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Large interannual variations in the measured growth rate of atmospheric carbon dioxide originate 42 

primarily from fluctuations in the carbon uptake by land ecosystems1-3. It remains uncertain, 43 

however, to what extent temperature and water availability control the carbon balance of land 44 

ecosystems across spatial and temporal scales3-14. Here we use eddy covariance data-derived 45 

empirical models15 and process based models16,17 to investigate the effect of changes in 46 

temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem 47 

respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water 48 

availability is the predominant driver of the interannual variability in GPP, TER and, to a lesser 49 

extent, NEE at the local scale. When integrated globally, however, temporal NEE variability is 50 

mostly driven by temperature fluctuations (R2≥0.84). We suggest that this apparent paradox can be 51 

explained by two compensatory water effects. Temporal water driven GPP and TER variations 52 

compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies 53 

also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the 54 

land carbon sink. These findings help reconcile seemingly contradictory reports regarding the 55 

importance of temperature and water in controlling the interannual variability of the terrestrial 56 

carbon balance3-6,9,11,12,14. Our study indicates that spatial climate co-variation drives the global 57 

carbon cycle response. 58 

Large interannual variations in the recent measured atmospheric CO2 growth rates originate 59 

primarily from fluctuations in carbon uptake by land ecosystems, rather than from oceans or 60 

variations in anthropogenic emissions1-3. There is a general consensus that the tropical region 61 

contributes the most to terrestrial carbon variability1,8,18,19. The observed positive correlation 62 

between mean tropical land temperature and CO2 growth rate3,5,6,12,13 implies smaller land carbon 63 

uptake and enhanced atmospheric CO2 growth during warmer years with a sensitivity of about 5 GtC 64 

yr-1K-1. There is a tight relationship between this sensitivity on interannual time scales and long-term 65 

changes in terrestrial carbon per degree of warming across multiple climate carbon-cycle models6. 66 

Despite this strong emergent relationship with mean tropical land temperature, several studies 67 

suggest that variations in water availability play an important8,10,11,14, even a dominant role4,9, in 68 

shaping the interannual variability of the carbon balance of extensive semi-arid and sub-tropical 69 

systems. Furthermore, the recent doubling of the tropical carbon cycle sensitivity to interannual 70 

temperature variability has been linked to interactions with changing moisture regimes13. A full 71 

understanding of the processes governing the climatic controls of terrestrial carbon cycling on 72 

interannual time scales and across spatial scales is therefore still lacking. Here we show that the 73 

“temperature vs. water” debate can be resolved by simultaneously assessing the carbon cycle 74 

response to fluctuations in both temperature and water availability at both local and global scales. 75 

Using both machine learning algorithms and process-based global land models, we derived spatial 76 

and temporal patterns of the interannual variability (IAV) of CO2 uptake by plants via photosynthesis 77 

(gross primary production, GPP) and of CO2 loss through respiration (terrestrial ecosystem 78 

respiration, TER). This allows analysis of net CO2 ecosystem exchange (NEE=TER-GPP) IAV. Machine 79 

learning algorithms were used to translate gridded inputs of daily air temperature, water availability 80 

and radiation, among others15, into time varying 0.5° grids of TER and GPP for the 1980-2013 period 81 

(FLUXCOM, see Methods). Three machine learning algorithms were trained on FLUXNET20 based in 82 

situ TER and GPP flux estimates from two flux partitioning methods21,22. These three fitting 83 

algorithms combined with two partitioning methods provided six sets of GPP and TER estimates 84 

each, which combined yield 36 FLUXCOM NEE ensemble members. In a complementary approach, 85 
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we examined simulations of GPP and TER from an ensemble of seven global land surface or dynamic 86 

vegetation models16,17 (TRENDYv3, see Methods). These process-based model simulations follow a 87 

common protocol and used the same climate forcing data set as the observation-based FLUXCOM 88 

models. Both sets of results are expected to be more uncertain in the tropics due to less reliable 89 

climate and satellite based inputs and a sparse coverage of flux measurements23. 90 

We analysed FLUXCOM and TRENDYv3 simulations independently, but in a consistent manner. We 91 

derived NEE as the difference between TER and GPP, i.e., a positive value of NEE indicates a flux of 92 

carbon from the land to the atmosphere. To isolate IAV we detrended GPP and TER for each grid cell 93 

and month (see Methods). We find that global patterns of NEE interannual variability are consistent 94 

between FLUXCOM and TRENDYv3 (EDF 1, SI-1). Both approaches reproduce (r ~ 0.8) the globally 95 

integrated NEE IAV derived from atmospheric CO2 concentration measurements and transport24. 96 

Both approaches also show the largest IAV in the tropics (EDF 1). To obtain the contributions of 97 

different environmental variables to IAV, we decomposed carbon flux anomalies (ΔFlux) of each year 98 

