-based system SOME/IP [19] within
the AUTOSAR specification standard for future automotive systems, in which
heterogeneous computing nodes will have to deal with both HPC applications for
vehicle guidance and service-oriented applications for entertainment. The design
of the video processing application used in this paper is very close to a dataflow
application, in which a set of tasks communicate using explicit channels. Some
dataflow runtimes include StarPU [5] designed for heterogeneous architectures
with a complementary S-DSM used for internal data management. However, the
programming model exposed to the user is pure dataflow, and not a mix of both
shared memory and PS paradigms as proposed in this paper.

6 Conclusion

Heterogeneous distributed architectures are expected to be deployed in future
technological systems for data centers, industry and automotive. Each applica-
tion field relies on historical programming models and we propose to merge both
shared memory with publish-subscribe models, building a bridge between very
different application contexts. We found the underlying mechanisms very simi-
lar, leading to a quite straightforward integration. This work contributes with
1) a programming model that merges shared memory and publish-subscribe, 2)
a task model that bootstraps on the main user code and terminates with the
event-based model and 3) experiments on a heterogeneous micro-server. The ex-
periments show that the choice between shared memory and PS should be made
according to the application configuration and the execution platform.

Acknowledgments. This work received support from the H2020-ICT-2015 Eu-
ropean Project M2DC - Modular Microserver Datacentre - under Grant Agree-
ment number 688201.

References

1. Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W.: TreadMarks: Shared memory computing on networks of worksta-
tions. IEEE Computer 29(2), 18–28 (Feb 1996)

2. Anceaume, E., Datta, A.K., Gradinariu, M., Simon, G.: Publish/subscribe scheme
for mobile networks. In: Proceedings of the Second ACM International Workshop
on Principles of Mobile Computing. pp. 74–81. POMC ’02, ACM, New York, NY,
USA (2002)

3. Antoniu, G., Bougé, L.: Dsm-pm2: A portable implementation platform for multi-
threaded dsm consistency protocols. In: Proceedings of the 6th International Work-
shop on High-Level Parallel Programming Models and Supportive Environments.
pp. 55–70. HIPS ’01, Springer-Verlag, London, UK, UK (2001)



12 L. Cudennec

4. Antoniu, G., Bougé, L., Jan, M.: JuxMem: an adaptive supportive platform for
data-sharing on the grid. Scalable Computing: Practice and Experience (SCPE)
6(3), 45–55 (Nov 2005)

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience, Special Issue: Euro-Par 2009 23, 187–
198 (Feb 2011)

6. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., Sturman,
D.C.: An efficient multicast protocol for content-based publish-subscribe systems.
In: Proceedings. 19th IEEE International Conference on Distributed Computing
Systems (Cat. No.99CB37003). pp. 262–272 (1999)

7. Bershad, B.N., Zekauskas, M.J., Sawdon, W.A.: The Midway distributed shared
memory system. In: Proceedings of the 38th IEEE International Computer Con-
ference (COMPCON Spring ’93). pp. 528–537. Los Alamitos, CA (Feb 1993)

8. Bisiani, R., Forin, A.: Multilanguage parallel programming of heterogeneous ma-
chines. IEEE Trans. Comput. 37(8), 930–945 (Aug 1988)

9. Cudennec, L.: Software-distributed shared memory over heterogeneous micro-
server architecture. In: Euro-Par 2017: Parallel Processing Workshops. pp. 366–
377. Springer International Publishing (2018)

10. Culler, D., Singh, J., Gupta, A.: Parallel Computer Architecture: A Hardware/-
Software Approach. Morgan Kaufmann, 1st edn. (1998), the Morgan Kaufmann
Series in Computer Architecture and Design

11. Ginzler, T.: A robust and scalable peer-to-peer publish/subscribe mechanism.
In: 2012 Military Communications and Information Systems Conference (MCC).
pp. 1–6 (Oct 2012)

12. Li, K.: IVY: a shared virtual memory system for parallel computing. In: Proc.
1988 Intl. Conf. on Parallel Processing. pp. 94–101. University Park, PA, USA
(Aug 1988)

13. Mazzucco, M., Morgan, G., Panzieri, F., Sharp, C.: Engineering distributed shared
memory middleware for java. In: Meersman, R., Dillon, T., Herrero, P. (eds.) On
the Move to Meaningful Internet Systems: OTM 2009. pp. 531–548. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009)

14. Morin, C., Kermarrec, A.M., Banatre, M., Gefflaut, A.: An efficient and scalable
approach for implementing fault-tolerant dsm architectures. IEEE Transactions on
Computers 49(5), 414–430 (May 2000)

15. Nakayama, H., Duolikun, D., Enokido, T., Takizawa, M.: A p2p model of pub-
lish/subscribe systems. In: 2014 Ninth International Conference on Broadband and
Wireless Computing, Communication and Applications. pp. 383–388 (Nov 2014)

16. Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., Oskin, M.: Latency-
tolerant software distributed shared memory. In: 2015 USENIX Annual Technical
Conference (USENIX ATC 15). pp. 291–305. USENIX Association, Santa Clara,
CA (2015)

17. Pinheiro, E., Chen, D., Dwarkadas, H., Parthasarathy, S., Scott, M.: S-dsm for
heterogeneous machine architectures (07 2000)

18. Santo, M.D., Ranaldo, N., Sementa, C., Zimeo, E.: Software distributed shared
memory with transactional coherence - a software engine to run transactional
shared-memory parallel applications on clusters. In: 2010 18th Euromicro Con-
ference on Parallel, Distributed and Network-based Processing. pp. 175–179 (Feb
2010)

19. Völker, L.: Some/ip die middleware für ethernet-basierte kommunikation. Hanser
automotive networks (Nov 2013)


	Merging the Publish-Subscribe Pattern with the Shared Memory Paradigm

