
HAL Id: cea-01888831
https://cea.hal.science/cea-01888831

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anomaly Detection in Vehicle-to-Infrastructure
Communications

Michele Russo, Maxime Labonne, Alexis Olivereau, Mohammad Rmayti

To cite this version:
Michele Russo, Maxime Labonne, Alexis Olivereau, Mohammad Rmayti. Anomaly Detection in
Vehicle-to-Infrastructure Communications. 2018 IEEE 87th Vehicular Technology Conference (VTC
Spring), Jun 2018, Porto, Portugal. �10.1109/VTCSpring.2018.8417863�. �cea-01888831�

https://cea.hal.science/cea-01888831
https://hal.archives-ouvertes.fr

Anomaly Detection in

Vehicle-to-Infrastructure Communications

Michele Russo, Maxime Labonne, Alexis Olivereau, Mohammad Rmayti

LIST, Communicating Systems Lab

91191 Gif-sur-Yvette CEDEX, France

{michele.russo, maxime.labonne, alexis.olivereau, mohammad.rmayti}@cea.fr

Abstract— This paper presents a neural network-based

anomaly detection system for vehicular communications. The

proposed system is able to detect in-vehicle data tampering in

order to avoid the transmission of bogus or harmful information.

We investigate the use of Long Short-term Memory (LSTM) and

Multilayer Perceptron (MLP) neural networks to build two

prediction models. For each model, an efficient architecture is

designed based on appropriate hardware requirements. Then, a

comparative performance analysis is provided to recommend the

most efficient neural network model. Finally, a set of metrics are

selected to show the accuracy of the proposed detection system

under several types of security attacks.

Keywords—Anomaly detection; LSTM; MLP; V2I; forecasting;

benchmarking.

I. INTRODUCTION

Over the last decade, most of intra-vehicular
communications in automotive systems were based on so-called
Electronics Control Units (ECU). More recently, connected
automotive networking services were introduced, involving
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
communications. This growth of networking capability [1], [2],
[3] was accompanied with some security flaws that expose the
vehicles to cyber-attacks [4], [5], [6], [7]. For instance, packet
injection and data manipulation attacks can threat some critical
components that are responsible of driver’s safety services. On
other hand, several anomalies can arise in case of harmful
incidents such as malfunctions, human errors or signals
interruptions. This highlights the relevance of anomaly detection
in the automotive environment.

By definition, an anomaly-based Intrusion Detection System
(IDS) collects and analyzes information about computer or
network system in order to detect anomalies that can disturb its
normal activity. In automotive systems, data that are collected
from various in-vehicle sensors and ECUs are transmitted to the
infrastructure (e.g., the cloud) in the form of sequences of
observations. Then, this information being processed and used
by critical applications should be protected against forging and
tampering attacks.

The objective of this paper is therefore to design an anomaly-
based IDS for Vehicle-to-Cloud (V2C) communications. In
order to detect anomalies in the V2I data sequence, a neural
network-based anomaly detector is designed to be implemented

in the vehicle’s gateway. It raises an alert whenever the data
received from the sensors are classified as anomalous.

The rest of this paper is organized as follows. Section II
discusses some related works in particular those focusing on
sequence anomaly detection. Section III introduces the two
studied neural network models and the experimental setup used
to assess them. Section IV details the experiments that were
carried out to evaluate their performance in terms of resource
efficiency and attack detection quality. Section V concludes the
paper.

II. STATE OF THE ART

Many approaches have been applied to anomaly detection in
sequences [8]. A common approach is to identify and compare
patterns in n-grams, where an n-gram is a length-n subsequence.
Many algorithms were used to measure the distance between
candidate n-grams and historical n-grams or other parts of the
same sequence (e.g., [9]). These methods are difficult to apply
on the values collected from vehicle’s sensors, because they
assume a finite symbol dictionary, or rely on some quantization
methods to convert continuous values to a finite set of symbols.
Since sensors’ data are continuous, it is not possible to rely on
foreign symbols (i.e., values) to detect anomalies. Similarly,
Hidden Markov Models could theoretically be used, but would
need to be adapted to work on a compressed representation of
data. Their performance would then be dependent on the quality
of the chosen compression algorithm.