(y), month (m), and grid cell (s) into their additive components forced by detrended anomalies of 99 

temperature (ΔTEMP), shortwave incoming radiation (ΔRAD), and soil-moisture related water 100 

availability (ΔWAI, see Methods): 101 

𝐹𝑙𝑢𝑥𝑠,𝑚,𝑦 = 𝑎𝑠,𝑚
𝑇𝐸𝑀𝑃 × 𝑇𝐸𝑀𝑃𝑠,𝑚,𝑦 + 𝑎𝑠,𝑚

𝑅𝐴𝐷 × 𝑅𝐴𝐷𝑠,𝑚,𝑦 + 𝑎𝑠,𝑚
𝑊𝐴𝐼 × 𝑊𝐴𝐼𝑠,𝑚,𝑦 + 𝜀𝑠,𝑚,𝑦    102 

 𝐹𝑙𝑢𝑥𝑠,𝑚,𝑦    ≈   𝐹𝑙𝑢𝑥𝑠,𝑚,𝑦
𝑇𝐸𝑀𝑃

+𝐹𝑙𝑢𝑥𝑠,𝑚,𝑦
𝑅𝐴𝐷

+𝐹𝑙𝑢𝑥𝑠,𝑚,𝑦
𝑊𝐴𝐼

 .      EQ (1) 103 

Here as,m represents the estimated sensitivity of the flux anomaly, 𝐹𝑙𝑢𝑥𝑠,𝑚,𝑦 (GPP or TER) to each 104 

respective climate forcing anomaly (ΔTEMP, ΔRAD, ΔWAI) for a given grid cell and month, and 𝜀𝑠,𝑚,𝑦 105 

is the residual error term. The product of a given sensitivity (e.g. aTEMP) and corresponding climate 106 

forcing anomaly (e.g. ΔTEMP) constitutes the flux anomaly component driven by this climate factor 107 

(e.g. GPPTEMP). Thus, Eq.1 estimates the contributions of temperature, radiation, and water 108 

availability anomalies to carbon flux anomalies (see SI-2 for verification).  109 

Our analysis reveals a contrasting pattern of NEE IAV controlled by temperature or moisture, 110 

depending on spatial scale. At the global scale, temperature drives spatially-integrated NEE IAV (Fig.1 111 

a,b, compare green and black curves), in line with previous findings based on correlations between 112 

anomalies in temperature and CO2 growth rate3,5,6,12,13. Globally integrated NEE anomalies due to 113 

variations in radiation (NEEWAI) and water availability (NEEWAI) play only a minor role (compare blue 114 

and black curves in Fig. 1a,b). The dominant global influence of temperature is in contrast to the 115 

dominant local influence of  water availability when analyzing all grid cells individually (Fig 1 c,d, 116 

zonal mean of grid cell IAV; compare blue and black curves). Radiation causes the smallest NEE IAV at 117 

grid cell level (red curve in Fig.1c,d) but there are indications based on other climate forcing data that 118 

radiation could play a more important role than temperature locally (SI-3). Temperature variations 119 

are important for NEE IAV (green curve in Fig.1c,d) in high latitudes and the inner tropics, but in 120 

general, the grid cell average water related NEE variability (NEEWAI, blue curve) is larger. Water 121 

related NEE variability peaks at subtropical latitudes where semi-arid ecosystems dominate. This 122 

finding is consistent with studies emphasizing the role of water limited semi-arid ecosystems on 123 

global NEE IAV4,9. We now assess how this can be reconciled with the emergent temperature control 124 

of globally integrated NEE IAV. Going from grid-cell to global scale shifts the emerging controls on 125 

NEE IAV from water availability (local) towards temperature (global).  126 



5 
 

[Insert Figure 1 around here] 127 

We hypothesized that the dominance of temperature in globally integrated NEE IAV results from a 128 

stronger compensation of positive and negative NEEWAI anomalies between different grid cells 129 

compared to NEETEMP when going from local to global scale. To test this, we first illustrate the 130 

dominant spatial patterns of temperature vs. water compensation using empirical orthogonal 131 

functions (EOF) of the annual NEETEMP and NEEWAI anomalies (Fig. 2 a-d). Here, the leading EOF of 132 

