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Abstract—We derive upper bounds on the rate-memory trade-
off of cache-aided erasure broadcast channels with Kw weak
receivers and Ks strong receivers. We follow a decentralized
placement scenario, where coordination is not needed prior to
the delivery phase. We study two setups: a standard scenario
without eavesdropper and a wiretap scenario with an external
eavesdropper. For both scenarios, we propose joint cache-channel
coding schemes that efficiently exploit the cache contents and take
into consideration the users’ channel characteristics at the same
time. We show that the decentralized placement strategy causes
only a small increase in delivery rate compared to centralized
strategy. Similarly, when cache sizes are moderate, the rate is
increased only slightly by securing the communication against
external eavesdroppers. This is not the case when cache memories
are small and large.

Index Terms—Coded caching, receiver caching, joint cache-
channel coding, erasure broadcast channels, weak secrecy.

I. INTRODUCTION

Coded caching was introduced by Maddah-Ali and Nieson
in [1], [2] to reduce network congestion during periods of
peak-traffic by prestoring fragments of popular contents at
users’ caches during off-peak hours. Designing carefully the
placement phase allowed them to set a coded-multicasting
delivery phase where the transmitter serves simultaneously
multiple users while benefiting from their cached contents.
In these works, the delivery communication takes place over
an error-free broadcast channel (BC) and all users have
equal cache sizes. In addition, centralized and decentralized
placement strategies were studied showing significant gains
over traditional caching with uncoded unicast transmission.
In the centralized setup [1], the central server is aware of the
active users in the network. Yet without any knowledge on the
users’ demands, it coordinates the placement of fragments of
all possibly requested files in the receivers’ cache memories.
Decentralized algorithms lack this coordination [2] because
they cannot depend on the set of active users. Indeed, in
practice, the identities or the number of active users may not
be known to the server ahead delivery. This might be due to
users’ mobility and their connection to another server between
placement and delivery phases. Therefore, in the decentralized
placement scenario, the users fill their caches randomly and
independently from each other with an equal number of bits.
Then, prior to the delivery phase, the server is informed about

the active users in the network, the caching contents and the
requests of each user. Various extensions of the decentralized
coded caching scheme have since then been proposed, for
example in [3]–[5]. In particular, Sengupta et al. [3] combined
decentralized coded caching with a secure delivery scheme that
XORs the delivery messages with prestored random keys to
secure the communication from an external eavesdropper. All
these works assumed as [2] that the delivery communication
occurs over a common noise-free bit-pipe to all receivers.

In this paper, we investigate decentralized coded caching
with and without secrecy constraint when the delivery phase
takes place over an erasure BC with a set of weak receivers
that have cache memories and a set of strong receivers without
cache memories. The centralized caching counterparts of these
setups were studied in [6], [7] and in our previous works
[8]–[10]. As in [8], in this paper communication needs to be
kept secret from an external eavesdropper that does not have
access to the cache memories but to a degraded version of
the channel outputs at the weak receivers. The eavesdropper
is not allowed to learn any information about each of the
messages individually. A stronger secrecy constraint where the
eavesdropper is not allowed to learn any information about all
the possibly requested messages was considered in [9], [10].

We present coding schemes and upper bounds on the
delivery rate-memory tradeoff, i.e., the smallest rate of trans-
mission for given cache sizes, for the setups with and without
secrecy constraint. Our coding schemes build on a combination
of various piggyback codes [6], [7] in the standard setup
and a version thereof involving secure piggyback coding [8]
and one-time pads with non-requested message bits in the
secure setup. Piggyback coding is a joint cache-channel coding
scheme where the encoding and decoding operations exploit
simultaneously the cache contents and the channel statistics,
improving thus further the caching gains compared to separate
cache-channel coding schemes [2].

Unlike the secure caching schemes of [3], we resign from
placing secret keys in the cache memories. In fact, since
we require only that each file is individually kept secure,
such secret keys are not very helpful. They can simply be
replaced by bits of files that are not requested because XORs
of bits belonging to different messages are secure by definition.
From a practical point of view, caching secret keys is not
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Fig. 1. Erasure BC with Kw weak receivers with cache memories of size
MF bits and Ks = K − Kw strong receivers without caches. We study the
scenarios with and without eavesdropper, depicted with a dashed line.

desirable because it requires certain coordination between the
transmitter and some receivers before the delivery phase [3],
which otherwise is not required in decentralized caching.