Several machine learning and statistical approaches for
anomaly detection on continuous sequences (or time series),
have been proposed in the literature: Recurrent Neural Network
(RNN)-based [10], LSTM-based forecasting and encoder-
decoder [11], [12], [13], clustering based [14], (Demixed)
Principal Component Analysis, Linear Discriminant Analysis
[15], one-class Support Vector Machine (SVM) and
segmentation [16], change point detection [17] and MLP [29],
[30]. Each of these systems tries to predict the next symbol in
the sequence. Anomalies are detected when the distance
between predicted and actual data exceeds a defined threshold.

The usage of LSTM for forecasting has especially been
shown to be very effective in standard time series test sets [18],
electrocardiography [19], aircraft telemetry [20] and automotive
[21], [22].

III. USE CASE, ASSUMPTIONS AND EXPERIMENTAL SETUP

A. Design Decisions for Anomaly Detection

The anomaly detection method that we use in this work is
based on forecasting. This class of anomaly detection algorithms
uses past data to predict current data, and measures the
difference between observed data and their prediction. By this
definition, forecasting relies on supervised machine learning,
since it trains a regression model of data values versus time.
Predictions performed by a forecasting model will correspond to
the expected value that a time series will have in the next time
step. Hence, forecasting can particularly fit the data format in the
considered use case, namely, an ordered sequence of data
packets. In addition, using such predictor does not require any
knowledge about abnormalities to work, which will be proved
throughout this study, where the available datasets contain only
real non-anomalous data.

We compared two neural network models for forecasting.
The first one is based on LSTM neural networks, which shown
a high efficiency for time-series forecasting in a variety of
domains especially in automotive scenarios. The second type
that we considered in this study is MLP-based neural networks
is based on the MLP architecture, which was widely used for
time series forecasting in the early days of machine learning
[23]. In fact, the MLP is a lightweight model in terms of
hardware infrastructure requirements, training phase duration
and resource consumption, which is adapted for automotive
environment. In addition, recent studies showed that a time
window based MLP can outperform the LSTM on certain time-
series prediction benchmarks bas on few recent inputs [24].

B. Training and Testing

The available data was captured within a 2010 Toyota Prius
3 vehicle, equipped with components for automated/cooperative
driving and standard vehicle sensors. The final dataset contains
almost 650 thousands packets collected during approximately 7
hours of driving. Based on these datasets, 20% of packets (i.e.,
about 1.5 hours of driving) are set aside as an independent test
set, which means that they are never used neither during the
model selection nor during the training. A sample of the dataset
is a 4-dimensional vector of real values: acceleration [m/s2],
velocity [m/s], latitude and longitude. Each vector represents the
data sent by the different vehicle’s sensors at a given timestamp.

During the supervised training, the network is fed with input
sequences x ={x1, x2, …, xN}, where xi represents a sample of the
dataset, and y is defined as the corresponding xN+1 sample. Both
of samples are normalized in the neural network activation
function domain. For each vector component, the normalizing
coefficients, minimum and maximum values are fixed
beforehand following a worst-case analysis approach and
according to the vehicle datasheet specifications.

C. Feasibility Studies

Inside the vehicle, the sensors’ data are received by the ECU,
which formats the data and forwards them to the gateway. This
latter sends data periodically to the cloud with a frequency equal
to 25Hz. As recommended in [28], data are JSON-formatted,

containing information about vehicle latitude and longitude,
velocity and acceleration.

In order to detect anomalies in such data sequence, we rely
on a neural network-based anomaly detection system, which is
running in real time on the vehicle’s gateway. The neural
network is trained in order to predict, at time t, the subsequent
message’s values (at time t+1), using a window of N received
packets (t-N, …, t-1).

