
HAL Id: cea-01888854
https://cea.hal.science/cea-01888854v1

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy minimization based resource scheduling for strict
delay constrained wireless communications

Ibrahim Fawaz, Philippe Ciblat, Mireille Sarkiss

To cite this version:
Ibrahim Fawaz, Philippe Ciblat, Mireille Sarkiss. Energy minimization based resource scheduling
for strict delay constrained wireless communications. 2017 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Nov 2017, Montreal, Canada. �10.1109/GlobalSIP.2017.8308645�.
�cea-01888854�

https://cea.hal.science/cea-01888854v1
https://hal.archives-ouvertes.fr


Energy minimization based Resource Scheduling for
Strict Delay Constrained Wireless Communications

Ibrahim Fawaz1,2, Philippe Ciblat2, and Mireille Sarkiss1
1 LIST, CEA, Communicating Systems Laboratory, F-91191 Gif-sur-Yvette, France
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Abstract—This paper investigates the energy consumption min-
imization for resource scheduling in a wireless communication.
We propose to take into account a strict delay constraint for each
queued packet rather than an average delay constraint, in addi-
tion to a buffer overflow constraint. The associated optimization
problem can be modeled as Constraint Markov Decision Problem
where the actions are the number of packets sent on the known
channel at each slot. The optimal random policy is exhibited
through the resolution of standard linear programming. We show
the gain in energy is substantial compared to naive policy.

I. INTRODUCTION

Due to the now applications such Internet of Things and
very-high data rate mobile cellular systems [1], the future wire-
less communication systems have to satisfy an unprecedented
growth of the traffic and at the same time strong requirements
on the latency, packet error rate, energy consumption, etc [2].
Focusing on resource scheduling algorithms, we propose to
minimize the consumed energy by taking into account a new
constraint related to the latency.

The context of energy efficient resource scheduling algo-
rithms is huge and has been widely analyzed during the past
decade. We hereafter briefly remind the main results related to
our problem. In [3], the packet outage probability is minimized
under average power and average delay constraints. Thanks
to the so-called Little’s Law, the average delay constraint
has actually been converted into an average queue length
constraint. Finally, based on Constrained Markov Decision
Problem (CMDP) framework, they proposed a near-optimal
deterministic policy that chooses the number of packets to
send and the transmission power according to the queue state
and the channel conditions. In [4], the average delay (or
equivalently the average queue length) is minimized under
average power constraint. Once again, the problem can be
formulated through a CMDP. Using a Lagrangian approach
enabling to transform the problem into an unconstrained MDP,
they showed an optimal stationary random policy exists. In
[5], the average power is minimized under average delay and
packet outage probability constraints. They proposed a simple
but sub-optimal deterministic policy that chooses the number
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of packets to send according to the queue state whenever the
channel magnitude exceeds a pre-fixed threshold. In [6], the
average power is minimized under average delay constraint.
Like [4], they converted the CMDP into an unconstrained
MDP in order to exhibit the optimal stationary policy that
eventually chooses to transmit more packets when the buffer
occupancy increases. In [7], the average power is minimized
under average delay constraint. Unlike [6], they proposed
an online implementation of the policy characterization. In
addition, their implementation was adapted to the uncertainty
of the underlying Markov chain transition matrix and of the
packet arrival distribution, by using virtual states called post-
decision states and leading to modifications of the Relative
Value Iteration algorithm. Whereas above contributions have
proposed efficient solutions when average delay is the relevant
metric, they are not adapted yet to many future applications
requiring stringent delay. Therefore, it is of interest to replace
the average delay constraint with a strict delay constraint,
i.e., the packets should be scheduled before a deadline. For
instance, in [8], bit scheduling for one packet with strict delay
and no random packet arrival is performed. In [9], a predefined
set of packets have to be sent under a strict deadline for any
active user.

Our main contribution is to find an optimal stationary policy
minimizing the average power under strict delay constraint
with random packet arrival. We formulate the problem as a
CMDP, solve it using Linear Programming (LP), and compare
the optimal policy to a naive one based on best effort strategy.

The remainder of the paper is organized as follows. In
Section II, we describe the system model. In Section III, we
formulate the optimization problem as a CMDP. In Section IV,
we solve the CMDP using LP. Numerical results are provided
and analyzed in Section V. Finally, concluding remarks and
future works are drawn in Section VI.

