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Joint Resource Scheduling and Computation Offloading for Energy Harvesting Communications

This paper studies the joint optimization of resource scheduling and computation offloading for mobile networks where energy harvesting (EH)-enabled devices are wirelessly connected to nearby base stations (BSs), which can be endowed with some computational capabilities. We consider that a mobile device may run its applications either locally or remotely at its serving base station. We also consider that its applications are strict delay constraints. Our objective is to minimize the packets' loss due to buffer overflow or delay violation of the queued packets at the mobile device. We formulate this problem as a Markov Decision Process (MDP) and exhibit an optimal deterministic offline scheduling-offloading policy. This policy makes decision on the processing location (either local or offloading) and on the number of processed packets by relying on the knowledge on the current channel, the past data and energy arrivals as well as the harvested energy available in the battery. We show through numerical results that the proposed policy can significantly improve the successfully received packets' rate and the energy consumption compared to other policies, such as immediate scheduling or only local processing or only offloading policies.

I. INTRODUCTION

Nowadays, the unprecedented growth of mobile communications driven by the huge number of connected devices and new mobile applications is significantly increasing the demands for high-volume delay-sensitive data traffic, requiring thus intensive computation and leading to high energy consumption. However, this expansion of wireless services is still restrained by mobile terminals limitations in terms of processing capacity, storage and energy. Recently, Mobile-Edge Computing (MEC) [START_REF] Kumar | A Survey of Computation Offloading for Mobile Systems[END_REF], [START_REF] Mach | Mobile Edge Computing: A Survey on Architecture and Computation Offloading[END_REF] and Energy Harvesting (EH) [START_REF] Ulukus | Energy Harvesting Wireless Communications: A Review of Recent Advances[END_REF], [START_REF] Ku | Advances in Energy Harvesting Communications: Past, Present, and Future Challenges[END_REF] have been proposed as promising technologies to improve mobile devices computing capabilities and extend their battery lives.

On one hand, MEC enables offloading computation tasks from mobile devices to remote cloud servers or to nearby base stations with more energy and computation resources. This allows to reduce locally the consumed energy at mobile devices. Optimizing the transmission strategies in MEC has attracted considerable attention during the past decade. For instance, in [START_REF] Labidi | Energy-Optimal Resource Scheduling and Computation Offloading in Small Cell Networks[END_REF], the energy consumption of the mobile device was minimized by jointly optimizing the radio resource scheduling and the computation offloading under average delay constraints This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675891.

using Dynamic Programming (DP) techniques. In [START_REF] Liu | Delay-optimal computation task scheduling for mobile-edge computing systems[END_REF], a delayoptimal task scheduling policy for single-user systems was developed using Markov Decision Process (MDP) formulation.

On the other hand, EH from surrounding environments allows to extend wireless devices lifetime by exploiting alternative renewable energy sources, such as solar power. Resource scheduling with EH-enabled devices has been widely studied during last years. The most related to our work are [START_REF] Lei | Optimal Reliability in Energy Harvesting Industrial Wireless Sensor Networks[END_REF] and [START_REF] Blasco | A Learning Theoretic Approach to Energy Harvesting Communication System Optimization[END_REF]. In [START_REF] Lei | Optimal Reliability in Energy Harvesting Industrial Wireless Sensor Networks[END_REF], the weighted packet loss rate is minimized under an average delay constraint in wireless sensor networks. Based on a Constrained MDP framework, the authors proposed a distributed energy allocation algorithm with multi-level waterfilling structure based on local system states, using approximate MDP and online stochastic learning. In [START_REF] Blasco | A Learning Theoretic Approach to Energy Harvesting Communication System Optimization[END_REF] however, the expected total transmitted data is maximized. The authors proposed online learning and offline policies depending on the information available at the transmitter.

To take advantage of both technologies, recent studies have integrated EH capabilities into MEC systems. This new field opens great opportunities to improve the performance of mobile devices but also brings new challenges in designing optimal and efficient policies, taking into account both radio and computation resources under energy harvesting constraints. A very recent work studying EH-MEC systems proposed a dynamic computation offloading policy for mobile devices using Lyapunov optimization techniques [START_REF] Mao | Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices[END_REF]. In [START_REF] Xu | Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing[END_REF], the resource management problem is also considered for EH-MEC but from the server side.

In this paper, we address joint resource scheduling and computation offloading for a single EH mobile user served by a base station (BS). We force the system here to respect a strict delay constraint as in our previous work [START_REF] Fawaz | Energy Minimization based Resource Scheduling for Strict Delay Constrained Wireless Communications[END_REF]. Then, we minimize the number of discarded packets due to delay violation and buffer overflow, assuming random data and energy future arrivals, as well as time-varying channel where the current realization is known. The problem is formulated as an MDP and solved using Policy Iteration (PI) algorithm. We compare the proposed policy with one performing immediate scheduling, and two additional ones executing either only local processing or only offloading decisions.

