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We propose a functional integral framework for the derivation of hierarchies of Landau-Lifshitz-Bloch (LLB)
equations that describe the flow toward equilibrium of the first and second moments of the magnetization. The
short-scale description is defined by the stochastic Landau-Lifshitz-Gilbert equation, under both Markovian or
non-Markovian noise, and takes into account interaction terms that are of practical relevance. Depending on
the interactions, different hierarchies on the moments are obtained in the corresponding LLB equations. Two
closure Ansätze are discussed and tested by numerical methods that are adapted to the symmetries of the problem.
Our formalism provides a rigorous bridge between the atomistic spin dynamics simulations at short scales and
micromagnetic descriptions at larger scales.
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I. INTRODUCTION

Thermal fluctuations of the magnetization can have a sig-
nificant influence on the operating conditions of magnetic
devices [1–3]. To describe them well is quite challenging, and
the development of appropriate computational methods has a
long history [4–6]. A textbook approach for their description
is stochastic calculus [7,8]: The fluctuations are described
by a thermal bath interacting with the magnetic degrees of
freedom, namely, spins. The quantities of interest are the cor-
relation functions of the magnetization, deduced from numer-
ical simulations [9,10]. Former micromagnetic formulations
do not account for a direct evaluation of the dynamics of
those thermally activated correlation functions, which can be
accessed naturally by experimental measurements.

The dynamics of those spins can be specified by a par-
ticular choice of a Langevin equation. A common and well-
studied choice is the so-called stochastic form of the Landau-
Lifshitz-Gilbert (SLLG) equation [11]. Up to a renormaliza-
tion factor over the noise [12], the SLLG equation of motion
for each spin component si can be written as

dsi

dt
= 1

1 + λ2
εijksk (ωj + ηj − λεjlmωlsm), (1)

where the Einstein summation convention is adopted and εijk

describes the Levi-Cività fully antisymmetric pseudotensor.
The vector ω sets the precession frequency and is defined
as [13]

ωi = − 1

h̄

∂H

∂si

, (2)

where H is the magnetic Hamiltonian of the system.
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In Eq. (1), a random vector η defines the connection to the
thermal bath. The components of η are assumed to be drawn
from Gaussian distributions and are completely defined by the
first two moments

〈ηa (t )〉 = 0, 〈ηa (t )ηb(t ′)〉 = δabC(t − t ′), (3)

with C(t − t ′) a scalar correlation function of the bath. Here
C can be any continuous function invariant by translation in
time, assuming a weaker stationary form. The main advantage
of such a weak stationary form is that it places any time
series in the context of Hilbert spaces and as a consequence
these series admit a Fourier-like decomposition on a spectral
measure.

Within this framework, we mainly focus on the Markovian
definition of the correlation function and we have C(t − t ′) =
2D δ(t − t ′), where D defines the amplitude of the noise.
In the associated Supplemental Material (SM) [14], the in-
voked approach is more general and can also by applied to
non-Markovian formulations, with the Ornstein-Uhlenbeck
process as an example.

Equation (1) also describes a purely transverse damp-
ing with a nondimensional constant λ. Properly integrated
[15,16], it ensures that the norm of the spin remains constant,
which one can normalize to unity, |s| = 1. This transverse
damping term is responsible for the transfer of spin angu-
lar momentum from the magnetization to the environment,
whereas the thermal bath allows energy to be pumped from
the environment to the magnetization.

Many different mechanisms for damping are already
known that include spin-orbit coupling, lattice vibrations, and
spin waves [2]. Overall, this model is well suited for the
simulation of an ensemble of interacting atomic magnetic
spins including temperature effects [17,18].

When simulations of a spin ensemble (i.e., a finite-size
magnetic grain) are at stake, it is well known that the norm
of the average magnetization is not preserved and that longi-
tudinal damping effects have to be taken into account [19–21].
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Although this mechanism is often accounted for in an em-
pirical way, it has been shown that an appropriate averaging
procedure over the bath can describe those longitudinal damp-
ing effects [22,23]. An equation describing the precession
of the magnetization dynamics of nanomagnets and account-
ing for both transverse and longitudinal forms of damping
is commonly referred to as a Landau-Lifshitz-Bloch (LLB)
equation. Recent studies have been leveraging this model for
the description of thermal fluctuations in different areas of
magnetization dynamics, such as thermally assisted magnetic
switching [24], ultrafast magnetism [25], or studies in chaotic
magnetization dynamics [26].