II. SYSTEM MODEL

We consider a slotted wireless communication over block
flat-fading channel. The duration of each slot is Ts. At slot
n, the channel is constant with complex-valued amplitude hn.
We define the channel gain as follows xn = |hn|2. We assume
{xn}n is an i.i.d. process following a distribution into a finite
set X .



The transmitter has a buffer of size B packets. The packets
(coming from the upper layer) are of size L bits. They are
always queued in the buffer before the transmitter decides to
transmit them. The transmitter receives an packets from the
upper layer between slot n−1 and n. We assume {an}n is an
i.i.d. process following a Poisson distribution with an average
arrival rate γ, i.e., the probability to generate a packets at time
n is

pA(an = a) = e−γ .
γa

a!
.

At the beginning of slot n, the queue length in the buffer is
denoted by qn packets. Notice that qn ∈ {0, ..., B}. We also
denoted by un the number of transmit packets during slot n.

A packet is discarded from the buffer
• if there is a buffer overflow, i.e., if the number of packets

in the queue exceeds the buffer size. In that case, we
discard the arrival packets in overflow; or

• if there is a delay no-fulfillment, i.e., it stays in the queue
more than K0 slots.

While the buffer overflow can be described using qn, other
variables (indicating more precisely the buffer configuration)
are needed for analyzing the delay no-fulfillment. Conse-
quently, we denoted by ki(n) the time (counting in slot) spent
in the buffer by the i-th packet at time n as shown in Fig. 1.
By convention, ki(n) = −1 means there is no i-th packet. So
ki(n) ∈ {−1, ...,K0} for any i and k. Moreover, according to
Fig. 1, we get ∀i 6 j, kj(n) 6 ki(n).

Buffer of B packets (ordered from the oldest to the newest)

k1(n) ... kqn(n) −1 ... −1

qn packets empty area

Fig. 1: Buffer configuration at slot n.

For a channel with a gain x, a power spectral density N0,
and a signal bandwidth W , the power required to transmit
u packets within a slot of duration Ts can be expressed as
follows [7]:

P (x, u) =
WN0

x

(
2

uL
WTs − 1

)
. (1)

During slot n, the transmitter sends the un oldest packets
through the channel of gain xn with a power P (xn, un). We
assume Channel State Information at the Transmitter (CSIT).

III. PROBLEM FORMULATION

Our objective now is to find the optimal policy minimizing
the power consumption under strict delay outage and buffer
overflow outage constraints. The policy is a sequence of
actions that specifies at each slot the number of packets u to
be scheduled based on the history of the system and the past
actions. A powerful tool for such a problem may be the so-
called CMDP. We show, in this section, that our problem boils

down CMDP by defining appropriate states, actions, reward,
and constraints [10].

A. State Space

The state space S is the set of s = (k, x) where
• k = [k1, · · · , kB ] is the vector indicating the age of each

packet in the buffer, and
• x is the channel gain.

Notice that in the state-of-the-art [3]–[7], the states were
different since k were replaced with the queue length q. Here
the knowledge of q is not enough to describe our buffer due the
strict delay constraint. Actually, q is even unnecessary when
k is given since

qn = max {i | ki(n) > 0} . (2)

The state space is finite, and the total number of possible
states is |S| which is upper-bounded by (K0 + 2)B .|X |. As
the packets are queued in an increasing order of time spent
in the buffer, we always have k1(n) ≥ k2(n) ≥ · · · ≥ kqn(n)
which dramatically reduces the state space compared to the
upper-bound. For instance, if we consider B = 5, K0 = 2,
and |X | = 3, the upper-bound is 3072 while, by removing the
impossible combination of components in k, our system only
considers 168 states.

B. Action Space

The action space U denotes the number of packets u that
the transmitter will send through the channel. Let U0 be the
maximum number of packets that can be transmitted during
a slot. U0 is obtained by using Eq. (1) with the maximum
available power Pmax and the best channel coefficient xmax =
maxx∈X x. Finally, the action space is finite and the number
of actions is |U| = U0 + 1.

C. Markov Decision Process

During slot n, wn = max(un,mn) packets leave the buffer
(either transmitted or discarded), where un is the number of
packets transmitted and mn is the number of packets with
delay K0 slots in the buffer. The age of the remaining packets
in the buffer is incremented by 1. Moreover, an+1 new packets
arrive to the buffer with age 0. Therefore the update for vector
k from slot n to slot n+ 1 can be done as follows:

k1(n+ 1) = kwn+1(n) + 1
...

kqn−wn
(n+ 1) = kqn(n) + 1

kqn−wn+1(n+ 1) = 0
...

kqn−wn+an+1(n+ 1) = 0
kqn−wn+an+1+1(n+ 1) = · · · = kB(n+ 1) = −1.

