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Abstract—This paper studies the joint optimization of resource
scheduling and computation offloading for mobile networks where
energy harvesting (EH)-enabled devices are wirelessly connected
to nearby base stations (BSs), which can be endowed with some
computational capabilities. We consider that a mobile device may
run its applications either locally or remotely at its serving base
station. We also consider that its applications are strict delay
constraints. Our objective is to minimize the packets’ loss due
to buffer overflow or delay violation of the queued packets at
the mobile device. We formulate this problem as a Markov Deci-
sion Process (MDP) and exhibit an optimal deterministic offline
scheduling-offloading policy. This policy makes decision on the
processing location (either local or offloading) and on the number
of processed packets by relying on the knowledge on the current
channel, the past data and energy arrivals as well as the harvested
energy available in the battery. We show through numerical results
that the proposed policy can significantly improve the successfully
received packets’ rate and the energy consumption compared
to other policies, such as immediate scheduling or only local
processing or only offloading policies.

I. INTRODUCTION

Nowadays, the unprecedented growth of mobile communi-
cations driven by the huge number of connected devices and
new mobile applications is significantly increasing the demands
for high-volume delay-sensitive data traffic, requiring thus
intensive computation and leading to high energy consumption.
However, this expansion of wireless services is still restrained
by mobile terminals limitations in terms of processing capacity,
storage and energy. Recently, Mobile-Edge Computing (MEC)
[1], [2] and Energy Harvesting (EH) [3], [4] have been pro-
posed as promising technologies to improve mobile devices
computing capabilities and extend their battery lives.

On one hand, MEC enables offloading computation tasks
from mobile devices to remote cloud servers or to nearby base
stations with more energy and computation resources. This
allows to reduce locally the consumed energy at mobile devices.
Optimizing the transmission strategies in MEC has attracted
considerable attention during the past decade. For instance,
in [5], the energy consumption of the mobile device was
minimized by jointly optimizing the radio resource scheduling
and the computation offloading under average delay constraints
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using Dynamic Programming (DP) techniques. In [6], a delay-
optimal task scheduling policy for single-user systems was
developed using Markov Decision Process (MDP) formulation.

On the other hand, EH from surrounding environments
allows to extend wireless devices lifetime by exploiting alter-
native renewable energy sources, such as solar power. Resource
scheduling with EH-enabled devices has been widely studied
during last years. The most related to our work are [7] and
[8]. In [7], the weighted packet loss rate is minimized under an
average delay constraint in wireless sensor networks. Based
on a Constrained MDP framework, the authors proposed a
distributed energy allocation algorithm with multi-level water-
filling structure based on local system states, using approx-
imate MDP and online stochastic learning. In [8] however,
the expected total transmitted data is maximized. The authors
proposed online learning and offline policies depending on the
information available at the transmitter.

To take advantage of both technologies, recent studies have
integrated EH capabilities into MEC systems. This new field
opens great opportunities to improve the performance of mobile
devices but also brings new challenges in designing optimal
and efficient policies, taking into account both radio and
computation resources under energy harvesting constraints. A
very recent work studying EH-MEC systems proposed a dy-
namic computation offloading policy for mobile devices using
Lyapunov optimization techniques [9]. In [10], the resource
management problem is also considered for EH-MEC but from
the server side.

In this paper, we address joint resource scheduling and
computation offloading for a single EH mobile user served
by a base station (BS). We force the system here to respect
a strict delay constraint as in our previous work [11]. Then,
we minimize the number of discarded packets due to delay
violation and buffer overflow, assuming random data and energy
future arrivals, as well as time-varying channel where the
current realization is known. The problem is formulated as
an MDP and solved using Policy Iteration (PI) algorithm. We
compare the proposed policy with one performing immediate
scheduling, and two additional ones executing either only local
processing or only offloading decisions.

