
T
he goal of machine learning, broadly 
speaking, is to design a computer code 
— the eponymous machine — capable 

of discovering meaningful structure in 
data. The last decade saw a game-changing 
revolution unfold in this field: with the 
development of deep neural networks1, 
tasks that were considered inaccessible to 
automated learning became possible. This 
prompted fierce competition in the artificial 
intelligence market, but it also brought 
promise to many areas of data-intensive 
fundamental science — with physics being 
no exception. Current machine-learning 
systems are not yet able to divine the laws of 
general relativity from planetary data, but 
they are able to reliably recognize human 
faces, detect objects in photographs and even 
beat world champions of Go2. And now, 
writing in Nature Physics, two groups have 
used artificial neural networks to recognize 
different phases of matter and localize 
associated phase transitions3,4.

Juan Carrasquilla and Roger Melko3 
used a type of neural network commonly 
used to classify images. To illustrate how it 
works, consider a set of images of cats and 
dogs, each labelled 1 or 0, respectively. The 
network then uses this set and the labels to 
construct a function that takes pixels of each 
image as an input and returns an output of 
1 for cats and 0 for dogs. If this function 
is later given a previously unseen image, it 
should return an output corresponding to the 
presence of a dog or cat in the new image. In 
Carrasquilla and Melko’s study the labels dog 
and cat were replaced by the low-temperature 
phase and high-temperature phase of a 
condensed-matter model. The training set 
was not given by pixels of an image, but by 
an equilibrium confi uration of the model 
obtained from Monte Carlo simulations. 
In another paper, Evert van Nieuwenburg 
and co-workers4 showed that if the set of 
confi urations can be ordered on a line — 
representing the temperature, for example — 
then these phases can be learned without 
even knowing the labels. Both works offer an 
exciting perspective on studying unexplored 
phases of matter and phase transitions in 
systems with unknown order parameters.

It should be 
stressed that saying 

one applied machine learning 
to a given problem is about as generic as 
saying that one used numerical simulations. 
It is clear to every researcher in physics 
that there are many kinds of numerical 
simulations. Depending on the system and 
the question of interest, it requires insight 
and experience to fi d the right numerical 
simulation and carry it out with sufficient 
care in order to be able to truly advance 
our understanding of a given problem. The 
same is true for applications of tools of 
machine learning.

A wide range of tools stemming from 
machine learning have recently been used 
in physics-related studies. Carrasquilla 
and Melko represented phases of matter 
with a two-layer feed-forward neural 
network. They also showed that in some 
cases, including Ising lattice gauge theory, 
this architecture fails, and instead a 
convolutional neural network succeeds. 
Van Nieuwenburg et al. used a similar 
two-layer feed-forward neural network, but 
showed that a much more basic method 
of principal component analysis succeeds 
in some of the examples. A different 
application of machine learning in physics 
aims at reducing the dimension of a Hilbert 
space by representing the wavefunction 
using a restricted Boltzmann machine, with 
weights obtained through reinforcement 

learning5. Another 
group recently showed 

that a support vector machine can 
be used to classify which particles 
in a glassy system are susceptible to 
rearrangement6. Decision forests have been 
used to classify metals from insulators 
based on the hybridization function, 
combined with kernel ridge regression 
to predict correlation functions in many-
body physics7. For the quantum systems 
considered by van Nieuwenburg et al., 
the neural network was trained on the 
entanglement spectrum instead of directly 
on the wavefunction. This is a type of data 
preprocessing that was exploited in another 
recent study predicting the quantum 
energies of molecules, using sparse linear 
regression on approximated electron 
densities after preprocessing with the 
so-called scattering transform8.

Clearly, this new trend brings with it 
a host of machine-learning terms that 
an average physicist encounters only 
very rarely. We can, however, anticipate 
that soon all these terms will be taught 
in undergraduate physics along with 
Monte Carlo methods and the Fourier 
transform. When it comes to a new set 
of tools, it is not only important for the 
physics community to learn about them, 
but also for it to build an intuition and 
understanding of which of the tools are 
applicable to which question and system. 
Machine learning is not a magic box — 
in order to be valuable in physics its results 
need to be interpreted and validated. So 
far the fi st studies have opened up a set 
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of interesting directions with hand-picked 
examples of successful applications, but 
systematic studies are needed to better 
understand the range of validity and 
applicability of each of the approaches9. 
One might also hope that such a systematic 
understanding-driven effort will feed back 
into the machine-learning community 
where new theoretical insights about 
various architectures will be welcome. ❐
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