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2 LTCI, Télécom ParisTech, Université Paris-Saclay, F-75013, Paris, France
Email: ibrahim.fawaz@cea.fr, mireille.sarkiss@cea.fr, philippe.ciblat@telecom-paristech.fr

Abstract—This paper investigates the resource scheduling min-
imizing the packet loss when the wireless communication system
operates with Energy Harvesting (EH) based devices. The packet
loss occurs when the buffer is overflowed and when the queued
packet is older than a certain pre-defined threshold. We so
consider a strict delay constraint rather than an average delay
constraint. The associated optimization problem can be modeled
as Markov Decision Problem (MDP) where the actions are the
number of packets sent on the known channel at each slot. The
optimal deterministic offline policy is exhibited through dynamic
programming techniques, i.e. Value Iteration (VI) algorithm. We
show the gain in the number of transmitted packets and the
consumed energy is substantial compared to a naive policy which
forces the system to send the maximum number of packets using
the available energy in the battery.

I. INTRODUCTION

Energy harvesting communications have recently attracted
considerable attention in highly connected IoT and mobile
cellular networks. Indeed, the energy harvesting technology
has been proposed as a promising and viable solution to
substantially extend the lifetime of mobile devices while
reducing their dependency on conventional grid power. Hence,
this improves self-sustainability of wireless networks and
limits their growing carbon footprint. In such dense networks,
energy harvesting-enabled devices can gather the energy from
alternative, natural or man-made, energy sources in their
surrounding environment to power their communications.
Depending on the environment conditions, the harvested
energy arrives in intermittent amounts at random times. It can
be then stored in a capacity-limited energy storage device or
battery for future use. The stochastic behavior and uncertainty
of available energy in addition to the time-varying channel
conditions may degrade the transmission performance due
to intolerable latency and packet loss. Therefore, designing
efficient data transmission policies, which adapt the rate and
power according to channel and energy dynamics, is essential
to satisfy users quality of service (QoS) and ensure the system
reliability. In particular, optimizing resource scheduling of
mobile devices becomes a more challenging issue under
energy harvesting constraints.

This work has received funding from the European Unions Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 675891.

During the past decade, extensive research efforts have
focused on investigating resource scheduling with EH capa-
bilities at the transmitters: [1], [2] for overview, and [3]–
[12] for original works. In these works, several performance
criteria have been optimized such as throughput, completion
time, average delay, outage probability, for various models
of energy arrival rate, battery capacity, or fading channel.
Optimal approaches have been proposed based mainly on
offline and online scheduling schemes, depending whether
causal or non-causal channel state information (CSI) and
energy state information (ESI) are available at the transmitter.

More precisely, two problems were considered in
[3]: throughput maximization by a given deadline and
transmission completion time minimization, under channel
and energy variations. The authors proposed optimal offline
policies based on directional water-filling in a non-causal
setting and online policies using continuous time stochastic
dynamic programming in a causal setting. The throughput
maximization problem was similarly investigated in [4] but
for limited energy battery and limited data buffer, allowing
thus buffer overflow. The optimal solutions were proposed
by decoupling energy and data problems using a new
variant of directional water-filling with added energy pumps,
or applying recursively the shortest path algorithm. For
causal state information, the same throughput maximization
problem was modeled as Markov decision process in [5] and
stochastic optimization techniques were used. [6] addressed
the tradeoff between energy overflow and energy shortage by
maximizing the scheduling throughput for capacity-limited
EH system. Online algorithms were proposed to solve
this problem for static and fading channels based on a
new estimation method of future energy arrivals without
any prior information. Both offline and online algorithms
were also provided in [7] to maximize the throughput in
finite-horizon scheduling with EH transmitter. The offline
solution is expressed in terms of water levels and the online
solution minimizes successively the expected throughput
losses with respect to the offline optimal decision. Finite-
horizon optimization problem was also considered in [8]
to minimize the outage probability in a EH system. A low
complexity fixed threshold transmission is proposed based on
the offline mixed integer linear programming solution. In [9],
an average delay optimal scheduling problem was studied