In this work we present how a rigorous and systematic
statistical averaging procedure, based on functional calculus,
can be applied to the derivation of sets of LLB equations
for the moments of the spin variables. Our approach differs
quite significantly from previous attempts [22,23]. The form
of the equilibrium distribution, for instance, is not postulated,
but we try to deduce its properties from the evolution of the
off-equilibrium dynamics of equal-time correlation functions.
To this end, we explore the consequences of closure schemes
on the evolution equations. We show how different magnetic
interactions can be incorporated simply into the model. This
makes the procedure particularly suitable and relevant for
the derivation of effective micromagnetic equations from the
knowledge of interactions at the atomic scale. This can more
efficiently bridge the gap between atomistic methods, such
as spin-dependent density-functional theory and classical spin
dynamics, and macroequations used in micromagnetic simu-
lations.

The plan of this work is the following. In the SM [14], the
general framework based on functional calculus is presented.
It allows us to take the statistical average over the equations
of motion of the spins and to derive hierarchies of LLB equa-
tions. In Sec. II we show how this procedure can be applied to
obtain the LLB equations for the first and second moments.
The formalism is then applied to the case of a Markovian
process and to three common magnetic interactions: a Zeeman
interaction, a magnetic uniaxial anisotropy, and the exchange
interaction. These equations are part of an open hierarchy. To
solve them, we must impose closure conditions. In Sec. III we
explore Gaussian as well as non-Gaussian closure conditions,
derived from the theory of chaotic dynamical systems. To
test their validity, we compare the results against those of a
reference model, studied within the framework of stochastic
atomistic spin dynamics simulations. A summary and our
conclusions are presented in Sec. IV.

II. DERIVATION OF FIRST- AND SECOND-ORDER
LLB EQUATIONS

In this section, the application of the formalism detailed in
the SM [14] allows us to derive first- and second-order LLB
equations. The derivation is particularized to three essential
magnetic interactions, useful to describe realistic nanomag-
nets. An open hierarchy on the moments of the spin variables
is generated. The hierarchy of LLB equations for the dynam-
ics of the spin moments could easily be extended to higher
orders, but is limited to the first- and second-order moments
only for practical reasons.

A. LLB equations for paramagnetic spins in an external
magnetic field

Atomic spins submitted to an external magnetic field are
considered first. The contribution to the magnetic energy
consists in a Zeeman term only. For a given magnetic spin s,
we have the magnetic Hamiltonian and magnetic precession
vector

HZeeman = −gμBsiBi, ωext
i = gμB

h̄
Bi, (4)

respectively, with g the gyromagnetic ratio, μB the Bohr
magneton, and B the external magnetic induction (in tesla).
This contribution can be seen as an ultralocal expression, as it
only accounts for the spin s.

The corresponding equation of motion is obtained by in-
serting the expression of the precession vector ωext

i in Eq. (1):

dsi

dt
= 1

1 + λ2
εijksk

(
ωext

j + ηj − λεjlmωext
l sm

)
. (5)

Even if the external magnetic field ωext may be time depen-
dent, it is assumed to be independent of the noise and therefore
can be taken out of any statistical average over the noise (see
the SM [14] for clarification).

Applying the statistical averaging procedure described in
the SM [14] to Eq. (5), we obtain the set of LLB-type
equations on the first and second spin moments

d〈si〉
dt

= 1

1 + λ2
εijk

(
ωext

j 〈sk〉 − λεjlmωext
l 〈sksm〉)

− 2D

(1 + λ2)2
〈si〉, (6)

d〈sisj 〉
dt

= 1

1 + λ2
εikl

(
ωext

k 〈sj sl〉 − λεkmnω
ext
m 〈sj slsn〉

)

+ D

(1 + λ2)2
(δij 〈snsn〉 − 3〈sisj 〉),+(i ↔ j ), (7)

with 〈si〉 and 〈sisj 〉 denoting the first- and second-order statis-
tical averages over the noise of the spin variables. Note that 〈s〉
is also the average magnetization, a quantity commonly mea-
sured. The first terms on the right-hand sides of Eqs. (6) and
(7) encapsulate the effects of the transverse dynamics (arising
from the LLG equation), whereas the second term, which
is proportional to the amplitude of the noise D, generates
longitudinal damping effects and is a direct consequence of
the statistical average over the noise. This first set of equations
is very close to the one obtained by Garanin et al. from
a similar approach, but with different hypothesis [22]. We
also observe that this set of equations is not closed. Indeed,
the right-hand side of Eq. (7) contains three-point moments
〈sj slsn〉, which are not defined yet.