NEEWAI (~10% variance explained) has strong anti-correlated spatial patterns of positive and negative 133 

values (Fig 2c,d), which correspond to ENSO imprints on moisture effects (R2 with Nino 3.4 SST 134 

index25 of 0.75). In comparison, the leading EOF of NEETEMP (~22% variance explained) shows a more 135 

spatially uniform response, and in particular across the tropics (Fig 2a,b). This pattern of much larger 136 

spatial coherence of NEETEMP anomalies, compared to NEEWAI anomalies, is also evident in their 137 

respective sums of positive and negative covariances among all grid cells (inset pie charts in Fig 2. a-138 

d). For NEETEMP the sum of positive covariances is far larger than the negative ones (79% vs. 21%), 139 

whereas positive and negative covariances are almost in balance (53% vs. 47%) for NEEWAI. As a 140 

consequence of the larger spatial coherence of NEETEMP anomalies, as compared to NEEWAI anomalies, 141 

we observe a shift of the dominant NEE IAV control from water at the local scale to temperature at 142 

the global scale. We illustrate this change in Fig 2e,f by presenting relative dominance of water and 143 

temperature related NEE IAV for increasing levels of spatial aggregation. This is a robust feature 144 

within and among FLUXCOM and TRENDY approaches (EDF 2). We also find that the rise and decay of 145 

NEETEMP and NEEWAI dominance respectively with spatial scale occurs in all major biomes (SI-4). This 146 

pattern is likely related to the different climatic characteristics of precipitation and air temperatures, 147 

with the former, but not the latter, being associated with moisture conservation and offsetting 148 

spatial anomaly patterns. 149 

[Insert Figure 2 around here] 150 

We now proceed to assess how local water and temperature related NEE IAV emerges from the 151 

interaction of photosynthesis (GPP) and respiration (TER) processes. We compare the magnitudes of 152 

water vs. temperature driven GPP and TER variability and find that WAI is overall the most important 153 

factor controlling local IAV of both gross fluxes (Fig. 3 a-d), with particularly large variability in both 154 

fluxes in semi-arid regions (SI-4, 5). However, the local IAV of NEE related to WAI (NEEWAI
, Fig. 3e, f) is 155 

reduced compared to the components GPPWAI and TERWAI. Our results indicate that, in addition to the 156 

spatial compensation of NEEWAI, discussed above, there is also a local compensation mechanism, 157 

whereby GPPWAI and TERWAI co-vary and thus locally counterbalance each other (Fig. 4 a, b). This is 158 

likely due to the concomitant positive relationship of soil moisture with productivity and with 159 

respiration. The combined effect is a smaller net effect of WAI on NEE. Specifically, two thirds of the 160 

WAI effect on GPP is offset by the WAI effect on TER (0.67±0.33 for FLUXCOM, 0.69±0.14 for 161 

TRENDY; mean slope ± s.d. across ensemble members of global TERWAI vs. GPPWAI). These patterns are 162 

qualitatively consistent between the data-driven FLUXCOM (Fig. 4) and process-based TRENDY 163 

models (EDF. 3) and agree with previous observations of simultaneous declines of GPP and TER26-3025-164 
29 during droughts. However, magnitudes of TERWAI vs. GPPWAI

 covariances differ substantially among 165 

model ensemble members (EDF 4). This likely reflects large uncertainty of respiration processes to 166 

moisture variations while flux partitioning uncertainties seem negligible (SI-6).  167 

[Insert Figure 3 around here] 168 
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In contrast to offsetting NEE water effects, our analysis indicates a weak local temperature 169 

amplification effect of GPP and TER IAV in the tropics. Local temperature effects on GPP and TER IAV 170 

are inversely correlated over the tropics (Fig. 4d). This is because GPP decreases with increasing 171 

temperature, likely due to the exceedance of the thermal optimum of photosynthesis, whereas 172 

respiration increases with temperature. Thus increasing temperatures in the tropics reduce NEE by 173 

reducing GPP and increasing TER. However, due to lower variances of the temperature components 174 

of GPP and TER (Fig. 3a-d), this local temperature amplification effect in the tropics is quantitatively 175 

negligible (Fig. 4c) compared to the local water compensation effect (Fig. 4d). Overall, this causes the 176 

difference of temperature vs. water forced variability of NEE to be smaller compared to the influence 177 

of these drivers on the gross fluxes (compare distance between blue and green curves in Fig. 3 a-d vs. 178 

e, f). 179 

[Insert Figure 4 around here] 180 

Our analysis shows water availability as the overall dominant driver of the interannual variability of 181 

photosynthesis and respiration at local scales, even though this water signal is effectively absent in 182 

the globally integrated NEE interannual variability. This pattern is driven by: 1) the local 183 

compensatory effects of water availability on GPP and TER, and 2) the spatial anti-correlation of 184 

water controlled NEE anomalies; and thus a compensation in space. These two compensatory water 185 

effects leave temperature as the dominant factor globally, which resolves why there have been 186 

conflicting conclusions surrounding whether NEE interannual variability is forced thermally or 187 

hydrologically. Our analysis implies that climate does not only force the carbon cycle locally, but that, 188 

perhaps more importantly, the spatial covariation of climate variables drives the integrated global 189 

carbon cycle response. Consequently, any analysis conducted on integrated signals over larger 190 