where the transmitter relies on hybrid energy supplies. In
fact, the data transmission is mainly powered by harvested
energy and resorts to power grid as a backup under energy
consumption constraint. The problem was modeled as a
two-dimensional Markov chain and an optimal transmission
policy depending on a critical threshold of the queue length
is proposed using Linear programming formulations. In [10],
optimal deterministic scheduling in EH-powered network
was obtained by minimizing the packet blocking probability,
due to non-transmission at the transmitter, under an average
delay (equivalently queue length) constraint and an average
consumed energy constraint. The problem was formulated
as an MDP and solved using dynamic programming Value
Iteration algorithm. Moreover, [11] minimized the weighted
packet loss rate under an average delay constraint in wireless
sensor networks. The constrained MDP was formulated with
linear value iteration approximation that locally determines
the energy allocation at every EH wireless node using
multilevel water-filling. Near-optimal control policy was
derived by applying stochastic online learning based on
post-decision state framework. In [12], MDP modeling and
online post-decision learning approach were also derived
to maximize the data arrival rate at the transmitter queue
under delay and energy constraints. Two delay constraints
were separately considered: average delay constraint and
statistical delay constraint. This latter is a bounded delay
with maximum acceptable delay-outage probability constraint.

In this paper, we address resource scheduling for a single
user communication powered by energy harvesting. Unlike
certain aforementioned works [9]–[11], we impose here a
strict delay constraint on each queued packet stored in the
buffer rather than an average delay constraint. This severe
constraint has been introduced in our previous work [13] to
find optimal scheduling policy that minimizes the average
power consumption. We now incorporate energy harvesting
aspects within the scheduling problem. Then, taking into
account sporadic energy arrivals, random data arrivals and
time-varying channel states, we minimize the packet loss rate,
i.e., the average number of discarded packets, induced by
strict delay constraint in addition to buffer overflow constraint.
We formulate the problem as an MDP and solve it using
Relative Value Iteration algorithm. We find an optimal offline
stationary policy and compare it with a naive policy that
performs immediate scheduling irrespective of energy and
channel states.

The remainder of the paper is organized as follows. In
Section II, we describe the system model. In Section III, we
formulate the optimization problem as an MDP and solve it
using value iteration algorithm. We provide and analyze nu-
merical results in Section IV. Finally, we give some concluding
remarks and future perspectives in Section V.

II. SYSTEM MODEL

We consider a point-to-point communication over a fading
channel with an energy harvesting transmitter. The transmitter

is equipped with two queues: one corresponds to a limited-
capacity battery to store harvested energy from an external
source and the other is a finite buffer to store data packets
arriving from the upper layer. The communication is slotted
into consecutive epochs of equal duration Ts. At the beginning
of each time slot, scheduling decisions are made to define the
number of packets to be transmitted during the slot depending
on energy arrivals and data arrivals during previous slot as
well as channel states at the current time. In the sequel, we
describe the energy, data queue and channel models of this
system.

A. Energy model

Due to the random nature of energy harvesting sources, we
model the EH process as an independent identically distributed
(i.i.d.) Poisson distribution with an average arrival rate λe. We
assume that the energy arrives in multiple packets of energy
units (e.u) of EU Joules (J). The received energy is stored in a
battery of limited capacity Be, and is lost when it exceeds Be.
At the beginning of time slot n, let en denote the harvested
incoming energy (counting as a number of the energy units).
Its probability distribution is given by

p(en = e) = e−λe .
(λe)

e

e!
.

We assume in this model that the processing energy is
negligible compared to the transmission energy, thus the
energy stored in the battery is only used for communication.
We also consider the energy causality constraint where the
system can only transmit if a sufficient amount of energy is
available in the battery. Let bn denote the energy level of the
battery at the beginning of time slot n, bn ∈ {0, ..., Be}, and
En the energy consumed to send packets during time slot n,
then En 6 bn ∀n. In addition, we suppose perfect energy state
information at the transmitter (ESIT).

B. Data queue model and strict delay constraint

The transmitter receives also data packets and store them
for future transmission in a data buffer of size Bd packets. We
model the data arrival process as an i.i.d. process following a
Poisson distribution with an average arrival rate λd. We assume
that all packets are of the same size L bits. At the beginning
of time slot n, let qn denote the queue length in the buffer,
qn ∈ {0, ..., Bd}, and an the received packets with probability
distribution

p(an = a) = e−λd .
(λd)

a

a!
.

A packet is discarded from the buffer
• if there is a buffer overflow, i.e., if the sum of packets

in the queue and arrival packets exceeds the buffer size.
In that case, we discard the arrival packets in overflow;

• if there is a delay no-fulfillment, i.e., it stays in the queue
more than K0 slots. This can occur if the system decides
not to transmit for a long period due to energy shortage
or bad channel conditions.