B. LLB equations for anisotropic magnetic spins

The situation of spins in an anisotropic environment is
now considered. The expression of the magnetic Hamilto-
nian accounting for the interaction between a given magnetic
spin and a uniform axial magnetic anisotropy, defined by an
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easy-axis n and an intensity Ka (in eV), is

Haniso = −Ka

2
[(nisi )

2 − 1]. (8)

Again, this expression is ultralocal. Also, an uniaxial form of
magnetic anisotropic contribution was considered, but other
local forms (such as a cubic anisotropy) could have been con-
sidered the same way. The corresponding magnetic precession
vector is given by

ωaniso
i = ωa (n · s)ni, (9)

which inserted into Eq. (1) gives

dsi

dt
= 1

1 + λ2
εijksk

(
ωaniso

j + ηj − λεjlmωaniso
l sm

)
, (10)

where ωa ≡ 2Ka/h̄ is the effective field corresponding to the
anisotropy.

The same statistical averaging procedure is repeated and
applied to Eq. (10). The following set of anisotropic LLB
equations is obtained:

d〈si〉
dt

= ωa

1 + λ2
εijk (njnl〈sksl〉 − λεjlmnlnp〈sksmsp〉)

− 2D

(1 + λ2)2
〈si〉, (11)

d〈sisj 〉
dt

= ωa

1 + λ2
εimn(nmnp〈sj snsp〉 − λεmpqnpnr〈sj snsrsq〉)

+ D

(1 + λ2)2
(δij 〈snsn〉 − 3〈sisj 〉) + (i ↔ j ). (12)

Equations (11) and (12) present very similar features to
Eqs. (6) and (7). The main difference lies in the open hierarchy
on the moments. Indeed, the quadratic term on the right-hand
side of Eq. (10) implies that Eq. (11) depends on three-point
moments and Eq. (12) on four-point moments.

We observe that for the local interactions considered so far,
the average-over-the-noise procedure does not affect the final
expression of the longitudinal damping. Only the precession
expression is modified.

C. LLB equations for ferromagnetic nanomagnets

The situation of a ferromagnetic medium, where a spin is
submitted to local interactions, is now considered. Typically,
the exchange interaction, which controls the local alignment
and order of spins, is defined by the expression [17,18]

Aex = −
N∑

I,J �=I

JIJ sI (t ) · sJ (t ), (13)

where sI (t ) and sJ (t ) are the values of neighboring spins
(with I and J labeling different sites) at time t and JIJ is
the strength of the exchange interaction between these spins.

When working out of equilibrium, the dynamics described
by a two-spin interaction can be reduced by an averaging
method [27,28] to that of one spin in an effective field. The
exchange interaction is then described by

A MF
ex = −Jexsi (t ) · 〈si (t )〉, (14)

where Jex = nvJIJ , with nv the number of spins in the consid-
ered neighbor shells.

This mean-field approximation allows us to remain within
a local formulation. The statistical averaging procedure is only
applied to a given spin, submitted to an average magnetic
field, and connected to a thermal bath. Under these conditions,
and injecting the precession vector resulting from Eq. (14)
into Eq. (1), we have the equation of motion

dsi

dt
= ωex

1 + λ2
εijksk (〈sj 〉 + ηj − λεjlm〈sl〉sm), (15)

with ωex = Jex/h̄ the intensity of the exchange pulsation.
Then the exchange interaction contributes to the LLB equa-
tions as

d〈si〉
dt

= λωex

1 + λ2
(〈si〉〈sksk〉 − 〈sk〉〈sksi〉) − 2D

(1 + λ2)2
〈si〉,

(16)

d〈sisj 〉
dt

= ωex

1 + λ2
εikl (〈sk〉〈sj sl〉 − λεkmn〈sm〉〈sj slsn〉)

+ D

(1 + λ2)2
(δij 〈snsn〉 − 3〈sisj 〉) + (i ↔ j ). (17)

Simplifications have been performed in Eq. (16), as
εijk〈sj 〉〈sk〉 = 0 within the mean-field approximation.