The remainder of the paper is organized as follows. In
Section II, we describe the system model. In Section III, we



formulate the MDP problem by defining its states, actions
and transition probabilities and we propose a PI algorithm to
solve it. We provide and analyze numerical results in Section
IV. Finally, we give some concluding remarks and future
perspectives in Section V.

II. SYSTEM MODEL

We consider a MEC scenario where an EH mobile user
is wirelessly connected to a BS endowed with some cloud
resources. The mobile user stores the harvested energy from
an external source in a limited-capacity battery and the data
packets arriving from the upper layer in a finite buffer. The
communication is slotted into consecutive epochs of equal
duration Ts. Type of processing (locally or remotely) as well
as the number of packets to be processed are determined at
the beginning of each time slot, depending on current channel
state and previous data and energy arrivals. In the sequel, we
describe the data, energy and channel models, as well as the
different types of scheduling decisions and their corresponding
consumed energy.

A. Data queue model and strict delay constraint

The mobile user receives data packets and stores them in a
buffer of size Bd packets. We model the data arrival process as
an independent identically distributed (i.i.d.) Poisson distributed
process with an average arrival rate λd. We assume that all
packets are of the same size L bits. At the beginning of time
slot n, let an denote the number of received packets with the
following probability distribution

p(an = a) = e−λd .
(λd)

a

a!
.

A packet is discarded from the buffer if there is a
• buffer overflow, i.e., new packets are discarded if there

is no space in the buffer to store them;
• delay violation, i.e., packets are discarded if they are

stored in the queue more than the maximal delay K0.
To describe the buffer configuration, the age of the packets,

i.e., the time spent by the packets, within the buffer is necessary.
Therefore, we introduce the notation ki(n) corresponding to the
age of the i-th packet at time n in the buffer. By definition, we
have ki(n) ∈ {−1, ...,K0},∀i, n and ki(n) = −1 stands for an
empty space in the buffer (i.e., when the i-th packet does not
exist). In Fig. 1, we provide a buffer state at time n, where qn
is the queue length in the buffer. Notice that kj(n) ≤ ki(n),
∀i 6 j.

Buffer of Bd packets (ordered from the oldest to the newest)

k1(n) ... kqn(n) −1 ... −1

qn packets empty area

Fig. 1: Buffer configuration at time slot n.

B. Energy model

We assume that the energy arrives in multiple packets of
energy units (e.u) of EU Joules (J). The received energy is
stored in a battery of limited capacity Be, and is lost when
it exceeds Be. Then, the energy arrival process, counting as
a number of the energy units, is modeled as an i.i.d. Poisson
distributed process with an average arrival rate λe. Thus, let en
denote the harvested energy at the beginning of time slot n. Its
probability distribution is given by

p(en = e) = e−λe .
(λe)

e

e!
.

Let bn denote the energy level of the battery at the beginning
of time slot n after receiving the harvested energy en. We have
bn ∈ {0, ..., Be}. Let En be the energy consumed to execute
packets during time slot n. By construction, En 6 bn ∀n. In
addition, we suppose causal Energy State Information at the
Transmitter (ESIT), i.e., bn is known when scheduling at time
slot n.

C. Channel model

We consider the communication channel between the mobile
device and its BS as a flat-fading channel with bandwidth
WDL (Hz) in the downlink and WUL (Hz) in the uplink. The
additive white Gaussian noise has power spectral density N0.
During time slot n, the channel response remains constant with
complex-valued amplitude hn, and varies independently along
time slots. We define the channel gain as xn = |hn|2. We
assume {xn}n is an i.i.d. uniform distributed process into a
finite set X . We also assume current Channel State Information
at the Transmitter (CSIT), i.e., xn is known when scheduling
at time slot n.

D. Scheduling decisions and related consumed energy

At the beginning of time slot n, three scheduling decisions
are possible:
• Local processing: The mobile device uses its own pro-

cessor to execute u packets from the buffer (u 6 qn)
during time slot n. We assume that processing one packet
locally consumes a power P`. Then the consumed energy,
expressed as an integer multiple of the energy unit, is given
by

E`(u) =

⌈
u.P`.

