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Abstract— This paper presents a neural network-based 

anomaly detection system for vehicular communications. The 

proposed system is able to detect in-vehicle data tampering in 

order to avoid the transmission of bogus or harmful information. 

We investigate the use of Long Short-term Memory (LSTM) and 

Multilayer Perceptron (MLP) neural networks to build two 

prediction models. For each model, an efficient architecture is 

designed based on appropriate hardware requirements. Then, a 

comparative performance analysis is provided to recommend the 

most efficient neural network model. Finally, a set of metrics are 

selected to show the accuracy of the proposed detection system 

under several types of security attacks. 

Keywords—Anomaly detection; LSTM; MLP; V2I; forecasting;  

benchmarking. 

I.  INTRODUCTION 

Over the last decade, most of intra-vehicular 
communications in automotive systems were based on so-called 
Electronics Control Units (ECU). More recently, connected 
automotive networking services were introduced, involving 
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 
communications. This growth of networking capability [1], [2], 
[3] was accompanied with some security flaws that expose the 
vehicles to cyber-attacks [4], [5], [6], [7]. For instance, packet 
injection and data manipulation attacks can threat some critical 
components that are responsible of driver’s safety services. On 
other hand, several anomalies can arise in case of harmful 
incidents such as malfunctions, human errors or signals 
interruptions. This highlights the relevance of anomaly detection 
in the automotive environment. 

By definition, an anomaly-based Intrusion Detection System 
(IDS) collects and analyzes information about computer or 
network system in order to detect anomalies that can disturb its 
normal activity. In automotive systems, data that are collected 
from various in-vehicle sensors and ECUs are transmitted to the 
infrastructure (e.g., the cloud) in the form of sequences of 
observations. Then, this information being processed and used 
by critical applications should be protected against forging and 
tampering attacks. 

The objective of this paper is therefore to design an anomaly-
based IDS for Vehicle-to-Cloud (V2C) communications. In 
order to detect anomalies in the V2I data sequence, a neural 
network-based anomaly detector is designed to be implemented 

in the vehicle’s gateway. It raises an alert whenever the data 
received from the sensors are classified as anomalous. 

The rest of this paper is organized as follows. Section II 
discusses some related works in particular those focusing on 
sequence anomaly detection. Section III introduces the two 
studied neural network models and the experimental setup used 
to assess them. Section IV details the experiments that were 
carried out to evaluate their performance in terms of resource 
efficiency and attack detection quality. Section V concludes the 
paper. 

II. STATE OF THE ART 

Many approaches have been applied to anomaly detection in 
sequences [8]. A common approach is to identify and compare 
patterns in n-grams, where an n-gram is a length-n subsequence. 
Many algorithms were used to measure the distance between 
candidate n-grams and historical n-grams or other parts of the 
same sequence (e.g., [9]). These methods are difficult to apply 
on the values collected from vehicle’s sensors, because they 
assume a finite symbol dictionary, or rely on some quantization 
methods to convert continuous values to a finite set of symbols. 
Since sensors’ data are continuous, it is not possible to rely on 
foreign symbols (i.e., values) to detect anomalies. Similarly, 
Hidden Markov Models could theoretically be used, but would 
need to be adapted to work on a compressed representation of 
data. Their performance would then be dependent on the quality 
of the chosen compression algorithm. 

Several machine learning and statistical approaches for 
anomaly detection on continuous sequences (or time series), 
have been proposed in the literature: Recurrent Neural Network 
(RNN)-based [10], LSTM-based forecasting and encoder-
decoder [11], [12], [13], clustering based [14], (Demixed) 
Principal Component Analysis, Linear Discriminant Analysis 
[15], one-class Support Vector Machine (SVM) and 
segmentation [16], change point detection [17] and MLP [29], 
[30]. Each of these systems tries to predict the next symbol in 
the sequence. Anomalies are detected when the distance 
between predicted and actual data exceeds a defined threshold. 

The usage of LSTM for forecasting has especially been 
shown to be very effective in standard time series test sets [18], 
electrocardiography [19], aircraft telemetry [20] and automotive 
[21], [22].  



III. USE CASE, ASSUMPTIONS AND EXPERIMENTAL SETUP 

A. Design Decisions for Anomaly Detection 

The anomaly detection method that we use in this work is 
based on forecasting. This class of anomaly detection algorithms 
uses past data to predict current data, and measures the 
difference between observed data and their prediction. By this 
definition, forecasting relies on supervised machine learning, 
since it trains a regression model of data values versus time. 
Predictions performed by a forecasting model will correspond to 
the expected value that a time series will have in the next time 
step. Hence, forecasting can particularly fit the data format in the 
considered use case, namely, an ordered sequence of data 
packets. In addition, using such predictor does not require any 
knowledge about abnormalities to work, which will be proved 
throughout this study, where the available datasets contain only 
real non-anomalous data. 