Once the training phase is performed, the obtained
parameters (i.e., weights and biases) are loaded into the neural-
network based vehicle’s IDS. This latter compares at run-time
each received packet (real data) and the corresponding
prediction it made at the previous timestamp. As the sending
frequency is set to 25Hz, the anomaly-based IDS needs should
make a prediction during a time period lower than 40ms.

The first part of this work consists of checking whether the
neural network hardware requirements were complying with the
automotive embedded system. Therefore, we measured the
following parameters:

1. Time to start up the IDS at different CPU frequencies and

network sizes.

2. Time to make a prediction at different CPU frequencies,

network sizes and window sizes.

3. Peak of RAM usage to run the IDS at different CPU

frequencies, network sizes and window size.

We performed the above tests for both MLP and LSTM
models. For each model, we analyzed different architecture
configurations that have been selected in some related works in
time-series forecasting.

We carried out the experiments on an Intel Core i5-7300U
computer. However, the automotive computing platform for
autonomous-driving uses on microarchitectures having
processor’s speed around 1600 MHz and up to 4 cores (e.g., Arm
Cortex-A53 Quad). Therefore, to emulate the automotive
environment, we performed the measurements by enabling a
single core only, which keeps the tested frequencies below
1.5GHz. To implement the neural network software, we used the
Keras API 2.0.8 and python 2.7.14. Changing the Keras
backend, we analyzed the performance of two well-known
tensor manipulation frameworks for machine learning: Theano
and TensorFlow. The results of 50 timing measurements were
averaged to filter out the measurements noise, and similarly for
memory measurements (RAM), 100 trials are performed due to
the higher noise.

1) Multilayer perceptron
To evaluate the MLP-based IDS, we tested the two following

configurations:

 3-layer MLP: 1 input, 1 hidden layer, 1 output

 4-layer MLP: 1 input, 2 hidden layers, 1output

For the timing measurements, the number of neurons in the
output layer is set to 4, in such way each neuron corresponds to
one of the studied metrics: acceleration, velocity, latitude and
longitude. Then, for each frequency and each configuration, we
measured the time to start up the IDS by varying the network

size (number of neurons). In Figure 1, the three dashed lines
represent a neural network having hidden layer’s sizes of 20, 400
and 800 (the same holds for the straight lines). We notice a high
difference in startup time: Theano backend is almost ten times
slower to start than TensorFlow. The network size has also a
greater impact with Theano.

Figure 1: Start-up time of the anomaly detector based on the MLP.

Regarding the prediction time, we notice that, using the

TensorFlow backend, the network size and the window size have
a negligible impact on the prediction time. This is not the case
for the number of hidden layers and the CPU frequency, as
depicted in the top graph in Figure 2. In the Theano tests instead,
the prediction time (z-axes) is influenced by changing the
window size (y-axes), the number of neurons in the hidden
layer(s) (x-axes) and the frequency as depicted in the bottom
graph in Figure 2. The time to make a prediction is also one order
of magnitude smaller. However, in all cases, the prediction time
stays below the threshold of 40 ms.

Figure 2: Time to make a prediction with the MLP architecture.

 The results of memory consumption tests are summarized in
Table I. From the test data, it appears that the memory
consumption is clearly correlated with the network size with
TensorFlow but not with Theano, which exhibits a higher and
constant memory consumption.

TABLE I: MLP memory consumption.

Backend Layers Min [MB] Max [MB] Average [MB]

TensorFlow 3 289.087 298.072 292.173

TensorFlow 4 289.45 301.542 293.188

Theano 3 376.235 380.679 376.758

Theano 4 376.32 380.364 376.165

2) Long short-term memory network
Similarly to the MLP-based IDS, we tested the two

following configurations:

 3-layer LSTM: 1 input, 1 hidden layer, 1 output

 4-layer LSTM: 1 input, 2 hidden layers, 1 output

For both of them, the number of neurons in the input and output
layer was set to 4. Here again, the difference between the Theano
and Tensorflow backends is important. Similarly to the MLP
case, Tensorflow is about five time faster to boot the IDS.
Moreover, as expected, the LSTM architecture requires more
time than the MLP due to the higher complexity in the LSTM
network design. In Figure 3, the three overlapping dashed and
straight lines represent different LSTM hidden layer(s)
dimension (i.e., 5, 50 and 100 neurons). While the size of the
hidden layer(s) plays a minor role (curves are overlapping), the
addition of one layer causes an important increase in the start-up
time, especially with the Theano backend.