The remainder of the paper is organized as follows. In Section II, we describe the system model. In Section III, we formulate the MDP problem by defining its states, actions and transition probabilities and we propose a PI algorithm to solve it. We provide and analyze numerical results in Section IV. Finally, we give some concluding remarks and future perspectives in Section V.

II. SYSTEM MODEL

We consider a MEC scenario where an EH mobile user is wirelessly connected to a BS endowed with some cloud resources. The mobile user stores the harvested energy from an external source in a limited-capacity battery and the data packets arriving from the upper layer in a finite buffer. The communication is slotted into consecutive epochs of equal duration T s . Type of processing (locally or remotely) as well as the number of packets to be processed are determined at the beginning of each time slot, depending on current channel state and previous data and energy arrivals. In the sequel, we describe the data, energy and channel models, as well as the different types of scheduling decisions and their corresponding consumed energy.

A. Data queue model and strict delay constraint

The mobile user receives data packets and stores them in a buffer of size B d packets. We model the data arrival process as an independent identically distributed (i.i.d.) Poisson distributed process with an average arrival rate λ d . We assume that all packets are of the same size L bits. At the beginning of time slot n, let a n denote the number of received packets with the following probability distribution

p(a n = a) = e -λ d . (λ d ) a a! .
A packet is discarded from the buffer if there is a

• buffer overflow, i.e., new packets are discarded if there is no space in the buffer to store them; • delay violation, i.e., packets are discarded if they are stored in the queue more than the maximal delay K 0 . To describe the buffer configuration, the age of the packets, i.e., the time spent by the packets, within the buffer is necessary. Therefore, we introduce the notation k i (n) corresponding to the age of the i-th packet at time n in the buffer. By definition, we have k i (n) ∈ {-1, ..., K 0 }, ∀i, n and k i (n) = -1 stands for an empty space in the buffer (i.e., when the i-th packet does not exist). In Fig. 1, we provide a buffer state at time n, where q n is the queue length in the buffer. Notice that

k j (n) ≤ k i (n), ∀i j.
Buffer of B d packets (ordered from the oldest to the newest)

k 1 (n) ... k qn (n) -1 ... -1
q n packets empty area Fig. 1: Buffer configuration at time slot n.

B. Energy model

We assume that the energy arrives in multiple packets of energy units (e.u) of E U Joules (J). The received energy is stored in a battery of limited capacity B e , and is lost when it exceeds B e . Then, the energy arrival process, counting as a number of the energy units, is modeled as an i.i.d. Poisson distributed process with an average arrival rate λ e . Thus, let e n denote the harvested energy at the beginning of time slot n. Its probability distribution is given by p(e n = e) = e -λe .

(λ e ) e e! .

Let b n denote the energy level of the battery at the beginning of time slot n after receiving the harvested energy e n . We have b n ∈ {0, ..., B e }. Let E n be the energy consumed to execute packets during time slot n. By construction, E n b n ∀n. In addition, we suppose causal Energy State Information at the Transmitter (ESIT), i.e., b n is known when scheduling at time slot n.

C. Channel model

We consider the communication channel between the mobile device and its BS as a flat-fading channel with bandwidth W DL (Hz) in the downlink and W U L (Hz) in the uplink. The additive white Gaussian noise has power spectral density N 0 . During time slot n, the channel response remains constant with complex-valued amplitude h n , and varies independently along time slots. We define the channel gain as x n = |h n | 2 . We assume {x n } n is an i.i.d. uniform distributed process into a finite set X . We also assume current Channel State Information at the Transmitter (CSIT), i.e., x n is known when scheduling at time slot n.

D. Scheduling decisions and related consumed energy

At the beginning of time slot n, three scheduling decisions are possible:

• Local processing: The mobile device uses its own processor to execute u packets from the buffer (u q n ) during time slot n. We assume that processing one packet locally consumes a power P . Then the consumed energy, expressed as an integer multiple of the energy unit, is given by

E (u) = u.P . T s E U . (1) 
• Offloading: The mobile device transmits u packets to be executed at its BS and then receives the results. The mobile device thus consumes energy to send data, to wait for the remote processing and to receive the result. The energy consumption, expressed as an integer multiple of the energy unit, is given by