regions precludes inferences on the driving mechanisms at ecosystem scale. Likewise, the apparent 191 

temperature dominated interannual variability of the residual land sink, a traditional target of global 192 

carbon cycle modelers, contains little information on local carbon cycle processes. Our findings 193 

suggest that potential changes in spatial covariations among climate variables associated with global 194 

change may drive apparent changes of carbon cycle sensitivities and perhaps even the strength of 195 

climate-carbon cycle feedbacks.  196 

 197 
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Figure captions 303 
 304 
Figure 1: Climatic controls on NEE IAV at global and local scales for the period 1980-2013 derived 305 

from machine learning based (FLUXCOM) and process-based (TRENDY) models. The comparison of 306 

globally integrated annual NEE anomalies with NEE anomalies driven only by temperature, water 307 

availability, and radiation (a, b) shows temperature as dominant global control. R2 values between 308 

the climatic NEE components and total NEE are given in the respective colour. Mean grid cell IAV 309 

magnitude (see Equation 3 in Methods) in panels (c) and (d) of NEE components for latitudinal bands 310 

shows water as dominant local control. Uncertainty bounds where given as shaded area reflect the 311 

spread among FLUXCOM or TRENDY ensemble members (±1 s.d.).  312 

Figure 2: Effects of spatial co-variation and scale on temperature vs. water control of NEE IAV for 313 

FLUXCOM and TRENDY models. Spatial patterns of the first empirical orthogonal function of annual 314 

NEETEMP (a, b), and NEEWAI (c, d) anomalies (see Methods) show large spatial coherence for NEETEMP 315 

(dominant positive values) and anti-correlated patterns for NEEWAI (positive and negative values; 316 

magnitudes are not informative and were omitted for clarity). This is underpinned in the inset pie 317 

charts which show the proportion of total positive (black) and negative (gray) co-variances among 318 

grid cells for NEETEMP and NEEWAI anomalies (see Equation 4 and 5 in Methods). Panels e, f present 319 

how the relative dominance (see Equation 6 in Methods) of NEETEMP (green) increases with successive 320 

spatial aggregation, while the relative dominance of NEEWAI (blue) decreases. Outer uncertainty 321 

bounds in e,f,  given as shaded area refer to the spread among respective ensemble members (±1 322 

s.d.); inner uncertainty bounds refer to ±1 s.d. with respect to the change of relative dominance with 323 

spatial aggregation (see Equation 7 in Methods). 324 

Figure 3: Latitudinal patterns of water and temperature driven IAV of gross carbon fluxes (GPP and 325 

TER) and NEE for FLUXCOM and TRENDY models. IAV magnitude (see Equation 3 in Methods) of the 326 

WAI component is much larger than the IAV of the TEMP component for gross fluxes (a-d), while this 327 

difference is smaller for NEE due to compensation. Uncertainty bounds as shaded area reflect the 328 

spread among FLUXCOM or TRENDY ensemble members (±1 s.d.). 329 

Figure 4: Spatial patterns of covariance and correlation of WAI and TEMP driven GPP and TER IAV 330 

for FLUXCOM models. Maps of the covariance of annual anomalies (see Equation 8 in Methods) of 331 

GPP and TER climatic components show large compensation effects (positive covariance) for WAI (a) 332 

but nearly no covariance for TEMP (c). Correlations between GPPWAI and TERWAI are large and 333 

ubiquitous positive (b) while correlations among GPPTEMP and TERTEMP are weaker with a distinct 334 

spatial pattern of negative correlations in hot regions (d). All results refer to the mean of all FLUXCOM 335 

ensemble members. See EDF 3 for equivalent TRENDY results, and EDF 4 for uncertainties. 336 

 337 
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Methods  338 

Global carbon flux data sets 339 

FLUXCOM. Three machine learning methods were trained on daily carbon flux estimates from 224 340 

flux tower sites using meteorological measurements and satellite data as inputs15: Random Forests31, 341 

Artificial Neural Networks32, Multivariate Adaptive Regression Splines33. Models were trained 342 

separately for two variants of GPP and TER, derived from the flux partitioning methods of Reichstein 343 

et al.22 and Lasslop et al.21. Each method used the same 11 input driver data listed in Table SI-7. This 344 

set of driver data was obtained from an extensive variable selection analysis15,34. Details along with 345 

extensive model evaluation based on cross-validation are given in Tramontana et al.15.  346 

To produce spatio-temporal grids of carbon fluxes, the trained machine learning algorithms require 347 

only spatio-temporal grids of its input driver data35. We forced the models with grids of 0.5° spatial 348 

resolution and daily time step for the period 1980-201336. High-resolution satellite based predictor 349 

variables (see Table SI-7) were tiled by plant functional type (PFT), i.e. grids for each PFT containing 350 

the mean value per PFT and time step at 0.5° were created. The PFT distribution originates from the 351 

majority class of annually resolved MODIS land cover product (collection 5)37 for each high-resolution 352 

pixel. Climatic predictor variables are based on CRUNCEPv6 353 

(http://esgf.extra.cea.fr/thredds/catalog/store/p529viov/cruncep/V6_1901_2014/catalog.html) to 354 

be consistent with the TRENDY ensemble. CRUNCEPv6 is based on a merged product of Climate 355 