Ts
EU

⌉
. (1)

• Offloading: The mobile device transmits u packets to
be executed at its BS and then receives the results. The
mobile device thus consumes energy to send data, to wait
for the remote processing and to receive the result. The
energy consumption, expressed as an integer multiple of
the energy unit, is given by

Eo(xn, u) =

⌈
u

EU

(
L.Pt

WUL. log2
(
1 + Pt.xn

WUL.N0

) +
Tw.Pw +

LDL.Pr

WDL. log2
(
1 + Ps.xn

WDL.N0

))⌉ (2)



where LDL is the size in bits of the computation result,
Pt is the transmission power of the mobile device, Pr
is the power consumed by the mobile device to receive
the result, and Ps is the power used by the BS to send
the result. While waiting for the packets processing, the
transmitter consumes a power Pw. Finally, Tw is the time
for the BS to execute one packet. In addition, we require
that this offloading procedure lasts at most one time slot
leading to the following constraint

u

(
L

WUL. log2
(
1 + Pt.xn

WUL.N0

) + Tw +

LDL

WDL. log2
(
1 + Ps.xn

WDL.N0

)) 6 Ts. (3)

Notice that WDL,WUL, N0, LDL, Ps, Tw are pre-fixed
parameters. Forcing equality in Eq. (3) enables us to find
Pt which so depends on u and the channel realization xn
and is time-varying along with the time slots.

• Idle: The mobile device does not execute any packet and
decides to wait for the next time slot. We assume that the
device electronic circuitry is sleeping and so the consumed
energy is given by

EI = 0. (4)

III. PROBLEM FORMULATION AND RESOLUTION

Now, we aim at finding an optimal policy µ that minimizes
the number of discarded packets due to buffer overflow and
delay violation. The policy µ is a sequence of actions that
specify the processing decisions (local processing, offloading
or staying idle) and the number of packets u to be scheduled at
each time slot, based on the past system states and actions. In
this section, we characterize the appropriate states and actions
and show that our problem can be formulated as an MDP. We
define then the transition matrix and the reward of this MDP
and propose an offline policy iteration algorithm to solve it.

A. State Space

The state space S is the set of s = (k, b, x) where
• k = [k1, · · · , kBd ] is the vector indicating the age of each

packet in the data buffer,
• b is the battery level, and
• x is the channel gain.
Due to the strict delay constraint, we describe the data buffer

states using k instead of the queue length q used in the state-
of-the-art [5], [7], [9]. Actually, q can be extracted from k

qn = max
{
i | ki(n) > 0

}
. (5)

The state space is finite, and the total number of possible
states |S| is upper-bounded by (K0 + 2)Bd .|Be + 1|.|X |. By
assuming that packets are queued in an decreasing order of their
age in the buffer, i.e. k1(n) ≥ k2(n) ≥ · · · ≥ kqn(n), we can
significantly reduce the state space by removing all impossible
combination of components in k. For instance, with Bd = 8,
K0 = 3, Be = 4 and |X | = 5, our system has only 12375
states compared to the upper-bound of 9765625.

B. Action Space

The action space V denotes the processing decisions (local
processing, offloading or staying idle) and the number of
packets u that the mobile device can schedule during a slot. Let
U` be the maximum number of packets that can be processed
locally during a time slot and Uo be the maximum number
of packets that can be offloaded during a time slot. U` is
limited by the capacity of the internal processor of the mobile
device and Uo is obtained from Eq. (3) with equality, using
the maximum transmit power Pmax and the best channel gain
xmax = maxx∈X x. Finally, the action space is finite with
cardinality V = |V| = U` + Uo + 1. The actions are ordered
and the m-th action is as follows:
• if m = 0, idle processing is considered and u = 0.
• if m = m` with m` ∈ {1, · · · , U`} , local processing is

applied and u = m`.
• if m = mo with mo ∈ {U` + 1, · · · , V − 1} , offloading

is applied and u = mo − U`.
At time slot n, νn ∈ {0, , · · · , V − 1} corresponds to the
decided action, and uνn is the number of processed packets,
either locally or remotely.