II. PROBLEM DEFINITION

We first describe the standard scenario without eavesdropper
and then the scenario where communication needs to be kept
secret from an external eavesdropper.

A. Standard Scenario without Eavesdropper

We consider an erasure BC with a single transmitter and K
receivers as shown in Figure 1 without the eavesdropper. The
input alphabet of the BC is X := {0, 1} and all receivers have
the same output alphabet Y := X ∪∆, where ∆ indicates the
loss of a bit at a receiver. The K receivers are partitioned into
two sets Kw := {1, . . . ,Kw} and Ks := {Kw + 1, . . . ,K},
and the receivers in each of the two sets have same channel
statistics. Specifically, the Kw receivers in set Kw are weak
and have the same erasure probability δw > 0 whereas the
Ks = K − Kw receivers in Ks are strong and have the same
erasure probability δs > 0 such that

0 < δs ≤ δw < 1. (1)

Each weak receiver has access to a local cache memory of
size MF bits, while strong receivers have no cache memories.

The transmitter can access a library of D > K indepen-
dent files (messages) W1, . . . ,WD, each consisting of F i.i.d.
random bits. We denote the b-th bit of file Wd by Wd,b.
Every receiver k ∈ K := {1, . . . ,K} demands exactly one
file Wdk from the library. So, dk ∈ D describes the demand
of Receiver k, and d := (d1, . . . , dK) ∈ DK the demand
vector of all the receivers.

Communication takes place in two phases: a decentralized
placement phase where each weak receiver fills its cache
memory with randomly chosen bits from the library and a
centralized delivery phase where the demanded files Wdk , for
k ∈ K, are conveyed to the receivers. During the placement
phase, the demand vector d is unknown to the transmitter
and the receivers. As is standard for decentralized caching,
the cache placement at a given receiver cannot depend on the
number of receivers K in the system. That means each weak

receiver i ∈ Kw computes its cache content Vi by means
of a randomized placement function gi :

{
1, . . . , 2F

}D →{
1, . . . , 2MF

}
that does not depend on K:

Vi := gi(W1, . . . ,WD). (2)

Prior to the delivery phase, the demand vector d as well
as the realization of all randomized placement functions
g1, . . . , gKw are learned by the transmitter and all the legitimate
receivers. The delivery phase is of length n. That means, for
a given demand vector d, the transmitter sends inputs

Xn = fd(W1, . . . ,WD), (3)

for some choice of the encoding function fd :
{

1, . . . , 2F
}D →

Xn that can depend on the demand vector d as well as on the
realizations of the placement functions g1, . . . , gKw .

Each weak receiver i ∈ Kw decodes its demanded message
Wdi based on the observed outputs Y ni := (Yi,1, . . . , Yi,n) and
its cache content Vi:

Ŵi := ϕi(Y
n
i , Vi), i ∈ Kw, (4)

for some function ϕi : Yn × V →
{

1, . . . , 2F
}

. Each strong
receiver j ∈ Ks decodes its demanded message based only on
the observed outputs Y nj :

Ŵj := ϕj(Y
n
j ), j ∈ Ks, (5)

for some function ϕj : Yn →
{

1, . . . , 2F
}

. Notice that all
functions ϕ(n)

1 , . . . , ϕ
(n)
K can depend on the demand vector d

and the realizations of the placement functions g1, . . . , gKw .
A decoding error occurs whenever Ŵk 6= Wdk , for some

k ∈ K. We consider the worst-case probability of error over
all feasible demand vectors

PWorst
e := max

d∈DK
P

[
K⋃
k=1

{
Ŵk 6= Wdk

}]
. (6)

Definition 1. A rate-memory pair (R,M) is achievable for
the described setup, if for every ε > 0 and sufficiently large
blocklength n, there exist caching, encoding, and decoding
functions so that

PWorst
e ≤ ε (7)

Definition 2. For cache memory size MF, the rate-memory
tradeoff R?(M) is the smallest rate R so that the pair (R,M)
is achievable:

R?(M) := inf
{
R : (R,M) achievable

}
. (8)

A first main goal of this paper is to provide a good upper
bound on R?(M).