E o (x n , u) = u E U L.P t W U L . log 2 1 + Pt.xn W U L .N0 + T w .P w + L DL .P r W DL . log 2 1 + Ps.xn W DL .N0 (2)
where L DL is the size in bits of the computation result, P t is the transmission power of the mobile device, P r is the power consumed by the mobile device to receive the result, and P s is the power used by the BS to send the result. While waiting for the packets processing, the transmitter consumes a power P w . Finally, T w is the time for the BS to execute one packet. In addition, we require that this offloading procedure lasts at most one time slot leading to the following constraint

u L W U L . log 2 1 + Pt.xn W U L .N0 + T w + L DL W DL . log 2 1 + Ps.xn W DL .N0 T s . (3) 
Notice that W DL , W U L , N 0 , L DL , P s , T w are pre-fixed parameters. Forcing equality in Eq. ( 3) enables us to find P t which so depends on u and the channel realization x n and is time-varying along with the time slots. • Idle: The mobile device does not execute any packet and decides to wait for the next time slot. We assume that the device electronic circuitry is sleeping and so the consumed energy is given by

E I = 0. (4) 

III. PROBLEM FORMULATION AND RESOLUTION

Now, we aim at finding an optimal policy µ that minimizes the number of discarded packets due to buffer overflow and delay violation. The policy µ is a sequence of actions that specify the processing decisions (local processing, offloading or staying idle) and the number of packets u to be scheduled at each time slot, based on the past system states and actions. In this section, we characterize the appropriate states and actions and show that our problem can be formulated as an MDP. We define then the transition matrix and the reward of this MDP and propose an offline policy iteration algorithm to solve it.

A. State Space

The state space S is the set of s = (k, b, x) where

• k = [k 1 , • • • , k B d ]
is the vector indicating the age of each packet in the data buffer, • b is the battery level, and • x is the channel gain. Due to the strict delay constraint, we describe the data buffer states using k instead of the queue length q used in the stateof-the-art [START_REF] Labidi | Energy-Optimal Resource Scheduling and Computation Offloading in Small Cell Networks[END_REF], [START_REF] Lei | Optimal Reliability in Energy Harvesting Industrial Wireless Sensor Networks[END_REF], [START_REF] Mao | Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices[END_REF]. Actually, q can be extracted from k

q n = max i | k i (n) 0 . ( 5 
)
The state space is finite, and the total number of possible states |S| is upper-bounded by (K 0 + 2) B d .|B e + 1|.|X |. By assuming that packets are queued in an decreasing order of their age in the buffer, i.e. 

k 1 (n) ≥ k 2 (n) ≥ • • • ≥ k qn (n),

B. Action Space

The action space V denotes the processing decisions (local processing, offloading or staying idle) and the number of packets u that the mobile device can schedule during a slot. Let U be the maximum number of packets that can be processed locally during a time slot and U o be the maximum number of packets that can be offloaded during a time slot. U is limited by the capacity of the internal processor of the mobile device and U o is obtained from Eq. ( 3) with equality, using the maximum transmit power P max and the best channel gain x max = max x∈X x. Finally, the action space is finite with cardinality V = |V| = U + U o + 1. The actions are ordered and the m-th action is as follows:

• if m = 0, idle processing is considered and u = 0.

• if m = m with m ∈ {1, • • • , U } , local processing is applied and u = m . • if m = m o with m o ∈ {U + 1, • • • , V -1} , offloading
is applied and u = m o -U . At time slot n, ν n ∈ {0, , • • • , V -1} corresponds to the decided action, and u νn is the number of processed packets, either locally or remotely.

C. Markov Decision Process

During time slot n, w n = max(u νn , m n ) packets leave the buffer due to local or remote processing and/or discarded, where m n is the number of packets reaching the maximal delay (K 0 ) in the buffer. The age of the remaining packets in the buffer is incremented by 1. Moreover, a n+1 new packets arrive to the buffer with age 0. Therefore, the vector k can be updated from slot n to slot n + 1 according to the following rule.

1: for i = 1 to q n -w n do k i (n + 1) = k wn+i (n) + 1 end for 2: for i = q n -w n + 1 to q n -w n + a n+1 do k i (n + 1) = 0 end for 3: for i = q n -w n + a n+1 + 1 to B d do k i (n + 1) = -1 end for At the same time, e n+1 e.u are harvested and stored in the battery while E n e.u are used to schedule u νn packets according to Eqs. ( 1), (2), or [START_REF] Ku | Advances in Energy Harvesting Communications: Past, Present, and Future Challenges[END_REF]. Therefore, at time slot n + 1, the battery state is updated according to

b n+1 = min {b n -E n + e n+1 , B e } . (6) 
We thus remark that (k n+1 , b n+1 ) only depends on previous state (k n , b n ), action ν n (which provides E n since x n is, known), and external perturbation (a n+1 , e n+1 ), confirming that the problem boils down to MDP.