In order to describe the delay no-fulfillment, we need to
introduce a new variable ki(n) counting the time spent in the



buffer of the i-th packet at time n. By definition, we have
ki(n) ∈ {−1, ...,K0},∀i, k and ki(n) = −1 for an empty
space in the buffer (i.e., when the i-th packet does not exist).
In Fig. 1, we provide a buffer state at time n.

Buffer of Bd packets (ordered from the oldest to the newest)

k1(n) ... kqn(n) −1 ... −1

qn packets empty area

Fig. 1: Buffer configuration at slot n.

Notice that kj(n) ≤ ki(n), ∀i 6 j.

C. Channel model and consumed energy

We consider a single user flat-fading channel with signal
bandwidth W (Hz) and additive white Gaussian noise with
power spectral density N0. During time slot n, the channel
remains constant with complex-valued amplitude hn, and
varies independently across time slots. We define the channel
gain as xn = |hn|2. We assume {xn}n is an i.i.d. process
following a uniform distribution into a finite set X . We also
assume perfect Channel State Information at the Transmitter
(CSIT).

We denote un (un 6 qn) the number of packets to be
transmitted during time slot n of period Ts, through the
channel of gain xn. The consumed energy to transmit these
packets is expressed as an integer multiple of the energy unit.
It is given by

E(xn, un) =

⌈
P (xn, un).Ts

EU

⌉
(1)

where
P (xn, un) =

WN0

xn

(
2

unL
WTs − 1

)
. (2)

is the required power for this transmission.

III. PROBLEM FORMULATION AND RESOLUTION

Our main objective now is to ensure reliable communication
by minimizing the number of discarded packets due to strict
delay and buffer overflow constraints. This can be achieved
by finding an optimal policy that specifies the number of
packets u to be scheduled at each time slot based on the
past system states and actions. The optimization problem can
be formulated as MDP problem [14]. We characterize in this
section the appropriate states, actions and reward of this MDP.

A. State Space

The state space S is the set of s = (k, b, x) where
• k = [k1, · · · , kBd

] is the vector indicating the age of each
packet in the data buffer,

• b is the battery level, and
• x is the channel gain.

Notice that in the previous works [10], [11], the queue
length q describes the data buffer states. In our work, q is
replaced with k due the strict delay constraint. In fact, q is
unnecessary when k is given since

qn = max
{
i | ki(n) > 0

}
. (3)

The state space is finite, and the total number of possible
states is |S| which is upper-bounded by (K0 + 2)Bd .|Be +
1|.|X |. The state space can be significantly reduced by as-
suming that packets are queued in an increasing order of time
spent in the buffer, i.e. k1(n) ≥ k2(n) ≥ · · · ≥ kqn(n). For
instance, if we consider Bd = 6, K0 = 3, Be = 4 and |X | = 5,
the upper-bound is 390625 while our system only has 5250
states by removing the impossible combination of components
in k.

B. Action Space

The action space U denotes the number of packets u that
the transmitter can send during a time slot. This space is finite
and the number of actions is |U| = U0+1. U0 is the maximal
value of scheduled packets. It is obtained from Eq. (1) with the
maximum available power Pmax, the maximum capacity of the
battery Be and the best channel coefficient xmax = maxx∈X x.

C. Markov Decision Process

On one hand, during time slot n, wn = max(un,mn)
packets leave the buffer, either transmitted and/or discarded
where un is the number of transmitted packets and mn is the
number of packets with delay K0 slots in the buffer. The age
of the remaining packets in the buffer is incremented by 1.
Moreover, an+1 new packets arrive to the buffer with age 0.
Therefore, the vector k can be updated from slot n to slot
n+ 1 according to the following rule.

1: for i = 1 to qn − wn do
ki(n+ 1) = kwn+i(n) + 1
end for

2: for i = qn − wn + 1 to qn − wn + an+1 do
ki(n+ 1) = 0
end for

3: for i = qn − wn + an+1 + 1 to Bd do
ki(n+ 1) = −1
end for

On the other hand, during time slot n, en+1 e.u are harvested
and stored in the battery and En e.u are removed from the
battery to schedule un packets. Therefore, at time slot n+ 1,
the battery state is updated according to

bn+1 = min {bn − En + en+1, Be} . (4)

We thus remark that kn+1 (resp. bn+1) only depends on
previous state kn (resp. bn), action un (resp. En) and external
perturbation an+1 (resp. en+1). Therefore, we can define
p(s′|s, u) as the transition probability to fall in the future
state s′ = (k′, b′, x′) after taking action u in the current state
s = (k, b, x). Assuming that the buffer, battery and channel



states are independent and channel states are not correlated,
the transition probability satisfies the following equation.

p(s′|s, u) = p(k′|k, b, u).p(b′|b, x, u).p(x′), (5)

where p(x′) is the distribution of the channel states,
p(k′|k, b, u) indicates the probability transitions between
buffer states, and p(b′|b, x, u) indicates the probability transi-
tions between battery states. After tedious but simple deriva-
tions, we obtain the transitions between the buffer states and
the battery states according to the following respective rules.