We compared two neural network models for forecasting. 
The first one is based on LSTM neural networks, which shown 
a high efficiency for time-series forecasting in a variety of 
domains especially in automotive scenarios. The second type 
that we considered in this study is MLP-based neural networks 
is based on the MLP architecture, which was widely used for 
time series forecasting in the early days of machine learning 
[23]. In fact, the MLP is a lightweight model in terms of 
hardware infrastructure requirements, training phase duration 
and resource consumption, which is adapted for automotive 
environment. In addition, recent studies showed that a time 
window based MLP can outperform the LSTM on certain time-
series prediction benchmarks bas on few recent inputs [24]. 

B. Training and Testing  

The available data was captured within a 2010 Toyota Prius 
3 vehicle, equipped with components for automated/cooperative 
driving and standard vehicle sensors. The final dataset contains 
almost 650 thousands packets collected during approximately 7 
hours of driving. Based on these datasets, 20% of packets (i.e., 
about 1.5 hours of driving) are set aside as an independent test 
set, which means that they are never used neither during the 
model selection nor during the training. A sample of the dataset 
is a 4-dimensional vector of real values: acceleration [m/s2], 
velocity [m/s], latitude and longitude. Each vector represents the 
data sent by the different vehicle’s sensors at a given timestamp. 

During the supervised training, the network is fed with input 
sequences x ={x1, x2, …, xN}, where xi represents a sample of the 
dataset, and y is defined as the corresponding  xN+1 sample. Both 
of samples are normalized in the neural network activation 
function domain. For each vector component, the normalizing 
coefficients, minimum and maximum values are fixed 
beforehand following a worst-case analysis approach and 
according to the vehicle datasheet specifications. 

C. Feasibility Studies 

Inside the vehicle, the sensors’ data are received by the ECU, 
which formats the data and forwards them to the gateway. This 
latter sends data periodically to the cloud with a frequency equal 
to 25Hz.  As recommended in [28], data are JSON-formatted, 

containing information about vehicle latitude and longitude, 
velocity and acceleration.  

In order to detect anomalies in such data sequence, we rely 
on a neural network-based anomaly detection system, which is 
running in real time on the vehicle’s gateway. The neural 
network is trained in order to predict, at time t, the subsequent 
message’s values (at time t+1), using a window of N received 
packets (t-N, …, t-1).  

Once the training phase is performed, the obtained 
parameters (i.e., weights and biases) are loaded into the neural-
network based vehicle’s IDS. This latter compares at run-time 
each received packet (real data) and the corresponding 
prediction it made at the previous timestamp. As the sending 
frequency is set to 25Hz, the anomaly-based IDS needs should 
make a prediction during a time period lower than 40ms. 

The first part of this work consists of checking whether the 
neural network hardware requirements were complying with the 
automotive embedded system. Therefore, we measured the 
following parameters:  

1. Time to start up the IDS at different CPU frequencies and 

network sizes. 

2. Time to make a prediction at different CPU frequencies, 

network sizes and window sizes. 

3. Peak of RAM usage to run the IDS at different CPU 

frequencies, network sizes and window size. 
 

We performed the above tests for both MLP and LSTM 
models. For each model, we analyzed different architecture 
configurations that have been selected in some related works in 
time-series forecasting.  

We carried out the experiments on an Intel Core i5-7300U 
computer. However, the automotive computing platform for 
autonomous-driving uses on microarchitectures having 
processor’s speed around 1600 MHz and up to 4 cores (e.g., Arm 
Cortex-A53 Quad). Therefore, to emulate the automotive 
environment, we performed the measurements by enabling a 
single core only, which keeps the tested frequencies below 
1.5GHz. To implement the neural network software, we used the 
Keras API 2.0.8 and python 2.7.14. Changing the Keras 
backend, we analyzed the performance of two well-known 
tensor manipulation frameworks for machine learning: Theano 
and TensorFlow. The results of 50 timing measurements were 
averaged to filter out the measurements noise, and similarly for 
memory measurements (RAM), 100 trials are performed due to 
the higher noise. 