C. Markov Decision Process

During time slot n, wn = max(uνn ,mn) packets leave the
buffer due to local or remote processing and/or discarded, where
mn is the number of packets reaching the maximal delay (K0)
in the buffer. The age of the remaining packets in the buffer
is incremented by 1. Moreover, an+1 new packets arrive to the
buffer with age 0. Therefore, the vector k can be updated from
slot n to slot n+ 1 according to the following rule.

1: for i = 1 to qn − wn do
ki(n+ 1) = kwn+i(n) + 1
end for

2: for i = qn − wn + 1 to qn − wn + an+1 do
ki(n+ 1) = 0
end for

3: for i = qn − wn + an+1 + 1 to Bd do
ki(n+ 1) = −1
end for

At the same time, en+1 e.u are harvested and stored in the
battery while En e.u are used to schedule uνn packets according
to Eqs. (1), (2), or (4). Therefore, at time slot n+1, the battery
state is updated according to

bn+1 = min {bn − En + en+1, Be} . (6)

We thus remark that (kn+1, bn+1) only depends on previous
state (kn, bn), action νn (which provides En since xn is,
known), and external perturbation (an+1, en+1), confirming
that the problem boils down to MDP.

D. Transition Matrix

The state transition probability of the MDP is defined by
p(s′|s, ν) denoting the transition probability to fall in the future
state s′ = (k′, b′, x′) after taking action ν in the current state
s = (k, b, x). Assuming that the buffer, battery and channel



states are independent to each other and channel states are not
time-correlated, the transition probability satisfies the following
equation

p(s′|s, ν) = p(k′|k, b, ν).p(b′|b, x, ν).p(x′), (7)

where p(x′) is the distribution of the channel states,
p(k′|k, b, ν) indicates the probability transitions between buffer
states, and p(b′|b, x, ν) indicates the probability transitions
between battery states.

We first exhibit the set of possible actions A(s) ⊂ V for each
state s. We have A(s) = A0(s)∩A1(s)∩A2(s), where A0(s),
A1(s) and A2(s) are defined through their complementary sets
as follows: i) the set A0(s) is composed by the actions of
offloading using a transmit power Pt > Pmax according to
Eq. (3); ii) the action ν belongs to A1(s) by satisfying at least
one of the following conditions

1: uν > q or k′i > ki + 1 or q′ < q − w
2: k′i 6= ki+uν + 1 and ki+uν 6= −1
3: k′i > 0 and ki+uν = −1
4: q = Bd and uν 6= 0 and k′i > 0,∀i ∈ {q−w+1, ..., Bd}

iii) the action ν belongs to A2(s) by satisfying at least one of
the following conditions

1: 0 > b− E
2: b′ < b− E

where E is the energy consumed when the action ν is applied.
Secondly, when ν ∈ A(s), the transitions are as fol-

lows
1: if q′ < Bd then
p(k′i|ki, b, ν) = e−λd . (λd)

q′−q+w

(q′−q+w)!
2: else
p(k′i|ki, b, ν) = 1− Q(Bd − q + w, λd),

and
1: if b′ < Be then
p(b′|b, x, ν) = e−λe . (λe)

b′−b+E

(b′−b+E)!
2: else
p(b′|b, x, ν) = 1− Q(Be − b+ E, λe).

where Q is the regularized gamma function.

E. Reward

In this paper, we focus on infinite horizon MDP problem. We
consider thus time-averaged cost, where at a given time slot n ∈
{0, · · · , N}, the system state is denoted by sn = (kn, bn, xn)
and µ(sn) = νn is the action. Our objective is to minimize the
average number of discarded packets under policy µ. Hence,
we define the cost function as

D(µ) = lim
N→+∞

1

N
Eµ
[

N∑
n=1

(
εd(sn, νn) + εo(sn, νn)

)]
, (8)

where Eµ is the expectation with respect to the policy µ and
where εd(sn, νn) and εo(sn, νn) are the instantaneous number
of discarded packets due to delay violation and buffer overflow,
respectively.