Figure 3: Start-up time of the anomaly detector based on the LSTM.

 The graph below represents the time to make a prediction (z-
axes) with the LSTM neural network in different conditions. We
varied the number of hidden layers between 1 and 2, which are
showed as two separated surfaces in the four 3D plots, where the
top ones being logically the 4-layered LSTM. Also in this case,
the tested hidden layer(s) dimension(s) were 5, 50 and 100
neurons (x-axes); for the window size the values were 50, 100,
150 and 200 (y-axes). In addition, we tested all the parameters
combination for frequencies up to 1.5 GHz. In the Figure 4, we
show only the results for the two “boundary” frequencies, i.e.

the CPU was set to 400MHz for the plots on the first row and
1500MHz for the ones in second row.

Figure 4: Time to make a prediction with the LSTM architecture.

 The main result is that the prediction time (z-axis) is
significantly higher with the TensorFlow backend, up to about
20 times if we compare the 3-layered cases at 1.5 Ghz, and
systematically above 40ms. This means that the LSTM with the
Tensorflow backend is not a good choice for the real-time IDS.
It is also interesting to notice that, setting Theano as backend,
the relative influence of the network size on the prediction time
is much greater. On the other hand, we notice that the window
size drives the prediction time with Tensorflow.

 Regarding the peak of RAM usage for the LSTM neural
network (Table II), it appears that the memory consumption is
correlated with the network size using Tensorflow. Once again,
this is not the case with Theano, which exhibited an almost
constant memory consumption.

TABLE II: LSTM memory consumption

Backend Layers Min [MB] Max [MB] Average [MB]

Tensorflow 3 300.651 304.867 302.208

Tensorflow 4 307.086 313.179 309.928

Theano 3 376.597 380.609 377.03

Theano 4 376.534 380.179 376.836

D. Hyperparameters Optimization

In machine learning, there is no a common model
architecture that fits to all problems, but rather each task has its
own; it is often said that the problems are data-dependent. To
this extent, we run a model selection algorithm to find the best
set of hyper-parameters for both neural network architectures.

Given a model with a fixed hyper-parameter configuration,
there are several approaches to evaluate its performance. We
relied on k-fold cross validation, which was proven to be one of
the best methods used for model selection [25]. We fixed the
number of folds to 10, according to the recommendations
of [25]. The configurations used for tests are characterized by
six different parameters: number of neurons per layer, window
size, hidden layers activation function, output layer activation
function, weight initializer and the optimizer. For each of these

parameters, a range of possible values similarly to some related
works. Some neural network configurations are explored
manually to check whether the defined parameters ranges are
appropriate for our data. Doing so, we could further shrink the
domain size and thus increase the probability of finding the
optimal parameter setting. The final grid of values is
summarized below.

 Hidden layer activation function = ['tanh', 'softsign',
'linear']

 Output layer activation function = ['tanh', 'softsign',
'linear']

 Weight initializer = ['lecun_uniform', 'glorot_normal',
'glorot_uniform', 'he_normal', 'he_uniform']

 optimizer = ['Adagrad', 'Adam', 'Nadam', 'RMSprop']

 Number of hidden layers’ neurons:
o 3 layer LSTM = [10,100]; 4 layer LSTM = [10,100]
o 3 layer MLP = [10,800]; 4 layer MLP = [10,500]

 Window size = [5, 200]

 Within this 6-dimensional configuration space, we decided
to use random search to pick a value from each parameter grid,
with uniform probability, and thus build a configuration to test.
This decision is based on the work of Bergstra and Bengio [26],
who proved its superior efficiency in comparison with gird and
manual search.