(3)

Notice that when qn − wn + an+1 is larger than B, the
buffer accepts a part of the incoming packets and discards the
remaining (qn−wn+an+1−B) incoming packets. In that case,
the buffer is full (qn−wn+ an+1 = B) and the last equation



in (3) is omitted. We thus remark that kn+1 only depends on
previous state kn, action un and external perturbation an+1.

Therefore we can define p(s′|s, u) as the transition probabil-
ity to fall in the state s′ = (k′, x′) after taking action u in the
current state s = (k, x). Assuming that the buffer and channel
states are independent and channel states are not correlated,
the transition probability satisfies the following equation:

p(s′|s, u) = p(k′|k, u).p(x′) (4)

where p(x′) is the distribution of the channel states, and where
p(k′|k, u) indicates the probability transitions between buffer
states. After tedious but simple derivations, we obtain:
If u > q or k′i > ki + 1 or q′ < q − w,
p(k′i|ki, u) = 0 else
If k′i 6= ki+u + 1 and ki+u 6= −1,
p(k′i|ki, u) = 0 else
If k′i > 0 and ki+u = −1,
p(k′i|ki, u) = 0 else
If q = B and u 6= 0 and k′i > 0,∀i ∈ {q − w + 1, ..., B},
p(k′i|ki, u) = 0 else
If q′ < B,
p(k′i|ki, u) = e−γ × γa

a! else
If q′ = B,
p(k′i|ki, u) = 1−Q(B − q + w, γ).
end,
where Q is the regularized gamma function.

D. Constrained Markov Decision Problem

To complete the description of the CMDP, it remains to
define the cost and constraint functions. In the context of
infinite horizon CMDP, we consider time-averaged cost, where
at a given time slot n ∈ {0, · · · , N}, the system state is
denoted by sn = (kn, xn) and µ(sn) = un is the action
deciding the number of packets to be transmitted. We would
like to find the optimal policy µ? minimizing the average
consumed power given by the following equation:

P
µ
= lim
N→+∞

1

N
Eµ
[

N∑
n=1

P (xn, un)

]
(5)

where E is the expectation with respect to the policy µ and
where P (xn, un) is the instantaneous power cost when action
un is performed at state sn and can be derived using Eq. (1).

At a given slot n, when the system state is sn and the
performed action is un, the probability to discard packets due
to delay no-fulfillment is given by the following equation

εd(sn, un) =

{
0 if mn = 0 or mn 6 un
1 else. (6)

We thus define the average delay no-fulfillment outage prob-
ability as:

εµd = lim
N→+∞

1

N
Eµ
[

N∑
n=1

εd(sn, un)

]
. (7)

At a given slot n, when the system state is sn and the
performed action is un, the buffer overflow occurs when qn−

wn+ an+1 > B. The probability of overflow thus is obtained
as follows

εo(sn, un) =

+∞∑
a=B−qn+wn+1

e−γ .
γa

a!

= 1−Q(B − qn + wn + 1, γ). (8)

Thus, we define the average buffer overflow outage probability
as:

εµo = lim
N→+∞

1

N
Eµ
[

N∑
n=1

εo(sn, un)

]
(9)

Finally, our optimization problem, which boils down to
CMDP, states as follows

Problem 1:

µ? = argmin
µ

P
µ

(10)

s.t. εµd 6 Dout (11)
εµo 6 Oout (12)

where Dout and Oout are the pre-defined thresholds for the
delay and overflow outage probabilities respectively.

IV. PROBLEM RESOLUTION

As Problem 1 is CMDP, it can be solved using standard
LP techniques to find the optimal offline randomized policy,
which consists in a probabilistic mapping from the state space
S to the action space U . To exhibit the optimal policy, we
are looking for the so-called occupation measure defined as
a probability measure over the set of state-action pairs and
denoted by ρµ(s, u), The average cost function (here, the
power) as well as the average outage probabilities constraints
(here, the delay and the overflow) can be expressed with
respect to ρµ(s, u). In addition, it is shown in [10], that the
optimal policy is stationary, which means it does not depend
on the time at which the decision is made. Therefore Problem
1 can be formulated as the following LP problem.