D. Transition Matrix

The state transition probability of the MDP is defined by p(s |s, ν) denoting the transition probability to fall in the future state s = (k , b , x ) after taking action ν in the current state s = (k, b, x). Assuming that the buffer, battery and channel states are independent to each other and channel states are not time-correlated, the transition probability satisfies the following equation

p(s |s, ν) = p(k |k, b, ν).p(b |b, x, ν).p(x ), (7) 
where p(x ) is the distribution of the channel states, p(k |k, b, ν) indicates the probability transitions between buffer states, and p(b |b, x, ν) indicates the probability transitions between battery states. We first exhibit the set of possible actions A(s) ⊂ V for each state s. We have A(s) = A 0 (s) ∩ A 1 (s) ∩ A 2 (s), where A 0 (s), A 1 (s) and A 2 (s) are defined through their complementary sets as follows: i) the set A 0 (s) is composed by the actions of offloading using a transmit power P t > P max according to Eq. ( 3); ii) the action ν belongs to A 1 (s) by satisfying at least one of the following conditions 1: u ν > q or k i > k i + 1 or q < q -w 2: k i = k i+uν + 1 and k i+uν = -1 3: k i > 0 and k i+uν = -1 4: q = B d and u ν = 0 and k i > 0, ∀i ∈ {q -w + 1, ..., B d } iii) the action ν belongs to A 2 (s) by satisfying at least one of the following conditions

1: 0 > b -E 2: b < b -E
where E is the energy consumed when the action ν is applied.

Secondly, when ν ∈ A(s), the transitions are as follows

1: if q < B d then p(k i |k i , b, ν) = e -λ d . (λ d ) q -q+w (q -q+w)! 2: else p(k i |k i , b, ν) = 1 -Q(B d -q + w, λ d ), and 
1: if b < B e then p(b |b, x, ν) = e -λe . (λe) b -b+E (b -b+E)! 2: else p(b |b, x, ν) = 1 -Q(B e -b + E, λ e ).
where Q is the regularized gamma function.

E. Reward

In this paper, we focus on infinite horizon MDP problem. We consider thus time-averaged cost, where at a given time slot n ∈ {0, • • • , N }, the system state is denoted by s n = (k n , b n , x n ) and µ(s n ) = ν n is the action. Our objective is to minimize the average number of discarded packets under policy µ. Hence, we define the cost function as

D(µ) = lim N →+∞ 1 N E µ N n=1 ε d (s n , ν n ) + ε o (s n , ν n ) , ( 8 
)
where E µ is the expectation with respect to the policy µ and where ε d (s n , ν n ) and ε o (s n , ν n ) are the instantaneous number of discarded packets due to delay violation and buffer overflow, respectively.

At a given slot n, when the system state is s n and the performed action is ν n , the number of discarded packets due to delay violation is given by

ε d (s n , ν n ) = 0 if m n = 0 or m n u νn m n -u νn otherwise. (9) 
The buffer overflow occurs when q n -w n + a n+1 > B d , thus the number of discarded packets due to buffer overflow is obtained as follows

ε o (s n , ν n ) = +∞ a=B d -qn+wn+1 (q n -w n + a -B d ).e -λ d . (λ d ) a a! = λ d .(1 -Q(B d -q n + w n , λ d )) + (q n -w n -B d ) × (1 -Q(B d -q n + w n + 1, λ d )). (10) 
We can then state the MDP optimization problem as

µ = arg min µ D(µ) (11) 

F. Offline Dynamic Programming Approach

We propose an offline dynamic programming approach to solve this problem. We present in Algorithm 1 the optimal policy computation using PI algorithm [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF]. This optimal offline deterministic policy consists in a one-to-one mapping from the state space S to the action space V, performing a unique action ν whenever a state s is visited. We remind that it only depends on energy arrival and data arrival a priori distributions and current channel states at the mobile device.