1) Multilayer perceptron 
To evaluate the MLP-based IDS, we tested the two following 

configurations: 

 3-layer MLP: 1 input, 1 hidden layer, 1 output 

 4-layer MLP: 1 input, 2 hidden layers, 1output 

For the timing measurements, the number of neurons in the 
output layer is set to 4, in such way each neuron corresponds to 
one of the studied metrics: acceleration, velocity, latitude and 
longitude. Then, for each frequency and each configuration, we 
measured the time to start up the IDS by varying the network 



size (number of neurons). In Figure 1, the three dashed lines 
represent a neural network having hidden layer’s sizes of 20, 400 
and 800 (the same holds for the straight lines). We notice a high 
difference in startup time: Theano backend is almost ten times 
slower to start than TensorFlow. The network size has also a 
greater impact with Theano. 

 

Figure 1: Start-up time of the anomaly detector based on the MLP. 

 
Regarding the prediction time, we notice that, using the 

TensorFlow backend, the network size and the window size have 
a negligible impact on the prediction time. This is not the case 
for the number of hidden layers and the CPU frequency, as 
depicted in the top graph in Figure 2. In the Theano tests instead, 
the prediction time (z-axes) is influenced by changing the 
window size (y-axes), the number of neurons in the hidden 
layer(s) (x-axes) and the frequency as depicted in the bottom 
graph in Figure 2. The time to make a prediction is also one order 
of magnitude smaller. However, in all cases, the prediction time 
stays below the threshold of 40 ms. 

 

Figure 2: Time to make a prediction with the MLP architecture. 

 

 The results of memory consumption tests are summarized in 
Table I. From the test data, it appears that the memory 
consumption is clearly correlated with the network size with 
TensorFlow but not with Theano, which exhibits a higher and 
constant memory consumption. 

TABLE I: MLP memory consumption. 

Backend Layers Min [MB] Max [MB] Average [MB] 

TensorFlow 3 289.087 298.072 292.173 

TensorFlow 4 289.45 301.542 293.188 

Theano 3 376.235 380.679 376.758 

Theano 4 376.32 380.364 376.165 

2) Long short-term memory network 
Similarly to the MLP-based IDS, we tested the two 

following configurations: 

 3-layer LSTM: 1 input, 1 hidden layer, 1 output 

 4-layer LSTM: 1 input, 2 hidden layers, 1 output 

For both of them, the number of neurons in the input and output 
layer was set to 4. Here again, the difference between the Theano 
and Tensorflow backends is important. Similarly to the MLP 
case, Tensorflow is about five time faster to boot the IDS. 
Moreover, as expected, the LSTM architecture requires more 
time than the MLP due to the higher complexity in the LSTM 
network design. In Figure 3, the three overlapping dashed  and 
straight lines represent different LSTM hidden layer(s) 
dimension (i.e., 5, 50 and 100 neurons). While the size of the 
hidden layer(s) plays a minor role (curves are overlapping), the 
addition of one layer causes an important increase in the start-up 
time, especially with the Theano backend. 

 
Figure 3: Start-up time of the anomaly detector based on the LSTM. 

 
 The graph below represents the time to make a prediction (z-
axes) with the LSTM neural network in different conditions. We 
varied the number of hidden layers between 1 and 2, which are 
showed as two separated surfaces in the four 3D plots, where the 
top ones being logically the 4-layered LSTM. Also in this case, 
the tested hidden layer(s) dimension(s) were 5, 50 and 100 
neurons (x-axes); for the window size the values were 50, 100, 
150 and 200 (y-axes). In addition, we tested all the parameters 
combination for frequencies up to 1.5 GHz. In the Figure 4, we 
show only the results for the two “boundary” frequencies, i.e. 

 

 

 



the CPU was set to 400MHz for the plots on the first row and 
1500MHz for the ones in second row. 

 

Figure 4: Time to make a prediction with the LSTM architecture. 

 
 The main result is that the prediction time (z-axis) is 
significantly higher with the TensorFlow backend, up to about 
20 times if we compare the 3-layered cases at 1.5 Ghz, and 
systematically above 40ms. This means that the LSTM with the 
Tensorflow backend is not a good choice for the real-time IDS. 
It is also interesting to notice that, setting Theano as backend, 
the relative influence of the network size on the prediction time 
is much greater. On the other hand, we notice that the window 
size drives the prediction time with Tensorflow.  

 Regarding the peak of RAM usage for the LSTM neural 
network (Table II), it appears that the memory consumption is 
correlated with the network size using Tensorflow. Once again, 
this is not the case with Theano, which exhibited an almost 
constant memory consumption. 