B. Scenario with an Eavesdropper

We also consider the scenario with an external eavesdropper
Eve in Figure 1. The eavesdropper has no access to the cache
memories. During the delivery phase, it observes the channel
outputs Zn := (Z1, . . . , Zn), where each Zt is the output of
a binary erasure channel from the input Xt. For simplicity,



the eavesdropper is assumed to be weaker than all legitimate
receivers. So its erasure probability δz satisfies

0 < δs ≤ δw ≤ δz ≤ 1. (9)

Communication needs to be kept secret from the eavesdropper
in the sense that Zn should provide no information about any
of the messages W1, . . . ,WD individually. To avoid confusion,
and emphasize its dependence on the secrecy constraint, we
call the length of the delivery phase in this setup nsec and the
corresponding delivery rate Rsec := nsec

F .

Definition 3. A rate-memory pair (Rsec,M) is securely achiev-
able if for every ε > 0 and sufficiently large blocklength nsec,
there exist caching, encoding, and decoding functions so that
the worst-case error probability defined in (6) satisfies:

PWorst
e ≤ ε, (10a)

and the described individual secrecy constraint holds:

1

n
I(Wd;Z

n) < ε, ∀d ∈ D. (10b)

Definition 4. For cache memory size MF, the secrecy rate-
memory tradeoff R?sec(M) is the smallest rate Rsec so that the
pair (Rsec,M) is securely achievable:

R?sec(M) := inf
{
Rsec : (Rsec,M) securely achievable

}
. (11)

A second main goal of this paper is to provide a good upper
bound on R?sec(M).

III. NON-SECURE DECENTRALIZED CACHING

Consider the standard scenario without secrecy constraint.
Define for each ` ∈ {0, 1, . . . ,Kw}:

γ(`) :=

(
M

D

)`(
1− M

D

)Kw−`

. (12)

Theorem 1. The rate-memory tradeoff is upper bounded as:

R?(M) ≤

Kw∑̀
=1

(
Kw
`

)
γ(`−1)

1− δw
+

Ksγ
(0)

1− δs

+

Kw∑̀
=1

(
Kw
`

) [
Ks(1− δw)γ(`) − (δw − δs)γ(`−1)

]+
(1− δw)(1− δs)

. (13)

Proof. Based on the schemes in Sections III-A and III-B.

Figure 2 illustrates the upper bound in Theorem 1 at hand
of an example. The figure also shows the performance of
a separation-based scheme that combines the Maddah-Ali
& Niesen decentralized coded caching scheme [2] for the
weak receivers with a stand-alone capacity-achieving code
for erasure BCs. This code delivers to the weak receivers
the XORs produced by the coded caching scheme, and to
the strong receivers their requested files. The lower-most line
shows the performance of the centralized scheme in [7].

Figure 2 shows that joint cache-channel coding reduces
the delivery rate significantly compared to separate coding.
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Fig. 2. Upper bounds on R?(M) for δw = 0.7, δs = 0.2, Kw = 5, Ks = 3,
and D = 10.

It also shows that the increase in the delivery rate caused by
decentralized caching is small.

A. Scheme for Kw = 3 and Ks = 1

We first describe the scheme for Kw = 3 and Ks = 1. Fix
a file size F and a small positive ε > 0. Let

Mε := M− ε. (14)

Decentralized placement phase: For each d ∈ D and each
b ∈ {1, . . . ,F}, every weak receiver i ∈ Kw caches the b-th
bit of file Wd, i.e., Wd,b, with probability Mε

D , independently
of all other bits and of all other receivers. Notice that by the
weak law of large numbers and by (14), the probability that
any given weak receiver has stored no more than MF bits tends
to 1 as F → ∞. So, the described cache placement satisfies
the constraint on the cache sizes with very high probability.

For any given subset of receivers G ⊆ Kw, define for each
file Wd the bits stored exclusively at receivers in G:

Wd,G :=
{
Wd,b : Wd,b cached exclusively at receivers in G

}
.