Research Unit (CRU) observation based monthly 0.5° climate variables38 (1901 – 2013) and the high 356 

temporal (6-hourly) resolution NCEP reanalysis. The variables affected by the climate forcing data set 357 

are marked in Table SI-7. Among the 11 predictor variables, only temperature, radiation, and water 358 

availability can generate interannual variability. The water availability index (WAI, see supplement 3 359 

in Tramontana et al. 15) is based on a simple dynamic soil water balance model, which was driven 360 

with daily precipitation and potential evapotranspiration by CRUNCEPv6 (see SI-8 for cross-361 

consistency with TRENDY based soil moisture). The machine learning models were run at for each 362 

plant functional type (PFT) separately, and a weighted mean over the PFT fractions was obtained for 363 

each grid-cell. The PFT distribution is representative of the period 2001-2012; no land cover change 364 

was considered. Empirical models were run to spatially estimate GPP and TER. Then NEE was derived 365 

by the carbon mass balance approach (NEE = TER-GPP), which allows for decomposing precisely of 366 

how NEE IAV emerges from (co-)variations of TER and GPP. We verify that NEE IAV derived as TER-367 

GPP is consistent with upscaling NEE directly (SI-6). Overall 36 combinations of NEE were derived by 368 

considering all possible combinations of TER-GPP realizations resulting from different machine 369 

learning approaches, and flux partitioning variants. The individual model runs were finally aggregated 370 

to monthly means. 371 

TRENDY. We used simulations of seven Dynamic Global Vegetation Models (DGVMs) from the 372 

TRENDY v3 ensemble16,17 for the period 1980-2013, which have a spatial resolution of 0.5° (model 373 

simulations with coarser resolution were omitted): CABLE39, ISAM40, LPJ41, LPJ-GUESS42, ORCHIDEE43, 374 

VEGAS14, VISIT44. These models were forced by a common set of input datasets and experimental 375 

protocol (experiment ‘S2’)16,17. Climate forcing (CRUNCEPv6) is the same as for FLUXCOM. Global 376 

atmospheric CO2 was derived from ice core and NOAA monitoring station data, and provided at 377 

annual resolution over the period 1860-201316. DGVMs were run from preindustrial steady state 378 

(NEE = 0) with changing fields of climate and atmospheric CO2 concentration over the 20thC. Land 379 

Use and Land cover changes were not considered. For consistency with FLUXCOM, NEE was derived 380 
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as the difference between terrestrial ecosystem respiration (TER) and GPP, i.e. fire emissions 381 

available from some models were not included. Terrestrial ecosystem respiration was calculated as 382 

the sum of simulated autotrophic and heterotrophic respiration.  383 

 384 

Analysis 385 

Anomalies and decomposition. Detrended monthly anomalies were obtained by removing the linear 386 

trend over years for each pixel and month (least squares fitting), which also centers the mean to zero 387 

for a given pixel and month. This procedure was applied consistently to GPP, and TER, shortwave 388 

radiation (RAD), air temperature (TEMP), and water availability (WAI), FLUXCOM and TRENDY 389 

simulations. For TRENDY models the simulated soil moisture was used instead of WAI. The resulting 390 

IAV of GPP and TER was decomposed into the contributions forced by TEMP, RAD, and WAI following 391 

Eq.1 using a multiple linear (ordinary least squares) regression with zero intercept for each pixel and 392 

month. NEE sensitivities and NEE components were derived from GPP and TER results, which is 393 

equivalent to decomposing NEE (=TER-GPP) directly. We validate and discuss the approximation of 394 

IAV contributions by Eq.1 in SI-2.  395 

Notations. All analysis is based on detrended monthly anomalies (Eq. 1) aggregated to annual means. 396 

For simplicity, we omit the Δ notation for ‘anomaly’ in the following. Superscripts ‘TEMP’, ‘WAI’, 397 

‘RAD’ refer to surface air temperature, water availability, and incoming shortwave radiation of a 398 

respective carbon flux anomaly. Subscripts ‘s’,’y’,’e’ refer to indexes of grid cell, year, and ensemble 399 

member respectively. The mean and standard deviation are denoted as µ and σ respectively, where 400 

the subscripts of these operators tell whether the operation is done over grid cells (e.g. µs is an 401 

average over all grid cells), years (e.g. σy is the standard deviation over the years), or ensemble 402 

members. All main results refer to the mean of FLUXCOM or TRENDY ensemble members (µe) and 403 

the standard deviation (σe) is used as uncertainty estimate. Whenever we calculated a mean over 404 