TABLE II: LSTM memory consumption 

Backend Layers Min [MB] Max [MB] Average [MB] 

Tensorflow 3 300.651 304.867 302.208 

Tensorflow 4 307.086 313.179 309.928 

Theano 3 376.597 380.609 377.03 

Theano 4 376.534 380.179 376.836 

D. Hyperparameters Optimization 

In machine learning, there is no a common model 
architecture that fits to all problems, but rather each task has its 
own; it is often said that the problems are data-dependent. To 
this extent, we run a model selection algorithm to find the best 
set of hyper-parameters for both neural network architectures. 

Given a model with a fixed hyper-parameter configuration, 
there are several approaches to evaluate its performance. We 
relied on k-fold cross validation, which was proven to be one of 
the best methods used for model selection [25]. We fixed the 
number of folds to 10, according to the recommendations 
of [25]. The configurations used for tests are characterized by 
six different parameters: number of neurons per layer, window 
size, hidden layers activation function, output layer activation 
function, weight initializer and the optimizer. For each of these 

parameters, a range of possible values  similarly to some related 
works.  Some neural network configurations are explored 
manually to check whether the defined parameters ranges are 
appropriate for our data. Doing so, we could further shrink the 
domain size and thus increase the probability of finding the 
optimal parameter setting. The final grid of values is 
summarized below. 

 Hidden layer activation function = ['tanh', 'softsign', 
'linear'] 

 Output layer activation function = ['tanh', 'softsign', 
'linear'] 

 Weight initializer = ['lecun_uniform', 'glorot_normal', 
'glorot_uniform', 'he_normal', 'he_uniform'] 

 optimizer = ['Adagrad', 'Adam', 'Nadam', 'RMSprop'] 

 Number of hidden layers’ neurons: 
o 3 layer LSTM = [10,100]; 4 layer LSTM = [10,100] 
o 3 layer MLP = [10,800]; 4 layer MLP = [10,500] 

 Window size = [5, 200] 

 Within this 6-dimensional configuration space, we decided 
to use random search to pick a value from each parameter grid, 
with uniform probability, and thus build a configuration to test. 
This decision is based on the work of Bergstra and Bengio [26], 
who proved its superior efficiency in comparison with gird and 
manual search. 

 In order to train and test a given neural network 
configuration, we need to set the number of epochs and the batch 
size. Following the practical recommendations for gradient-
based training of deep architectures [27], the batch size should 
affect the training time and not so much the test performance. 
Hence, it can be optimized separately and after the other hyper-
parameters. Therefore, in order to accelerate the optimization 
process, we kept the batch size fixed to 4096. Regarding the 
number of epochs, we applied early stopping; for each of the k 
times that train-test procedure is repeated for a given parameter 
setting, 20% of the training set (composed of k-1 folds) is 
reserved for validation phase. In order to prevent the leakage of 
test data information and therefore obtaining an unbiased 
performance estimate, we did not use the k-th fold, reserved for 
testing, also for validation.  

 Within the 10-fold validation process, at the end of each of 
the 10 training phases, the performance of the model has been 
assessed on the test fold in terms of Mean Squared Error (MSE). 
We run the hyper-parameter optimization procedure explained 
above on a custom computer equipped with an Nvidia GTX 
1080 Ti GPU. We fixed the number of trials of the random 
search to 1000. In table III, we show for each configuration, the 
parameter settings having the smaller average mean square 
error. 

TABLE III: Best configurations. 

# Score Configuration 

1 8.0949×10-4 MLP: HL = 2, AF & AFO = softsign, W = 49,          WI = 

glorot_uniform, O = Adam, N = 375 

2 8.1998×10-4 MLP: HL = 1, AF & AFO = softsign, W = 38, 
WI = glorot_normal, O = Adam, N = 599 

3 8.2751×10-4 LSTM: HL = 1, AF = softsign, AFO = tanh, W = 79, WI = 

he_uniform, O = Adam, N = 71 

4 8.3355×10-4 LSTM: HL = 2, AF = softsign, AFO = tanh, W = 52, 

WI = he_unifromm O = RMSprop, N = 69 

 



a. HL = hidden layers; AF = activation function; AFO = output activation function; W = window;          

WI = weight initializer; O = optimizer; N = number of neurons per layer  

The above results show that the carefully selected 
architectures, in their best configurations, achieves performance 
similar to one another. According to the obtained results in Table 
III, we decided to base our IDS upon the MLP model bas on two 
reasons. First, it has the lowest average mean square error in the 
hyper-parameter optimization process. Second, it puts less strain 
on the underlying hardware infrastructure, which is more 
suitable for real time applications. Therefore, we trained the 
selected neural network for the last time using all the training 
samples and a batch size of 512, to obtain the final matrix of 
weights and biases. 