 In order to train and test a given neural network
configuration, we need to set the number of epochs and the batch
size. Following the practical recommendations for gradient-
based training of deep architectures [27], the batch size should
affect the training time and not so much the test performance.
Hence, it can be optimized separately and after the other hyper-
parameters. Therefore, in order to accelerate the optimization
process, we kept the batch size fixed to 4096. Regarding the
number of epochs, we applied early stopping; for each of the k
times that train-test procedure is repeated for a given parameter
setting, 20% of the training set (composed of k-1 folds) is
reserved for validation phase. In order to prevent the leakage of
test data information and therefore obtaining an unbiased
performance estimate, we did not use the k-th fold, reserved for
testing, also for validation.

 Within the 10-fold validation process, at the end of each of
the 10 training phases, the performance of the model has been
assessed on the test fold in terms of Mean Squared Error (MSE).
We run the hyper-parameter optimization procedure explained
above on a custom computer equipped with an Nvidia GTX
1080 Ti GPU. We fixed the number of trials of the random
search to 1000. In table III, we show for each configuration, the
parameter settings having the smaller average mean square
error.

TABLE III: Best configurations.

Score Configuration

1 8.0949×10-4 MLP: HL = 2, AF & AFO = softsign, W = 49, WI =

glorot_uniform, O = Adam, N = 375

2 8.1998×10-4 MLP: HL = 1, AF & AFO = softsign, W = 38,
WI = glorot_normal, O = Adam, N = 599

3 8.2751×10-4 LSTM: HL = 1, AF = softsign, AFO = tanh, W = 79, WI =

he_uniform, O = Adam, N = 71

4 8.3355×10-4 LSTM: HL = 2, AF = softsign, AFO = tanh, W = 52,

WI = he_unifromm O = RMSprop, N = 69

a. HL = hidden layers; AF = activation function; AFO = output activation function; W = window;

WI = weight initializer; O = optimizer; N = number of neurons per layer

The above results show that the carefully selected
architectures, in their best configurations, achieves performance
similar to one another. According to the obtained results in Table
III, we decided to base our IDS upon the MLP model bas on two
reasons. First, it has the lowest average mean square error in the
hyper-parameter optimization process. Second, it puts less strain
on the underlying hardware infrastructure, which is more
suitable for real time applications. Therefore, we trained the
selected neural network for the last time using all the training
samples and a batch size of 512, to obtain the final matrix of
weights and biases.

We tested the trained neural network on the test set, set aside
in the beginning, to see if the hyper-parameter optimization
procedure yielded a configuration that was able to generalize
well, without being under-fitted or over-fitted. Specifically, we
computed the average of the mean square errors between
predicted and real samples that resulted to be equal to
8.9225×10-4. As expected, the result was worse than the one
obtained in Table III but still has a high quality.

E. Anomaly Signal

As previously mentioned, we decided to use the squared
distance as anomaly signal. We run the predictor on 50% of the
test dataset samples, obtaining a forecast for each one of them.
Then, we computed the squared error between each component
of the predicted vector (�̂�) and its corresponding real value, part
of the vector 𝑦. Then, we extrapolated the following
information: average (avg), maximum and standard deviation
(std) of the squared errors of each vector’s components
(velocity, acceleration, longitude and latitude). These metrics
have been used to compute different threshold values to be tested
in the IDS (see subsection IV.E). Instead of one single metric,
we decided to calculate a threshold for each predicted vector’s
component. The finer granularity avoids that an anomaly on a
single vector component could be compensated by the accurate
prediction on the other components and thus pass without
detection. An example is the MSE where, by averaging the
squared errors of the different vector’s components, an anomaly
could be “filtered out” and the resulting value could remain
below the computed threshold.