0.5° grid cells (µs) we accounted for different grid cell areas (area weighted mean) and used a 405 

consistent mask of valid values between FLUXCOM and TRENDY. Because several analyses are 406 

referenced with respect to the sum of climatic components of NEE we denote NEE*: 407 

𝑁𝐸𝐸𝑠,𝑦
∗ = 𝑁𝐸𝐸𝑠,𝑦

𝑇𝐸𝑀𝑃 + 𝑁𝐸𝐸𝑠,𝑦
𝑊𝐴𝐼 + 𝑁𝐸𝐸𝑠,𝑦

𝑅𝐴𝐷       EQ (2) 408 

Spatial patterns of IAV magnitude (e.g. Fig. 1c,d & 3). To describe spatial patterns of IAV magnitude 409 

(M) of climatic components of carbon fluxes (e.g. GPPWAI) we computed the standard deviation of its 410 

annual values (σy) for each grid cell (s). This standard deviation was then normalized by the mean (µs) 411 

temporal standard deviation (σy) of NEE* to provide a relative metric of IAV magnitude, where values 412 

above 1 indicate IAV magnitudes larger than average NEE* IAV. This scaling accounts for the known 413 

underestimation of IAV magnitude in the upscaling approach35 but does not change any patterns. 414 

 415 

𝑀𝑠 =
𝜎𝑦(𝐹𝑙𝑢𝑥𝑠,𝑦

𝐶𝑂𝑀𝑃)

𝜇𝑠(𝜎𝑦(𝑁𝐸𝐸𝑠,𝑦
∗ ))

           EQ (3) 416 

Fig. 1c,d shows mean and standard deviations across ensemble members (µe and σe) for NEE 417 

components for latitudinal bins of 5°. The same holds for Fig.3 which shows also GPP and TER 418 

components.  419 
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Empirical orthogonal functions and spatial covariances (Fig. 2a-d). We first calculated mean spatio-420 

temporal grids of NEE climatic components across ensemble members (𝜇𝑒(𝑁𝐸𝐸𝑠,𝑦,𝑒
𝐶𝑂𝑀𝑃)). We then 421 

multiplied those with grid cell areas to convert flux densities into fluxes per grid cell, and normalized 422 

them by the standard deviation of NEE* across time and space (𝜎𝑠,𝑦(𝜇𝑒(𝑁𝐸𝐸𝑠,𝑦,𝑒
∗ )))). Empirical 423 

orthogonal functions were then computed for each climatic component without additional scaling in 424 

MATLAB using the ‘pca’ function. The spatial pattern of first principle components (leading EOFs) of 425 

NEETEMP and NEEWAI was plotted with the same color scale. The values on the color bar themselves 426 

are not informative and were therefore omitted for clarity. The leading EOF explains about 22% of 427 

spatial NEETEMP variance and ~10% of spatial NEEWAI variance in both FLUXCOM and TRENDY 428 

ensemble means. 429 

To quantify the degree of spatial covariance of NEE climatic components (inset pie charts in Fig. 2a-d) 430 

we calculated a large covariance matrix of all grid cells vs all grid cells for each NEE climatic 431 

component (annual anomalies multiplied with grid cell area), where the elements of this covariance 432 

matrix (𝑐𝑖,𝑗
𝐶𝑂𝑀𝑃) were calculated according to Equation (4):  433 

𝑐𝑖,𝑗
𝐶𝑂𝑀𝑃 = 𝑐𝑜𝑣𝑦(𝑁𝐸𝐸𝑠𝑖,𝑦

𝐶𝑂𝑀𝑃 , 𝑁𝐸𝐸𝑠𝑗,𝑦
𝐶𝑂𝑀𝑃)        EQ (4) 434 

Here i and j index the two grid cells for which the covariance is calculated. By definition the variance 435 

of the globally integrated anomalies equals the sum of all terms in the covariance matrix. To 436 

determine the share of positive vs negative spatial covariance of the total variance, we summed 437 

positive and negative covariance terms respectively (Equation 5). The sum of variances (the diagonal 438 

of the covariance matrix where i=j) was omitted in the pie charts because they accounted for less 439 

than 1% of the covariance budget. 440 

𝑡𝑐𝑜𝑣+
𝐶𝑂𝑀𝑃 = ∑ ∑ 𝑐𝑖,𝑗

𝐶𝑂𝑀𝑃
𝑗≠𝑖𝑖=1  | 𝑐𝑖,𝑗

𝐶𝑂𝑀𝑃 > 0; 𝑡𝑐𝑜𝑣−
𝐶𝑂𝑀𝑃 = ∑ ∑ 𝑐𝑖,𝑗

𝐶𝑂𝑀𝑃
𝑗≠𝑖𝑖=1  | 𝑐𝑖,𝑗

𝐶𝑂𝑀𝑃 < 0 EQ (5) 441 

Scale dependence of relative dominance of NEETEMP and NEEWAI (Fig. 2e,f). We defined relative 442 

dominance (D) of a climatic component (COMP) of NEE (e.g. NEETEMP) as the mean (µs) variance of 443 

annual anomalies (𝜎𝑦
2) of this component divided by the mean variance of NEE*: 444 