Problem 2:

ρ? = argmin
ρ

∑
s∈S,u∈U(s)

ρµ(s, u)P (x, u) (13)

s.t.
∑

s∈S,u∈U(s)

ρµ(s, u)εd(s, u) 6 Dout (14)

∑
s∈S,u∈U(s)

ρµ(s, u)εo(s, u) 6 Oout (15)

∑
s∈S,u∈U(s)

ρµ(s, u) = 1 (16)

∑
s′∈S,u∈U(s)

ρµ(s′, u)p(s|s′, u) = 1, ∀s ∈ S

(17)

where U(s) is the set of possible actions when the system is
in state s.
Notice that Eq. (17) comes from the Markov property of the
process (sn, un).



The optimal stationary policy µ? is then obtained from ρ∗

according to the following equation

µ?(u|s) = ρ∗(s, u)∑
u′∈U(s) ρ

∗(s, u′)
(18)

whenever the denominator is non-zero. When it is zero, µ?(.|s)
is chosen to be an arbitrary probability measure over U(s)
[10]. Such states are known to be transient state and the taken
action does not affect the system in the long-term. Moreover
we have remarked that the obtained optimal policy chooses
at most 3 (instead of U0) possible actions randomly for each
state since there are 2 constraints as already evoked in [10].
Actually in the majority of states, the optimal policy chooses
even a single action in a deterministic way.

V. NUMERICAL RESULTS

We evaluate numerically the optimal policy obtained for the
resolution of Problem 2. We consider a system as described in
Section II with the following characteristics: the slot duration
is Ts = 1 ms, the channel states x takes 3 possible values from
the finite set X = {−5.41,−1.59, 3.18} dB with respective
probabilities 0.63, 0.32, and 0.05. The noise power spectral
density is N0 = −87 dBm/Hz and the allocated bandwidth is
W = 5 MHz. We simulate i.i.d arrivals following a Poisson
distribution with mean γ = 2 packets per slot. We assume
that packets are of equal size L = 5000 bits, and the buffer is
of size B = 5 packets. The maximum delay is K0 = 2 (i.e.,
in absolute time K0Ts = 2 ms) . The maximum available
power at the transmitter is Pmax = 2 mW. According
to Eq. (1), this system allows to transmit up to 8 packets
per slot. Due to the buffer size, we fix U0 = 5 packets per slot.

Fig. 2 shows the convergence behavior of the average power
for various delay outage probabilities where the overflow
outage probability Oout is fixed 0.4. One can notice that as
the delay constraint becomes tighter, the average consumed
power significantly increases. Indeed, when the delay required
by the application is stricter, the system is forced to send more
packets even if the channel is in a bad state.

Fig. 3 compares the average consumed power versus the
delay outage probability for different overflow outage proba-
bilities. Moreover we compare the optimal policy with a naive
one which forces the transmitter to flush the buffer, i.e., send
all the packets in the buffer whatever the channel conditions.
Notice that the system characteristics have been chosen such
that the naive policy satisfies the overflow outage probability
constraint. The delay outage probability constraint is always
satisfied by the naive policy since the packets do not stay in
the buffer. As one can observe, our policy gives strongly better
performance in terms of power consumption as it adapts its
transmission rate according to the channel conditions while
satisfying the requirements of the application. The overflow
constraint is inactive when Oout = 0.4 (blue line), because
satisfying the delay constraint is more crucial. In contrast,
when Oout = 0.05 (pink line), the delay outage probability is
inactive. In general, requiring a stronger overflow constraint

Fig. 2: Convergence of average power for various delay outage
probability constraints.

Fig. 3: Average power versus delay outage probability for
different policies.

increases the energy consumption. Notice that after a certain
value of Dout, the overflow constraint becomes more critical
making the delay constraint inactive leading to a error floor.

VI. CONCLUSION AND FUTURE WORKS

We have addressed strict delay constrained scheduling
problem. We have solved the power-efficient optimization
problem using CMDP framework and so linear programming
techniques. The policy adjusts the number of transmitted
packets according to the channel conditions, such that the
power consumed is minimized while maintaining the delay
and overflow outage probabilities below pre-defined thresholds
given by the application. As an extension to this work, we aim
to include offloading capabilities to our system, and adapt
it to the sustainable next generation 5G mobile networks
by investigating an energy harvesting communication system
where the terminal can scavenge energy from surrounding
environment to power their communication and computing.
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