IV. EXPERIMENTS AND RESULTS

 Evaluating an IDS requires to compute the True Positive
Rate (TPR) and False Positive Rate (FPR). These computations
require a dataset containing normal and anomalous data.
Unfortunately, the latter was not part of the available test dataset,
so we turned to artificially injecting anomalies in the remaining
50% of it (~ 20k samples). Inspired by previous works [22], we
devised three modifications that aim at emulating the
characteristic of real in-vehicle networks attacks:

 Drop. Four consecutive packets have a single value
removed. This simulates what happens when an ECU is
silenced and rapidly replaced by a malicious one.

 Fuzzing. Random data is introduced inside a sequence
in order to emulate a Denial of service (DoS) attack
against the Controller Area Network (CAN) bus.

 Discontinuity. The normal packet sequence is interleaved
with a window of data taken from another point in time.
This simulates a replay attack where an attacker takes
control of an ECU and starts sending out of context, but
legitimate traffic.

In addition, we needed to define the threshold value (THV) for
each vector’s component and for how many (out of 4) squared
errors above the threshold (THN) an alert should be raised. To
do so, we carried out different experiments. We launched one
attack at a time and varied:

 THV in the range [avg + b × std, maximum]
∀ b ∈ [0, 1, 2, …, 6]

 The attacked component between [acceleration,
velocity, longitude, latitude].

 NTH ∈ [2+, 3+, 4].

 An anomaly detector in a vehicle should have a false alert as
close as possible to zero. In the considered scenario, a false
positive rate of 10−5 would produce a false alert almost every
hour. This motivated us to choose an IDS’s setting that would
lead to the highest possible TPR with a FPR of 0. The
experiments results showed that the configuration that could
achieve the aforementioned performances was the one with
TH = (avg + 4 × std) and NTH = 3.

TABLE IV: IDS Performances.

Sensor Attack TPR % FPR%

Velocity

Drop 100 0

Discontinuity 100 0

Fuzzing 100 0

Acceleration

Drop 1.0989 0

Discontinuity 37.2549 0

Fuzzing 100 0

Longitude

Drop 100 0

Discontinuity 100 0

Fuzzing 100 0

Latitude

Drop 100 0

Discontinuity 100 0

Fuzzing 100 0

Figure 5: IDS performances in case of attacks against the acceleration.

 From Table IV, we can notice a low detection rate of the
discontinuity and drop attack against the acceleration. Figure 5
shows more details about the IDS behavior in case of attacks
targeting the acceleration. It can be seen that it is possible to
reach higher TPR values for all the attacks with the side effect
of rising the FPR up to almost 10% (overlapping dashed lines).

V. CONCLUSION

 In this paper, we presented a study on the usage of deep
neural networks for anomaly detection in data sequences. In
most of existing related works, the LSTM is the recommended
model for time series problems. In our work we show that, in
some cases, as previously discovered in [24], using a less
complex neural network configuration, the MLP-based model
can outperform the LSTM-based one. Moreover, we provided
an extensive comparison of the real-time performances and
hardware requirements of such a networks in a real-world
implementation.

ACKNOWLEDGMENT

This work has received funding from the European Union

Horizon 2020 research and innovation program as part of the

VI-DAS project, under the grant agreement No 690772. The

authors wish to thank the project partner Intempora for providing

the RTMaps software and their technical support. We thank the

TU/e Eindhoven for providing the driving data upon which this

research has been carried out.

REFERENCES

[1] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trived, L. Kilmartin,
“Intra-vehicle networks: A Review”, IEEE Transactions on Intelligent
Transportation Systems, vol. 16, pp. 534-545, 2014.

[2] S. Biswas, R. Tatchikou, F. Dion, “Vehicle-to-vehicle wireless
communication protocols for enhancing highway traffic safety”, IEEE
Communications Society, vol. 44, pp. 74-82, 2006.

[3] M. Kissai, B. Monsuez, A. Tapus, “Current and future architectures for
integrated vehicle dynamics control”, 2017.

[4] Karl Koscher et al., “Experimental security analysis of a modern
automobile”, IEEE, 2010.

[5] C. Miller, C. Valasek, “Adventures in automotive networks and control
units”, 2014.

[6] S. Checkoway et al., “Comprehensive experimental analyses of
automotive attack surfaces”, USENIX Security, 2012.