D. LLB equations for combined interactions

If a classical ferromagnet in a simultaneous anisotropic and
external magnetic field is considered, the contribution of each
interaction to the moment equations has to be computed. The
final form can be obtained by straightforwardly taking the
sum of the right-hand sides. The only subtle point is that the
longitudinal damping contribution should not be overcounted.
The full expressions are not very illuminating as such; it
suffices to stress that they have been obtained under few and
tightly controlled assumptions.

III. CLOSING THE HIERARCHY

In order to solve the sets of LLB equations for the first-
and second-order moments of the spin variables obtained in
the preceding section and to deduce the consequences for the
magnetization dynamics itself (i.e., the first-order moments),
the hierarchies must be closed. In this section, two closure
methods inspired from turbulence theory [29,30] and dynami-
cal systems [31] are reviewed and applied. A purely numerical
reference model is presented first, which allows us to check
the consistency and to assess the range of validity of the
applied closures.

A. Reference model

Atomistic spin dynamics (ASD) simulations are commonly
performed by solving sets of interacting SLLG equations
[Eq. (1)], coupled to white-noise processes. For a single
magnetic moment, getting that equation for ASD simulations
has been considered from a quantum perspective [18,32,33],
and several numerical implementations have been reported
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FIG. 1. Random magnetization dynamics of paramagnetic spins
in a constant magnetic field: (a) and (c) some of the first-order mo-
ments and the norm of the averaged magnetization and (b) and (d) the
diagonal elements only of the matrix of the second-order moments.
The averages over ten paramagnetic spins only are shown in (a) and
(b), whereas 104 spins are shown in (c) and (d). The parameters of the
simulations are D = 5 × 10−2 rad GHz, λ = 0.1, �ω = (0, 0, 0.63)
rad GHz, and time step �t = 10−3 ns. The initial conditions are
�s(0) = (1, 0, 0) and 〈si (0)sj (0)〉 = 0 except for 〈sx (0)sx (0)〉 = 1.

[17,34,35], including the exchange interaction, the treatment
of external and anisotropic magnetic fields, and temperature.

For each individual spin, a SLLG equation (1) is integrated
by a third-order Omelyan algorithm, which preserves the
symplectic structure of the set of SLLG equations [36–38].
More details of this integration method have been provided
in previous works [35,39]. These ASD simulations are per-
formed for different noise realizations and averages are taken.

In practice, we find that it is possible to generate a sufficient
number of noise configurations so that the map induced by the
stochastic equations, as a result of this averaging procedure,
realizes the exact statistical average over the noise [40,41].
These averages therefore define our reference model.

Figure 1 presents how effective this averaging procedure
can be. The example of convergence toward a statistical aver-
age for paramagnetic spins is shown. From Fig. 1 we readily
grasp that increasing the number of spins (or, equivalently,
realizations) does accelerate the convergence toward the true
averaged dynamics. For practical purposes, 104, interacting or
not, spins are considered to be enough. This fixes statistical
errors to a sufficiently low level to draw accurately the desired
average quantities. From now on, this averaging procedure
is used in order to check the consistency of the closure
assumptions presented hereafter.

B. Gaussian closure assumption

A first closure assumption that is consistent with Gaussian
statistics is a direct application of Wick’s theorem [42]. This
approach, referred to as the Gaussian closure assumption
(GCA) in this work, has been briefly explored in previous
studies [10,43].

FIG. 2. Equilibrium magnetization norm vs temperature for hcp
Co (a) without and (b) with the anisotropic interaction. The solid
line plots the result of the GCA applied on the third-order moments.
Open circles (with error bars) plot the ASD results, performed with
the SLLG equation. The experimental Curie temperature TC for hcp
Co is also reported.