IV. NUMERICAL RESULTS

We evaluate numerically the optimal policy devised for the scheduling-offloading problem. We consider the system described in Section II and fix its characteristics as: the slot duration is T s = 1 ms, the channel state x takes 5 possible values from the finite set X = {-5.41, -1.59, 0.08, 1.42, 3.18} dB with equal probabilities. The noise power spectral density is N 0 = -87 dBm/Hz and the allocated bandwidth is W DL = 5 MHz in the downlink and W U L = 500 kHz in the uplink. Data packets have equal size L = 5000 bits and are stored in a buffer of size B d = 8 packets. The resulting packets from remote processing have also equal size L DL = 500 bits. The maximum delay of packets in the buffer is K 0 = 3 (i.e., in absolute time K 0 T s = 3 ms). Energy arrivals are stored as energy units in a battery of size B e = 4 e.u, where E U = 40 nJ. The maximum available power at the transmitter is P max = 2 mW. During a time slot, a maximum of U = 2 packets can be processed locally or a maximum of U o = 4 packets can be offloaded. The remaining values are chosen as: P = 30 µW, P r = 0.2 mW, P s = 1.6 kW, P w = 0.1 mW, and T w = 0.1 ms.

In Fig. 2, we illustrate the average number of discarded packets for the optimal policy versus the number of iterations with various energy arrival rates λ e and a data arrival rate λ d = 1.5. We can notice that it takes only a few hundreds iterations to the PI algorithm to converge. In addition, if a Algorithm 1 Optimal policy computation 1: Select arbitrary policy µ 0

Let β 0 = 0 Fix a tolerance parameter > 0 Set j = 1 2: Given the policy µ j-1

Compute the transition matrix T of size |S| × |S| when policy µ j-1 is applied according to Section III-D Compute the cost vector c of length |S| ε d (s, µ j-1 (s)) + ε o (s, µ j-1 (s))

for each state s in S. 3: Let a scalar β j and a vector v j of length |S| be the solutions of

β j + (I -T)v j = c s∈S v j (s) = 0
where v j (s) is the component of v j corresponding to the s in S. 4: Find a policy µ j by computing an optimal action for each state s using

µ j (s) = arg min ν∈V ε d (s, ν) + ε o (s, ν) + s ∈S
p(s |s, ν)v j (s )

5: If µ j (s) = µ j-1 (s) for any state s or β j -β j-1 < , then μ = µ j is the optimal policy estimate and stop; else j = j + 1 and go to step 2.

large amount of energy can be harvested, λ e increases, and the system is able to schedule more packets reducing hence considerably the average number of discarded packets. In Fig. 3, we show the percentage of discarded packets versus the data arrival rate λ d for λ e = 0.5 (small) and λ e = 1.5 (large) energy arrival rates. We compare the performance of the optimal policy to three different policies, namely immediate scheduling, local processing and offloading policies. The immediate policy processes, locally or remotely, the maximum number of packets whenever energy is available in the battery. The local and offload policies however, are obtained from our offline PI algorithm but take only local decisions and only offload decisions, respectively. We can observe that the proposed deterministic offline policy outperforms the other policies as it can adapt its processing to the energy and data arrivals as well as channel conditions. Yet, when the data arrival rate λ d increases, the number of discarded packets of all the policies increases because the buffer overflow can happen more often. We can also see that for both λ e values, the local policy discards the highest number of packets due to the limited capacity of the mobile device processor. Moreover, when λ e is small, the offload policy is able to sustain more efficiently the system than the immediate policy by scheduling more packets depending on the channel states. This situation is reversed when λ e is large since the scavenged energy is sufficiently available to process the maximum number of packets by the immediate policy irrespective of channel conditions. In Fig. 4 and Fig. 5, we plot respectively the average consumed energy and the average battery state versus the data arrival rate λ d for energy arrival rates λ e = 0.5 and 1.5. We can observe that local and immediate policies experience the highest energy consumption since processing packets locally consume more energy, draining thus the battery level. The optimal proposed policy consumes approximately the same energy amount as the offload policy while sending more packets. Indeed, it ensures a better sustainable communication with less number of discarded packets by optimally using the available energy, leading hence to a higher energy level in the battery.

In Fig. 6, we display the percentage of processing decisions for the optimal and immediate policies in Fig. 6 data arrival rate increases, the system schedules more packets either locally or remotely to minimize the number of discarded packets, which decreases Idle mode events. When more energy is available in the battery, the immediate policy processes the maximum number of packets, hence can offload more packets regardless of channel states. Therefore, energy shortage can occur more often forcing the system to enter Idle mode more than with optimal policy.

V. CONCLUSION

We have addressed computation offloading problem from an energy harvesting mobile device to its serving resourceful base station under strict delay constraint. We have proposed an optimal policy to minimize the packet loss rate using MDP framework and dynamic programming techniques. By leveraging on the knowledge of the available energy in the battery, the data and energy arrivals as well as the channel states, the optimal offline policy decides to process locally or remotely while specifying the number of packets to be processed. For future work, we aim at (i) investigating the case of unknown channel to the mobile device, (ii) focusing on online approaches instead of offline.
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