The cache content at the three weak receivers is:

V1 =
{
Wd,{1},Wd,{1,2},Wd,{1,3},Wd,{1,2,3}

}D
d=1

, (15a)

V2 =
{
Wd,{2},Wd,{1,2},Wd,{2,3},Wd,{1,2,3}

}D
d=1

, (15b)

V3 =
{
Wd,{3},Wd,{1,3},Wd,{2,3},Wd,{1,2,3}

}D
d=1

. (15c)

Notice that by the weak law of large numbers, for each
G ⊆ Kw and each d ∈ D:∣∣Wd,G

∣∣
F

→
(
Mε

D

)|G|(
1− Mε

D

)Kw−|G|

as F→∞. (16)

Thus, for large file sizes F and for any file Wd and ` ∈
{1, 2, 3}, approximately the same number of bits is exclusively
cached at any subset of ` weak receivers. We therefore define
F(0),F(1),F(2),F(3) as the expected number of bits that are
not cached at all, that are cached at a single weak receiver,
at pairs of weak receivers, and at all three weak receivers,
respectively. We have for ` ∈ {0, . . . ,Kw}:

F(`) := γ(`)ε F where γ(`)ε :=

(
Mε

D

)`(
1− Mε

D

)Kw−`

. (17)



Notice that γ(`)ε → γ(`) as ε→ 0.
Centralized delivery phase: Each receiver k ∈ {1, . . . , 4}

demands message Wdk . Before transmission starts, the
transmitter divides each of the submessages Wd4,{1},
Wd4,{2},Wd4,{3},Wd4,{1,2},Wd4,{2,3},Wd4,{1,3},Wd4,{1,2,3}
intended to Receiver 4 into two parts

Wd4,{i} =
(
W

(1)
d4,{i},W

(2)
d4,{i}

)
, i ∈ {1, 2, 3}, (18)

Wd4,{i,i′} =
(
W

(1)
d4,{i,i′},W

(2)
d4,{i,i′}

)
, i, i′ ∈ {1, 2, 3}

and i 6= i′, (19)

Wd4,{1,2,3} =
(
W

(1)
d4,{1,2,3},W

(2)
d4,{1,2,3}

)
. (20)

The two parts in (18) are of sizes F(1,1) and F(1,2), the two
parts in (19) of sizes F(2,1) and F(2,2), and the two parts in
(20) of sizes F(3,1) and F(3,2), such that for ` = 1, 2, 3,

F(`,1) = min

{
F(`),F(`−1) δw − δs

1− δw

}
(21)

F(`,2) = max

{
0,F(`) − F(`−1) δw − δs

1− δw

}
; (22)

The delivery phase applies time-sharing over 4 subphases of
lengths n1, n2, n3 and n4 bits, that sum up to n bits in total.
Subphases 1 and 2 are further divided into three equally-long
periods of n1/3 and n2/3 bits, respectively.

Wdi,∅

W
(1)
d4,{i}

Codeword
corresponding
to Wdi,∅

and W
(1)

d4,{i}

Fig. 3. Structure of standard piggyback codebook with codewords arranged
in an array. Here the rows encode Wdi,∅ and the columns W (1)

d4,{i}
.

Consider Subphase 1. For each of the three periods i ∈
{1, 2, 3}, the transmitter creates a standard piggyback [6]
codebook

C :=
{
x1(wr, wc) : wr ∈

{
1, . . . , 2F

(0)}
,

wc ∈
{

1, . . . , 2F
(1,1)}}

, (23)

with entries drawn i.i.d. according to a Bernoulli-1/2 distri-
bution. The codewords of such a codebook are arranged in
an array with rows encoding the message wr and columns
encoding the message wc, see Figure 3. The transmitter then
uses such a piggyback codebook in period i ∈ {1, 2, 3} to send
Wdi,∅ to Receiver i and W

(1)
d4,{i} to Receiver 4. That means,

it sends the codeword

x1

(
Wdi,∅,W

(1)
d4,{i}

)
. (24)

Weak receiver i has stored W (1)
d4,{i} in its cache and can decode

based on the restricted codebook Csub,i
(
W

(1)
d4,{i}

)
consisting

only of the codewords in the column indicated by W (1)
d4,{i}:

Csub,i
(
W

(1)
d4,{i}

)
:=
{
x1

(
wr,W

(1)
d4,{i}

)
: wr ∈

{
1, . . . , 2F

(0)
}}

.