At a given slot n, when the system state is sn and the
performed action is νn, the number of discarded packets due
to delay violation is given by

εd(sn, νn) =

{
0 if mn = 0 or mn 6 uνn
mn − uνn otherwise. (9)

The buffer overflow occurs when qn − wn + an+1 > Bd,
thus the number of discarded packets due to buffer overflow is
obtained as follows

εo(sn, νn) =

+∞∑
a=Bd−qn+wn+1

(qn − wn + a−Bd).e−λd .
(λd)

a

a!

= λd.(1− Q(Bd − qn + wn, λd))

+ (qn − wn −Bd)
× (1− Q(Bd − qn + wn + 1, λd)). (10)

We can then state the MDP optimization problem as

µ? = argmin
µ
D(µ) (11)

F. Offline Dynamic Programming Approach

We propose an offline dynamic programming approach to
solve this problem. We present in Algorithm 1 the optimal
policy computation using PI algorithm [12]. This optimal
offline deterministic policy consists in a one-to-one mapping
from the state space S to the action space V , performing a
unique action ν whenever a state s is visited. We remind that
it only depends on energy arrival and data arrival a priori
distributions and current channel states at the mobile device.

IV. NUMERICAL RESULTS

We evaluate numerically the optimal policy devised for
the scheduling-offloading problem. We consider the system
described in Section II and fix its characteristics as: the slot
duration is Ts = 1 ms, the channel state x takes 5 possible
values from the finite set X = {−5.41,−1.59, 0.08, 1.42, 3.18}
dB with equal probabilities. The noise power spectral density is
N0 = −87 dBm/Hz and the allocated bandwidth is WDL = 5
MHz in the downlink and WUL = 500 kHz in the uplink.
Data packets have equal size L = 5000 bits and are stored in
a buffer of size Bd = 8 packets. The resulting packets from
remote processing have also equal size LDL = 500 bits. The
maximum delay of packets in the buffer is K0 = 3 (i.e., in
absolute time K0Ts = 3 ms). Energy arrivals are stored as
energy units in a battery of size Be = 4 e.u, where EU = 40 nJ.
The maximum available power at the transmitter is Pmax = 2
mW. During a time slot, a maximum of U` = 2 packets can
be processed locally or a maximum of Uo = 4 packets can be
offloaded. The remaining values are chosen as: P` = 30 µW,
Pr = 0.2 mW, Ps = 1.6 kW, Pw = 0.1 mW, and Tw = 0.1 ms.

In Fig. 2, we illustrate the average number of discarded
packets for the optimal policy versus the number of iterations
with various energy arrival rates λe and a data arrival rate
λd = 1.5. We can notice that it takes only a few hundreds
iterations to the PI algorithm to converge. In addition, if a



Algorithm 1 Optimal policy computation

1: Select arbitrary policy µ0

Let β0 = 0
Fix a tolerance parameter ε > 0
Set j = 1

2: Given the policy µj−1

Compute the transition matrix T of size |S| × |S| when
policy µj−1 is applied according to Section III-D
Compute the cost vector c of length |S|

εd(s, µ
j−1(s)) + εo(s, µ

j−1(s))

for each state s in S.
3: Let a scalar βj and a vector vj of length |S| be the solutions

of
βj + (I −T)vj = c∑

s∈S
vj(s) = 0

where vj(s) is the component of vj corresponding to the
s in S.

4: Find a policy µj by computing an optimal action for each
state s using

µj(s) = argmin
ν∈V

εd(s, ν) + εo(s, ν) +
∑
s′∈S

p(s′|s, ν)vj(s′)

5: If µj(s) = µj−1(s) for any state s or
∣∣βj − βj−1∣∣ < ε,

then µ̂ = µj is the optimal policy estimate and stop; else
j = j + 1 and go to step 2.

large amount of energy can be harvested, λe increases, and
the system is able to schedule more packets reducing hence
considerably the average number of discarded packets.