Denoting the cumulant of any stochastic spin vector vari-
able s by double angular brackets 〈〈·〉〉 [8], one has

〈〈sisj sl〉〉 = 〈sisj sl〉 − 〈sisj 〉〈sl〉 − 〈sisl〉〈sj 〉
− 〈sj sl〉〈si〉 + 2〈si〉〈sj 〉〈sl〉 (18)

for any combination of the space indices for the third-order
cumulant and

〈〈sisj slsm〉〉 = 〈sisj slsm〉 − 6〈si〉〈sj 〉〈sl〉〈sm〉 − 〈sisj 〉〈slsm〉
− 〈sisl〉〈sj sm〉 − 〈sism〉〈sj sl〉 − 〈si〉〈sj slsm〉
− 〈sj 〉〈sislsm〉 − 〈sl〉〈sisj sm〉 − 〈sm〉〈sisj sl〉
+ 2[〈si〉〈sj 〉〈slsm〉 + 〈si〉〈sl〉〈sj sm〉
+ 〈si〉〈sm〉〈sj sl〉 + 〈sj 〉〈sl〉〈sism〉
+ 〈sj 〉〈sm〉〈sisl〉 + 〈sl〉〈sm〉〈sisj 〉] (19)

for any combination of the space indices for the fourth-
order cumulant. The GCA implies that, for every time t ,
〈〈sisj sk〉〉 = 0 and 〈〈sisj sksl〉〉 = 0. Thus the relationships

〈sisj sk〉 = 〈si〉〈sj sk〉+〈sj 〉〈sisk〉+〈sk〉〈sisj 〉 − 2〈si〉〈sj 〉〈sk〉,
(20)

〈sisj sksl〉 = 〈sisj 〉〈sksl〉 + 〈sisk〉〈sj sl〉
+ 〈sisl〉〈sj sk〉 − 2〈si〉〈sj 〉〈sk〉〈sl〉, (21)

apply, relating thereby the third and fourth moments with the
first and second ones only. Equations (20) and (21) have to
be substituted into Eqs. (7), (11), (12), and (17). Because
of the form these equations assume, they are referred to as
dynamical Landau-Lifshitz-Bloch (DLLB) models.

Simulations of hcp cobalt are performed and the results
are depicted in Figs. 2–4. These figures compare the GCA,
applied to the third and fourth moments according to Eqs. (20)
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and (21), to the ASD calculations performed for a hexago-
nal 22 × 22 × 22 supercell. The nearest-neighbor and next-
nearest-neighbor shells are taken into account for the ex-
change interaction, and its value, which is directly taken from
ab initio calculations [44,45], is JIJ = 29.79 meV for each
atomic bond of the nearest neighbors and JIJ = 3.572 meV
for the next-nearest neighbors. The anisotropy energy for
hcp Co is given to Ka = 4.17 × 10−2 meV for each spin,
according to the same references [44,45].

The magnetic analog of the Einstein relation can be intro-
duced in order to relate the amplitude D of the noise to the
temperature of the bath [4,5]:

D = λkBT

h̄(1 + λ2)
. (22)

The conditions for the validity of such an expression, which
are not immediately obvious, are beyond the scope of this
work and Eq. (22) is assumed to be valid. Thus, the averages
over the noise can be replaced by the corresponding thermal
averages. This allows us to have effective sets of DLLB
micromagnetic equations at practical temperatures, which can
be directly compared to experimental measurements.

Figure 2 plots the average magnetization norm versus the
temperature for hcp Co with and without the anisotropic con-
tribution, over a long simulation time, assuming the system
to be at equilibrium. The application of the GCA matches
well the ASD calculations, without requiring prior knowledge
of the equilibrium magnetization value. Thus, the GCA can
be considered to be a valid assumption for a broad range
of temperatures (up to approximately two-thirds of the Curie
temperature 2Tc/3).

For higher temperatures, a departure from the ASD calcu-
lations is observed. This is not surprising as the correlation
length of the connected real-space two-point correlation func-
tion at equilibrium grows without limit when T approaches
Tc. Interestingly, the GCA allows us to observe the critical
transition from a ferromagnetic to a paramagnetic phase,
driven by the temperature.

Figure 3 plots the time dependence of the average mag-
netization for hcp Co for an external magnetic field of 10 T
along the z axis, without any internal anisotropic contribution.
The value of the external magnetic field is chosen to hasten
the convergence of large ASD simulations. In addition, as
the closure assumption does not rely on the intensity of the
Zeeman interaction, any value of the field can be used. For
T = 500 K, the GCA appears to be a good approximation and
the two models are in good agreement. For T = 1000 K, the
validity of the GCA becomes more questionable, in particular
regarding the norm of the average magnetization and 〈sz〉 at
equilibrium.