Its decoding performance is thus the same as if this message
W

(1)
d4,{i} had not been sent at all. Strong receiver 4 has no

cache memory and decodes both messages Wdi,∅ and W (1)
d4,{i}

based on the entire codebook C.
Decoding in this subphase is reliable, when

n1 = max

{
3F(0)

1− δw
,

3F(0) + 3F(1,1)

1− δs

}
+ εF =

3F(0)

1− δw
+ εF.

(25)
Here, the second equality holds by the choice of F(1,1) in (21).

Consider now Subphase 2. For the transmission in Period 1,
the transmitter uses a standard piggyback codebook to transmit

Ww,{1,2} := Wd1,{2} ⊕Wd2,{1} (26)

to the weak receivers 1 and 2 and the message W (1)
d4,{1,2} to

the strong receiver 4. That means, it applies a codebook as in
Figure 3, but where message Wdi,∅ is replaced by Ww,{1,2}

and message W
(1)
d4,{i} by W

(1)
d4,{1,2}. The transmitter then

sends the codeword in row Ww,{1,2} and column W
(1)
d4,{1,2}

of this codebook over the channel. Receivers 1 and 2 can
retrieve message W

(1)
d4,{1,2} from their cache memories, and

thus decode message Ww,{1,2} based only on the column of
the codebook that corresponds to W

(1)
d4,{1,2}. Receiver 1 then

retrieves message Wd2,{1} from its cache memory and recovers
its desired message part Wd1,{2} = Ww,{1,2} ⊕Wd2,{1}. Re-
ceiver 2 proceeds analogously to recover Wd2,{1}. Receiver 4

decodes both messages Ww,{1,2} and W (1)
d4,{1,2} based on the

entire codebook.
Using similar steps, in Period 2, messages Wd1,{3}, Wd3,{1}

and W
(1)
d4,{1,3} are sent to Receivers 1, 3 and 4. In Period 3,

messages Wd2,{3}, Wd3,{2} and W
(1)
d4,{2,3} are sent to Re-

ceivers 2, 3 and 4. Decoding in this subphase is reliable, when

n2 = max

{
3F(1)

1− δw
,

3F(1) + 3F(2,1)

1− δs

}
+ εF =

3F(1)

1− δw
+ εF,

(27)
where the second equality holds by (21).

Consider Subphase 3. The transmitter uses a standard pig-
gyback codebook to transmit the message

Ww,{1,2,3} = Wd1,{2,3} ⊕Wd2,{1,3} ⊕Wd3,{1,2} (28)

to Receivers 1, 2 and 3 and the message W (1)
d4,{1,2,3} to Re-

ceiver 4. Decoding is done in a similar way as in Subphase 2.
Decoding in this subphase is reliable, when

n3 = max

{
F(2)

1− δw
,
F(2) + F(3,1)

1− δs

}
+ εF =

F(2)

1− δw
+ εF,

(29)
where the second equality holds by (21).

In Subphase 4, the transmitter uses a capacity-achieving



point-to-point code to transmit to Receiver 4 the missing parts
of its message:(

Wd4,∅,W
(2)
d4,{1},W

(2)
d4,{2},W

(2)
d4,{3},W

(2)
d4,{1,2},

W
(2)
d4,{1,3},W

(2)
d4,{2,3},W

(2)
d4,{1,2,3}

)
. (30)

Decoding in this subphase is reliable, when

n4 =
F(0) + 3F(1,2) + 3F(2,2) + F(3,2)

1− δs
+ εF. (31)

As ε→ 0, the described coding scheme achieves the upper
bound on R?(M) in Theorem 1 for Kw = 3 and Ks = 1.