In Fig. 3, we show the percentage of discarded packets versus
the data arrival rate λd for λe = 0.5 (small) and λe = 1.5
(large) energy arrival rates. We compare the performance of
the optimal policy to three different policies, namely immedi-
ate scheduling, local processing and offloading policies. The
immediate policy processes, locally or remotely, the maximum
number of packets whenever energy is available in the battery.
The local and offload policies however, are obtained from
our offline PI algorithm but take only local decisions and
only offload decisions, respectively. We can observe that the
proposed deterministic offline policy outperforms the other
policies as it can adapt its processing to the energy and data
arrivals as well as channel conditions. Yet, when the data arrival
rate λd increases, the number of discarded packets of all the
policies increases because the buffer overflow can happen more
often. We can also see that for both λe values, the local policy
discards the highest number of packets due to the limited
capacity of the mobile device processor. Moreover, when λe is
small, the offload policy is able to sustain more efficiently the
system than the immediate policy by scheduling more packets
depending on the channel states. This situation is reversed when
λe is large since the scavenged energy is sufficiently available

to process the maximum number of packets by the immediate
policy irrespective of channel conditions.

Fig. 2: Convergence analysis for the average rate of discarded
packets for different energy arrival rates.

Fig. 3: Percentage of the discarded packets versus data arrival
rate for energy arrival rates λe = 0.5 and 1.5.

In Fig. 4 and Fig. 5, we plot respectively the average
consumed energy and the average battery state versus the data
arrival rate λd for energy arrival rates λe = 0.5 and 1.5. We can
observe that local and immediate policies experience the highest
energy consumption since processing packets locally consume
more energy, draining thus the battery level. The optimal pro-
posed policy consumes approximately the same energy amount
as the offload policy while sending more packets. Indeed, it
ensures a better sustainable communication with less number
of discarded packets by optimally using the available energy,
leading hence to a higher energy level in the battery.

In Fig. 6, we display the percentage of processing decisions
for the optimal and immediate policies in Fig. 6(a) and (c)
respectively at (λd = 1, λe = 1) , and in Fig. 6 (b) and (d)
respectively at (λd = 2, λe = 2). As we can see, when the



Fig. 4: Average consumed energy versus data arrival rate for
energy arrival rates λe = 0.5 and 1.5.

Fig. 5: Average battery state versus data arrival rate for energy
arrival rates λe = 0.5 and 1.5.

data arrival rate increases, the system schedules more packets
either locally or remotely to minimize the number of discarded
packets, which decreases Idle mode events. When more energy
is available in the battery, the immediate policy processes the
maximum number of packets, hence can offload more packets
regardless of channel states. Therefore, energy shortage can
occur more often forcing the system to enter Idle mode more
than with optimal policy.

V. CONCLUSION

We have addressed computation offloading problem from
an energy harvesting mobile device to its serving resourceful
base station under strict delay constraint. We have proposed
an optimal policy to minimize the packet loss rate using
MDP framework and dynamic programming techniques. By
leveraging on the knowledge of the available energy in the
battery, the data and energy arrivals as well as the channel
states, the optimal offline policy decides to process locally

Idle
37%
Ofld.
20%

Loc.
43%

(a) Optimal

Idle
9%Loc.

58%
Ofld.

33%

(b) Optimal

Idle
39%
Ofld.
25%

Loc.
36%

(c) Immediate

Idle
12%

Loc.
36%

Ofld.
52%

(d) Immediate

Fig. 6: Percentage of processing decisions at (λd = 1, λe = 1)
(a) and (c), and (λd = 2, λe = 2) (b) and (d).

or remotely while specifying the number of packets to be
processed. For future work, we aim at (i) investigating the
case of unknown channel to the mobile device, (ii) focusing
on online approaches instead of offline.
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