We tested the trained neural network on the test set, set aside 
in the beginning, to see if the hyper-parameter optimization 
procedure yielded a configuration that was able to generalize 
well, without being under-fitted or over-fitted. Specifically, we 
computed the average of the mean square errors between 
predicted and real samples that resulted to be equal to 
8.9225×10-4. As expected, the result was worse than the one 
obtained in Table III but still has a high quality. 

E. Anomaly Signal 

As previously mentioned, we decided to use the squared 
distance as anomaly signal. We run the predictor on 50% of the 
test dataset samples, obtaining a forecast for each one of them. 
Then, we computed the squared error between each component 
of the predicted vector (�̂�) and its corresponding real value, part 
of the vector 𝑦. Then, we extrapolated the following 
information: average (avg), maximum and standard deviation 
(std) of the squared errors of each vector’s components 
(velocity, acceleration, longitude and latitude). These metrics 
have been used to compute different threshold values to be tested 
in the IDS (see subsection IV.E). Instead of one single metric, 
we decided to calculate a threshold for each predicted vector’s 
component. The finer granularity avoids that an anomaly on a 
single vector component could be compensated by the accurate 
prediction on the other components and thus pass without 
detection. An example is the MSE where, by averaging the 
squared errors of the different vector’s components, an anomaly 
could be “filtered out” and the resulting value could remain 
below the computed threshold. 

IV. EXPERIMENTS AND RESULTS 

 Evaluating an IDS requires to compute the True Positive 
Rate (TPR) and False Positive Rate (FPR). These computations 
require a dataset containing normal and anomalous data. 
Unfortunately, the latter was not part of the available test dataset, 
so we turned to artificially injecting anomalies in the remaining 
50% of it (~ 20k samples). Inspired by previous works [22], we 
devised three modifications that aim at emulating the 
characteristic of real in-vehicle networks attacks: 

 Drop. Four consecutive packets have a single value 
removed. This simulates what happens when an ECU is 
silenced and rapidly replaced by a malicious one. 

 Fuzzing. Random data is introduced inside a sequence 
in order to emulate a Denial of service (DoS) attack 
against the Controller Area Network (CAN) bus. 

 Discontinuity. The normal packet sequence is interleaved 
with a window of data taken from another point in time. 
This simulates a replay attack where an attacker takes 
control of an ECU and starts sending out of context, but 
legitimate traffic. 

In addition, we needed to define the threshold value (THV) for 
each vector’s component and for how many (out of 4) squared 
errors above the threshold (THN) an alert should be raised. To 
do so, we carried out different experiments. We launched one 
attack at a time and varied: 

 THV in the range [avg + b × std, maximum] 
∀ b ∈ [0, 1, 2, …, 6] 

 The attacked component between [acceleration, 
velocity, longitude, latitude]. 

 NTH ∈ [2+, 3+, 4]. 

  An anomaly detector in a vehicle should have a false alert as 
close as possible to zero. In the considered scenario, a false 
positive rate of 10−5 would produce a false alert almost every 
hour. This motivated us to choose an IDS’s setting that would 
lead to the highest possible TPR with a FPR of 0. The 
experiments results showed that the configuration that could 
achieve the aforementioned performances was the one with 
TH = (avg + 4 × std) and NTH = 3. 

TABLE IV: IDS Performances. 

Sensor Attack TPR % FPR% 

Velocity 

Drop 100 0 

Discontinuity 100 0 

Fuzzing 100 0 

Acceleration 

Drop 1.0989 0 

Discontinuity 37.2549 0 

Fuzzing 100 0 

Longitude 

Drop 100 0 

Discontinuity 100 0 

Fuzzing 100 0 

Latitude 

Drop 100 0 

Discontinuity 100 0 

Fuzzing 100 0 

 

 

Figure 5: IDS performances in case of attacks against the acceleration. 

 



 
 From Table IV, we can notice a low detection rate of the 
discontinuity and drop attack against the acceleration. Figure 5 
shows more details about the IDS behavior in case of attacks 
targeting the acceleration. It can be seen that it is possible to 
reach higher TPR values for all the attacks with the side effect 
of rising the FPR up to almost 10% (overlapping dashed lines). 

V. CONCLUSION 

 In this paper, we presented a study on the usage of deep 
neural networks for anomaly detection in data sequences. In 
most of existing related works, the LSTM is the recommended 
model for time series problems. In our work we show that, in 
some cases, as previously discovered in [24], using a less 
complex neural network configuration, the MLP-based model 
can outperform the LSTM-based one. Moreover, we provided 
an extensive comparison of the real-time performances and 
hardware requirements of such a networks in a real-world 
implementation. 
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