B. General Scheme

Fix a file size F and a small ε > 0. Let Mε = M− ε.
Decentralized placement phase: The placement is described

in Section III-A. The cache content at a given weak receiver i
can then be written as:

Vi = {Wd,G : G so that i ∈ G }Dd=1 . (32)

For sufficiently large file sizes F and for any file Wd and all
` ∈ {1, . . . ,Kw}, approximately the same number of bits is
exclusively cached at any of the subsets of ` weak receivers.
As before, let F(`) be the expected number of bits cached at
a given size-` subset of receivers and F(0) be the number of
bits cached at no receiver. See (17) for the value of each F(`).

Centralized delivery phase: The delivery phase is divided
into Kw + 1 subphases. Denote by n` the number of bits sent
in Subphase ` and by n the total number of sent bits. Each
subphase ` ∈ {1, . . . ,Kw} is further divided into

(
Kw
`

)
periods,

each intended to ` weak receivers and all the strong receivers.
Subphase Kw + 1 is intended only to the strong receivers.

Before transmission starts, the transmitter divides each of
the strong receivers’ submessages into 2 parts:

Wdj ,G =
(
W

(1)
dj ,G

,W
(2)
dj ,G

)
, ∀j ∈ Ks,∀G ⊆ Kw. (33)

If G is of size |G| = `, then the two parts in (33) are of sizes

F(`,1) = min

{
F(`),F(`−1) δw − δs

Ks(1− δw)

}
, (34)

F(`,2) = max

{
0,F(`) − F(`−1) δw − δs

Ks(1− δw)

}
. (35)

Consider Subphase ` ∈ {1, . . .Kw}. Let G(`)
1 , . . . , G

(`)

(Kw
` )

denote the
(
Kw
`

)
subsets of {1, . . . ,Kw} of size `. In each

period p ∈ {1, . . . ,
(
Kw
`

)
} of Subphase `, the transmitter uses

the standard piggyback codebook in Figure 3 to transmit the
message

W
w,G

(`)
p

:=
⊕
i∈G(`)

p

W
di,G

(`)
p \{i}

(36)

to all weak receivers in G(`)
p , and the message

W
(1)

s,G
(`)
p

:=

(
W

(1)

dKw+1,G
(`)
p

, . . . ,W
(1)

dK,G
(`)
p

)
(37)

to all the Ks strong receivers.
The following choice of the length of Subphase ` ensures

that the probability of decoding error vanishes at all the
receivers as F→∞:

n` = max

{(
Kw
`

)
F(`−1)

1− δw
,

(
Kw
`

) (
F(`−1) + KsF

(`,1)
)

1− δs

}
+ εF

=

(
Kw
`

)
F(`−1)

1− δw
+ εF, (38)

where the second equality holds by (34).
In subphase Kw + 1, the transmitter uses a standard BC

code to send the missing parts of their messages to the strong
receivers. The probability of decoding error tends to 0 as
F → ∞ in this last subphase, if

nKw+1 =

KsF
(0) + Ks

Kw∑̀
=1

(
Kw
`

)
F(`,2)

1− δs
+ εF. (39)

The total number of sent bits thus satisfies

n

F
=

Kw∑̀
=1

(
Kw
`

)
γ
(`−1)
ε

1− δw
+

Ksγ
(0)
ε + Ks

Kw∑̀
=1

(
Kw
`

)
F(`,2)

F

1− δs
+(Kw + 1)ε. (40)

Combining (35) and (40), and letting ε→ 0 and thus γ(`)ε →
γ(`), establishes the rate-memory tradeoff in (13).

IV. SECURE DECENTRALIZED CACHING

Consider the standard scenario without secrecy constraint.
Let γ(`), for ` ∈ {0, 1, . . . ,Kw}, be as defined in (12).

Theorem 2. The secrecy rate-memory tradeoff is upper
bounded as:

R?sec(M) ≤

Kw∑̀
=1

(
Kw
`

)
γ(`−1)

1− δw
+

Kwγbin

1− δw
+

Ksγ
(0)

δz − δs

+

Kw∑̀
=2

(
Kw
`

) [
Ks(1− δw)γ(`) − (δw − δs)γ(`−1)

]+
(1− δw)(δz − δs)

+
Kw
[
Ks(1− δw)γ(1) − (δw − δs)

(
γ(0) + γbin

)]+
(1− δw)(δz − δs)