1: if u > q or k′i > ki + 1 or q′ < q − w then
p(k′i|ki, b, u) = 0

2: else if k′i 6= ki+u + 1 and ki+u 6= −1 then
p(k′i|ki, b, u) = 0

3: else if k′i > 0 and ki+u = −1 then
p(k′i|ki, b, u) = 0

4: else if q = Bd and u 6= 0 and k′i > 0,∀i ∈ {q − w +
1, ..., Bd} then
p(k′i|ki, b, u) = 0

5: else if q′ < Bd then
p(k′i|ki, b, u) = e−λd . (λd)

a

a!
6: else
p(k′i|ki, b, u) = 1− Q(Bd − q + w, λd),

and
1: if E > b then
p(b′|b, x, u) = 0

2: else if b′ < b− E then
p(b′|b, x, u) = 0

3: else if b′ < Be then
p(b′|b, x, u) = e−λe . (λe)

e

e!
4: else
p(b′|b, x, u) = 1− Q(Be − b+ E, λe).

where Q is the regularized gamma function.

D. Markov Decision Problem and its Resolution

In the context of infinite-horizon MDP, we consider time-
averaged cost, where at a given time slot n ∈ {0, · · · , N}, the
system state is denoted by sn = (kn, bn, xn) and µ(sn) = un
is the action deciding the number of packets to be transmitted.
We aim at finding the optimal policy µ? that minimizes the
average number of dropped packets. The cost function of this
infinite-horizon MDP problem is given by

D(µ) = lim
N→+∞

1

N
Eµ
[

N∑
n=1

(
εd(sn, un)+εo(sn, un)

)]
, (6)

where E is the expectation with respect to the policy µ and
where εd(sn, un) is the instantaneous number of discarded
packets due to delay no-fulfillment and εo(sn, un) is the
instantaneous number of discarded packets due to buffer
overflow.

At a given slot n, when the system state is sn and the
performed action is un, the number of discarded packets due
to delay no-fulfillment is given by

εd(sn, un) =

{
0 if mn = 0 or mn 6 un
mn − un otherwise. (7)

The buffer overflow occurs when qn − wn + an+1 > Bd,
thus the number of discarded packets due to buffer overflow
is obtained as follows

εo(sn, un) =

+∞∑
a=Bd−qn+wn+1

(qn − wn + a−Bd).e−λd .
(λd)

a

a!

= λd.(1− Q(Bd − qn + wn, λd))

+ (qn − wn −Bd)
× (1− Q(Bd − qn + wn + 1, λd)). (8)

Finally, our MDP optimization problem can be stated as
Problem 1:

µ? = argmin
µ
D(µ) (9)

To solve this optimization problem, we resort to the offline
dynamic programming approach using the so-called VI algo-
rithm [14]. Exploring a priori knowledge of energy arrival and
data arrival dynamics and channel states at the EH transmitter,
the offline approach can accurately model the state transition
probabilities of the MDP and provide an optimal solution. The
optimal offline deterministic policy, exhibited by Algorithm 1,
consists in a one-to-one mapping from the state space S to
the action space U , performing a unique action u whenever a
state s is visited.

Algorithm 1 VI algorithm

1: Initialization
Set v0(s) = 0 ∀s ∈ S
Fix a tolerance parameter ε > 0
Set n=1

2: For each s ∈ S compute

vn(s) = min
u∈U

[
c(s, u) +

∑
s′∈S

P (s′|s, u).hn−1(s′)
]

(10)

hn(s) = vn(s)− vn(s0) (11)

where s0 is a fixed state chosen arbitrarily.
3: If sp (vn − vn−1) < ε, where sp(v)=

maxs∈Sv(s)−mins∈S v(s), let πε be the resulting
policy that solves equation (10), vε = vn and stop; else
set n = n+ 1 and go to step 2.