𝐷𝐶𝑂𝑀𝑃 =
𝜇𝑠(𝜎𝑦

2(𝑁𝐸𝐸𝑠,𝑦
𝐶𝑂𝑀𝑃))

𝜇𝑠(𝜎𝑦
2(𝑁𝐸𝐸𝑠,𝑦

∗ ))
          EQ (6) 445 

To illustrate how this relative dominance changes systematically with spatial scale we aggregated 446 

NEE components successively to coarser spatial resolutions starting at 0.5° (~54.000 grid cells) and 447 

ending with ‘global’(1 grid cell at 360 degrees resolution) and recomputed relative dominance for 448 

each spatial resolution. In total 25 levels of spatial resolution were used: 0.5, 1, 1.5, 2.5, 3, 4, 4.5, 5, 449 

6, 7.5, 9, 10, 12, 15, 18, 20, 22.5, 30, 36, 45, 60, 90, 180, 360 degrees.  450 

These computations were carried out for each ensemble member separately and the mean across 451 

ensemble members (µe) was plotted for each spatial resolution as dots connected with a line. The 452 

uncertainty reflected by the spread of ensemble members (σe) was plotted as light shaded area. This 453 

uncertainty is dominated by uncertainty of the mean relative dominance and not by uncertainty on 454 

the systematic change with spatial aggregation. To visualize that we provided a dark shaded area in 455 

the plots which represent the uncertainty on the ‘shape of the curve’ (U in Equation 7). This is based 456 

on the standard deviation across ensemble members after subtracting the mean relative dominance 457 

over all spatial resolutions (l in Equation 7) for each ensemble member (Equation 7). While Fig.2e,f 458 
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shows the effect of shifting relative dominance of NEEWAI vs NEETEMP with spatial resolution 459 

considering the entire global vegetated area, we repeated this analysis for different biomes (see SI-4) 460 

by considering only grid cells belonging to a specific biome.  461 

𝑈𝑙 = 𝜎𝑒(𝐷𝑙,𝑒 − 𝜇𝑙(𝐷𝑙,𝑒))          EQ (7) 462 

Covariance of temperature and water availability components of GPP and TER (Fig.4). We 463 

computed the correlation coefficient and covariance between GPP and TER components (e.g. GPPTEMP 464 

vs. TERTEMP) for each grid cell and ensemble member. The covariance terms were normalized to the 465 

mean variance of NEE* (Equation 8). Fig. 4 shows the mean across the ensemble members (µe) for 466 

FLUXCOM, and EDF 3 the mean for the TRENDY ensemble. EDF 4 shows latitudinal patterns of the 467 

spread among ensemble members (σe) for FLUXCOM and TRENDY. The robustness of FLUXCOM 468 

results with respect to different NEE flux partitioning methods is assessed in SI-6.  469 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑂𝑉𝑠(𝐺𝑃𝑃𝑠,𝑦
𝐶𝑂𝑀𝑃 , 𝑇𝐸𝑅𝑠,𝑦

𝐶𝑂𝑀𝑃) =
𝐶𝑂𝑉𝑦(𝐺𝑃𝑃𝑠,𝑦

𝐶𝑂𝑀𝑃,𝑇𝐸𝑅𝑠,𝑦
𝐶𝑂𝑀𝑃)

𝜇𝑠(𝜎𝑦
2(𝑁𝐸𝐸𝑠,𝑦

∗ ))
    EQ (8) 470 

Comparison with atmospherically based data (EDF 1). We used three data sources of 471 

atmospherically based net CO2 flux exchange. The first is based on the annually resolved Global 472 

Carbon Budget (GCP) 13, which uses measurements of atmospheric CO2 growth rate and estimates of 473 

fossil fuel emissions, ocean uptake, and land use change emissions to derive the global land flux as a 474 

residual. The second is based on the Jena CarboScope atmospheric transport inversion24 (Jena 475 