, (41)

where, if γ(1) <
(
γ(0) + γbin

)
δw−δs

Ks(1−δw) , then

γbin :=

[
[(D− K)(1− δw) + Kw(1− δz)] γ(0)

Kw(δz − δw)

−Ks(1− δw)γ(1)

(δz − δw)
− (D− K)(1− δw)

Kw(δz − δw)

]+
, (42a)

and otherwise,

γbin :=

[
[(D− Ks)(1− δw)− Kw(δz − δs)] γ(0)

Kw(δz − δs)

− (D− K)(1− δw)

Kw(δz − δs)

]+
. (42b)



The upper bound in Theorem 2 is illustrated in Figure 4 at
hand of an example. The figure also shows an upper bound
attained with separate cache-channel coding that follows the
scheme in [2] and secures the messages by XORing them
with other messages and by using wiretap erasure BC codes.
For comparison, the figure also shows the bounds on R?(M)
obtained in the previous section.

Figure 4 shows that the secrecy constraint increases the de-
livery rate when cache memories are small or large. However,
for moderate cache memories, the rates are very close to the
non-secure rates.

Outline of secure coding scheme: To achieve the individual
secrecy constraint in (10b), we follow the non-secure scheme
explained in Section III-B, but where we secure the non-
XORed messages either by XORing them with messages from
the library or by adding random binning. We detail out the
changes.

In our scheme of Section III-B, communications in Sub-
phases ` = 2, . . . ,Kw are already secure, i.e., they satisfy
(10b). The reason is two-fold. On one hand, we only send
XORs of demanded files to the weak receivers that do not
provide any information about each of the files individually.
On the other hand, the XORs sent to the weak receivers are
sufficiently long to act as wiretap binning for the messages
sent to the strong receivers. No changes are thus required for
these subphases, and we choose

nsec,` = n` =

(
Kw
`

)
F(`−1)

1− δw
+ εF, ` ∈ {2, . . . ,Kw}. (43)

To render Subphase 1 secure, the standard piggyback code
is replaced by a secure piggyback code [8] with binning
of bin size Fbin := γbinF + εF, where γbin is defined in
(42). Moreover, each message Wdi,∅ is divided into two parts
W

(1)
di,∅,W

(2)
di,∅ of sizes F̃(0,1) = min

{
F(0), D−KKw

(
F− F(0)

)}
and F̃(0,2) = F(0) − F̃(0,1), and prior to encoding it with the
secure piggyback codebook, W (1)

di,∅ is XORed with some of
the bits stored in the cache memory of weak receiver i that
do not belong to files requested by any user. Decoding in this
subphase is reliable for large F, if the subphase is of length

nsec,1 =
Kw
(
F(0) + Fbin

)
1− δw

+ εF. (44)

Communication in Subphase Kw + 1 is rendered secure by
replacing the standard BC code with a wiretap BC code. This
subphase is decoded reliably for large F, if

nsec,Kw+1 =

KsF
(0) + Ks

Kw∑̀
=1

(
Kw
`

)
F̃(`,2)

δz − δs
+ εF, (45)

where for ` = 2, . . . ,Kw, F̃(`,2) := F(`,2) as defined in (35),
and

F̃(1,2) := max

{
0,F(1) −

(
F(0) + Fbin

) δw − δs
Ks(1− δw)

}
. (46)

Combining (43), (44) and (45), and letting ε → 0, yields the
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Fig. 4. Upper bounds on R?
sec(M) and R?(M) for δw = 0.7, δs = 0.2,

δz = 0.8, Kw = 5, Ks = 3, and D = 10.

secrecy rate-memory tradeoff in (41).

V. SUMMARY

We have derived upper bounds on the decentralized rate-
memory tradeoff of a K-receiver erasure BC, where Kw
receivers are weak and have cache memories and Ks receivers
are strong and have no caches. We have studied two scenarios
for the delivery phase: a standard scenario without eaves-
dropper and a wiretap scenario with an external eavesdropper.
Our upper bounds are achieved by joint cache-channel coding
schemes and attain delivery rates only slightly higher than in
the case of a centralized placement. In the wiretap scenario,
for small and large cache memories, the required delivery rate
is significantly increased compared to the standard scenario.
However, when cache sizes are moderate, the rates in both
cases are close.
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