IV. NUMERICAL RESULTS

We evaluate numerically the optimal policy obtained by
resolving Problem 1. We consider a system as described in
Section II with the following characteristics: the slot duration
is Ts = 1 ms, the channel states x takes 5 possible values
from the finite set X = {−5.41,−1.59, 0.08, 1.42, 3.18} dB
with equal probabilities. The noise power spectral density is
N0 = −87 dBm/Hz and the allocated bandwidth is W = 5
MHz. Data arrivals follow a Poisson distribution with mean
λd packets, where packets are of equal size L = 5000
bits. Data packets are stored in a buffer of size Bd = 6



packets. The maximum delay is K0 = 3 (i.e., in absolute
time K0Ts = 3 ms). Energy arrivals follow a Poisson
distribution with mean λe e.u per slot, where EU = 100
nJ. Energy units are stored in a battery of size Be = 4
e.u. The maximum available power at the transmitter is
Pmax = 2 mW. According to Eq. (2), this system allows to
transmit up to 8 packets per slot. Limited by the queue size
and the capacity of the battery, we fix U0 = 6 packets per slot.

In Fig. 2, we plot the average rate of discarded packets
versus the number of iterations for evaluating the optimal
policy within the VI algorithm for various energy arrival
rates λe where the data arrival rate λd is fixed to 1.5. We
show that the VI algorithm converges rapidly within a few
hundreds iterations for most of cases. We can also notice
that as λe increases, the average number of discarded packets
considerably decreases. Indeed, when the energy available
from the surrounding environment is in larger quantities, the
system will be able to send more packets, reducing thus the
number of discarded packets.

In Fig. 3, we display the percentage of discared packets
versus the data arrival rate λd for different energy arrival rates
and both policies, namely the optimal one exihibted in this
paper and the naive one which forces the transmitter to send
the maximum number of packets using the available energy in
the battery. As we can observe, the proposed optimal policy
gives significantly better performance than the naive one in
terms of percentage of discarded packets. In fact, this policy
enables to adapt the transmission rate according to the channel
conditions. The number of discarded packets increases when
the data arrival rate λd increases because the buffer overflow
could happen more often. On the other hand, when the energy
available to scavenge is low (small λe), an efficient energy
management becomes crucial to ensure the sustainability of
the system, and the gap between both policies increases. On
the contrary, when a large amount of energy is available (large
λe), the system can survive even without controlling relevantly
the energy consumption which leads to similar performance
between the optimal and naive policies.

In Fig. 4, we show the percentage of discarded packets
due to delay among the total number of discarded packets for
different values of the energy arrival rate λe and the data arrival
rate λd. As explained before, a packet can be discarded due to
delay or buffer overflow. When the data arrival rate increases,
the probability to discard a packet due to overflow increases,
resulting in a lower contribution of the delay in discarding
packets. On the other hand, when the energy rate decreases,
the percentage of discarded packets due to the delay slightly
increases because, in average, a packet remains more often
in the buffer since there is not enough energy to transmit it.
Hence, it is flushed from the buffer for latency’s purpose.

In Fig. 5, we plot the average consumed energy versus the
data arrival rate λd for different energy arrival rates λe. We
observe that the optimal proposed policy consumes less energy
while sending more packets because it adapts the number of
transmitted packets per slot to the channel conditions and the

Fig. 2: Convergence analysis for the average rate of discarded
packets with different energy arrival rates.

Fig. 3: Percentage of the discarded packets versus data arrival
rate for different energy arrival rates.

battery state and thus, the transmission is done according to
the energy it consumed.

In Fig. 6, we show the average battery state versus the
packet arrival rate λd for different energy arrival rates λe. As
the proposed policy offers a lower energy consumption (see
Fig. 5), the battery is less used and its energy level is thus
higher. This ensures a better sustainable communication with
less number of discarded packets.

V. CONCLUSION

We have addressed resource scheduling problem under en-
ergy harvesting capabilities with strict delay constraint. More
precisely, we have solved the packet loss optimization problem
using MDP framework and dynamic programming techniques.
The optimal policy adjusted the number of transmitted packets
according to the channel conditions and the available energy
in the battery, such that the number of discarded packets



Fig. 4: Percentage of the discarded packets due to delay versus
data arrival rate and energy arrival rate.

Fig. 5: Average consumed energy versus data arrival rate for
different energy arrival rates.

is minimized. As an extension to this work, we aim i) to
focus on online programming instead of offline, ii) to include
offloading capabilities, where the system can choose to execute
packets locally, offload it to nearby servers or base stations
having more resources according to the system and channel
conditions.
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