[7] P. Kleberger, T. Olovsson, E. Jonsson, “Security aspects of the in-vehicle
network in the connected car”, Intelligent Vehicles Symposium (IV),
2011 IEEE, 2011.

[8] V. Chandola, “Anomaly detection: a survey”, ACM Computing Surveys,
vol. 41, article 15, 2009.

[9] E. Keogh et al., “Efficiently finding the most unusual time series
subsequence”, ICDM '05 Proceedings of the Fifth IEEE International
Conference on Data Mining, pp. 226-233, 2005.

[10] A. Nanduri, L. Sherry, “Anomaly detection in aircraft data using
Recurrent Neural Networks”, Integrated Communications Navigation and
Surveillance (ICNS), 2016.

[11] P. Filonov, A. Lavrentyev, A. Vorontsov, “Multivariate industrial time
series with cyber-attack simulation: fault detection using an LSTM-based
predictive data model”, arXiv:1612.06676, 2016.

[12] M. Yadav, P. Malhotra, L. Vig, K. Sriram, G. Shroff, “Augmented
training improves anomaly detection in sensor data from machines”, NIPS
Time-series Workshop, 2015.

[13] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff,
“LSTM-based encoder-decoder for multi-sensor anomaly detection”,
ICML 2016 Anomaly Detection Workshop, 2016.

[14] I. Kiss, P. Haller, A. Bereş, “Denial of Service attack detection in case of
tennessee eastman challenge process”, Procedia Technology, vol. 19, pp.
835-841, 2015.

[15] L. Chiang et al., “Fault detection and diagnosis in industrial systems”,
Measurement Science and Technology, vol. 12, article 10, 2001.

[16] L. Martí et al., “Anomaly detection based on sensor data in petroleum
industry applications”, Physical Sensors, 2015.

[17] D. Matteson, N. James, “A non-parametric approach for multiple change
point analysis of multivariate data”, 2013.

[18] P. Malhotra, L. Vig, G. Shroff, P. Agarwal, “Long Short Term Memory
Networks for anomaly detection in time series”, ESANN 2015
proceedings, 2015.

[19] S. Chauhan, L. Vig, “Anomaly detection in ECG time signals via deep
long short-term memory networks”, Data Science and Advanced
Analytics (DSAA), 2015.

[20] T. O'Shea, T. Clancy, R. McGwier, “Recurrent neural radio anomaly
detection”, 2016.

[21] M. Kang, J. Kang , “Intrusion detection system using deep neural network
for in-vehicle network security”, Plos One, 2016.

[22] A. Taylor, S. Leblanc, N. Japkowicz, “Anomaly detection in automobile
control network data with long short-term memory networks”, Data
Science and Advanced Analytics (DSAA), 2016.

[23] J. Moreno, A. Pol, P. Gracia, “Artificial neural networks applied to
forecasting time series” , Psicothema, vol. 23, article 2, pp. 322-329, 2011.

[24] F. Gers, D. Eck, J. Schmidhuber, “Applying LSTM to time series
predictable through time-window approaches”, 2002.

[25] Ron Kohavi, “A Study of cross-validation and bootstrap for accuracy
estimation and model selection”, International Joint Conference on
Artificial Intelligence (IJCAI), 1995.

[26] J. Bergstra, Y. Bengio, “Random search for hyper-parameter
optimization”, JMLR, vol. 13, pp. 281-305, 2012.

[27] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures”, Neural Networks: Tricks of the Trade, pp. 437-478,
2012.

[28] S. Bittl et al., “Performance comparison of data serialization schemes for
ETSI ITS Car-to-X communication systems”, International Journal on
Advanced Telecommunications, pp. 48-58.

[29] A. Singh, V. Tripathi, “Load Forecasting Using Multi-Layer Perceptron
Neural Network”, IJESC, vol. 6, Issue no. 5, 2016.

[30] S. Canu, Y. Grandvalet, X. Ding, “One step ahead forecasting using
multilayered perceptron”.