Inversion, version s81_3.7) covering the full time period of the study. The third is an ensemble of 10 476 

atmospheric inversions19 used for the REgional Carbon Cycle Assessment and Processes (RECCAP) 477 

activity covering the period 1990-2012, with each inversion covering a different time period. Four 478 

versions of the Jena Inversion have been removed from the original 14 member RECCAP ensemble to 479 

make it an independent assessment. We used globally integrated net land CO2 flux estimates from 480 

the three data sources to assess globally integrated NEE IAV of FLUXCOM and TRENDY. For the Jena 481 

and RECCAP inversions, we additionally calculated the integrated net land CO2 flux for areas north 482 

and south of 30°N. All time series were detrended. For RECCAP inversions we calculated the median 483 

estimate of the available inversion estimates per year. All time series were normalized by the 484 

standard deviation of the respective globally integrated annual net land CO2 flux. 485 
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Data availability. The FLUXCOM data that support the findings of this study are available from the 529 

Data Portal of the Max Planck Institute for Biogeochemistry (https://www.bgc-530 

jena.mpg.de/geodb/projects/Home.php) with the identifier 531 

doi:10.17871/FLUXCOM_RS_METEO_CRUNCEPv6_1980_2013_v1. The TRENDY v3 data that support 532 

the findings of this study are available from Stephen Sitch (S.A.Sitch@exeter.ac.uk) upon reasonable 533 

request. Source data of Fig.1 a-d, Fig, 2 e-f, and Fig. 3 a-f are additionally provided as Excel 534 

spreadsheets with the paper. 535 

 536 

Extended Data Figure Legends 537 

Extended Data Figure 1: Global patterns of NEE IAV for FLUXCOM (left) and TRENDY (right). Maps 538 

of NEE IAV magnitude (mean of ensemble members, a, b) defined as standard deviation of annual 539 

NEE normalized by the mean standard deviation (values above 1 indicate above average IAV). Dashed 540 

lines separate areas north and south of 30°N. Time series of integrated NEE over broad latitudinal 541 

bands (c-f) or global (g,h) for 1980-2013 normalized by the standard deviation of globally integrated 542 

NEE. Black lines show the mean of FLUXCOM or TRENDY ensemble members and the shaded area 543 

refers to the ensemble spread (1 s.d.). Independent estimates from the Global Carbon Project (GCP), 544 

the Jena Inversion, and the Regional Carbon Cycle Assessment and Processes (RECCAP) inversions (see 545 

Methods) are presented with coloured lines (see legend); correlation coefficients with those are given 546 

in the same colour. See SI-1 for further cross-consistency analysis. 547 

https://www.bgc-jena.mpg.de/geodb/projects/Home.php
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
http://doi.org/10.17871/FLUXCOM_RS_METEO_CRUNCEPv6_1980_2013_v1
mailto:S.A.Sitch@exeter.ac.uk
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Extended Data Figure 2: Local vs global dominance of NEETEMP vs NEEWAI for FLUXCOM and TRENDY 548 

ensemble members. Dots show individual ensemble members and the crosses show ensemble means 549 

with one standard deviation. Plotted is the difference of local NEEWAI and NEETEMP dominance 550 

(difference of blue and green most left data point in Fig.2 e,f, in main article) against the difference of 551 

global NEEWAI and NEETEMP dominance (difference of blue and green most right data point in Fig.2 e,f, 552 

in main article). The majority of ensemble members as well as ensemble means fall in the lower right 553 

quadrant meaning an overall agreement that NEEWAI dominates at individual grid cells (‘locally’) but 554 

NEETEMP the globally integrated flux anomaly (‘global’). 555 

Extended Data Figure 3: Spatial patterns of covariance and correlation of WAI and TEMP driven 556 

GPP and TER IAV for TRENDY models. Maps of the covariance of annual anomalies (see Equation 8 in 557 

Methods) of GPP and TER climatic components show large compensation effects (positive covariance) 558 

for WAI (a) but nearly no covariance for TEMP (c). Correlations between GPPWAI and TERWAI are large 559 

and ubiquitous positive (b) while correlations among GPPTEMP and TERTEMP are weaker with a distinct 560 

spatial pattern of negative correlations in hot regions (d). All results refer to the mean of all FLUXCOM 561 

ensemble members. See Fig.4 for equivalent FLUXCOM results, and EDF 4 for uncertainties. 562 

Extended Data Figure 4: Ensemble spread of covariation between TEMP and WAI components of 563 

GPP and TER for FLUXCOM and TRENDY. Plots show mean covariance (left) and correlation (right) 564 

between GPPTEMP and TERTEMP and GPPWAI and TERWAI for latitudinal bins of 5° for individual ensemble 565 

members (thin dotted lines) and ensemble mean (thick solid line with shaded area for 1 s.d.). Despite 566 

uncertain magnitudes of GPPTEMP and TERTEMP
 correlation (large green shaded area in right panels) 567 

their covariance is negligible (small shaded green area in left panels). In comparison, there is large 568 

positive covariance of GPPWAI and TERWAI
 but its magnitude differs substantially among ensemble 569 

members (large blue shaded area in left panels). 570 

  571 
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