Another interesting feature of this figure is the presence
of two regimes for the magnetization dynamics. The first
one is an extremely short thermalization regime. Because the
exchange pulsation is the fastest pulsation in the system, the
magnetization norm sharply decreases in order to balance
the exchange energy with the thermal agitation. The second
regime is the relaxation around the Zeeman field itself. The
GCA model and the ASD simulations are in good agreement
concerning the characteristic times of these two regimes.

FIG. 3. Relaxation of the average dynamics up to 20 ps for (a)
500 K and (b) 1000 K, under a constant external magnetic induction
of 10 T, applied on the z axis for initial conditions sy (0) = 1 on each
spin and λ = 0.1. The ASD results are shown as solid lines (〈sx〉 in
black, 〈sy〉 in red, 〈sz〉 in blue, and |s| in green), whereas the DLLB
results with the GCA are shown as open circles.

Figure 4 displays the nonequilibrium profile of the average
magnetization for hcp Co assuming axial anisotropy, oriented
along the z axis, along with a small Zeeman field, also along
the z axis, which ensures that the average magnetization aligns
itself along the +z direction. For T = 500 K, the GCA leads
to the same equilibrium magnetization as the ASD, whereas
for T = 1000 K, the average magnetization norm and the
average magnetization along the z axis, calculated by the
GCA, show deviations from the ASD calculations.

FIG. 4. Relaxation of the average dynamics up to 20 ps for (a)
500 K and (b) 1000 K, under an axial anisotropic field (Ka = 4.17
meV) and a constant external magnetic induction of 0.1 T, both
applied along the z axis. The initial conditions are sx (0) = 1 on each
spin and λ = 0.1. The ASD results are depicted by solid lines (〈sx〉 in
black, 〈sy〉 in red, 〈sz〉 in blue, and |s| in green), whereas the DLLB
results with the GCA are shown as open circles (see the text).
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However, the GCA also fails to recover the transient
dynamics of the relaxation found in the ASD simulations.
The ASD calculations indicate a lag for the magnetization,
compared to the results obtained by the GCA, and even if
the precession frequency of the two models is the same, their
dynamics are correspondingly shifted.

The origin of these departures for the transient regimes
does not lie in the validity of the closure assumption itself,
but in the fact that an averaged truncated (to the second-order
spin moments) model is unable to recover the interacting
magnon modes that are generated inside the large 223 ASD
cell. Indeed, with a local anisotropy field only, the energetics
of the spins is less constrained because individual spins may
equilibrate along the two directions of the anisotropy axis. For
a large but finite ASD cell, with periodic boundary conditions,
this consequently generates local spin configurations (small
subcells inside the large cell) due to the different realizations
of the noise. In order to dissipate these subcells, additional
internal magnon modes are produced. Their collective motion
cannot be described by average thermal modes only, as we
can see in the very beginning of the transient regimes of both
graphs of Fig. 4. As a consequence, the effective precession
around the anisotropy field is not shifted and delayed within
the DLLB model with the GCA closure, whereas it is in the
ASD simulation. In order to enhance the agreement for the
equilibrium magnetization state of both ASD and averaged
models, another closure method, more sophisticated than the
GCA, is now considered.

C. Non-Gaussian closure

This method is inspired by studies in chaotic dynamical
systems, where elaborate moment hierarchies are typically
encountered [46,47]. Closure relations can be derived for the
hierarchy of moments for the invariant measure of dynamical
systems [48]. The proof relies on properties of the Fokker-
Planck equation and on the assumption of ergodicity [49].
However, we saw in the preceding section that, depending on
the magnetic interactions that are at stake, departures from
ergodicity can be observed in the ASD simulations of large
cells. Therefore, since the non-Gaussian closure assumption
(NGCA) presented below is only expected to hold for ergodic
situations, only the exchange and the Zeeman interactions
will be considered, or cases when the Zeeman interaction is
stronger than the anisotropic interaction, forcing each individ-
ual spin toward one possible equilibrium position.

The formalism can be presented as follows. Assuming
ergodicity and with the cumulant notation at hand, such a
NGCA relation can be parametrized for a stochastic variable
s as

〈〈sisj sk〉〉 = a
(1)
i 〈〈sj sk〉〉 + a

(1)
j 〈〈sisk〉〉 + a

(1)
k 〈〈sisj 〉〉

+ a
(2)
ij 〈sk〉 + a

(2)
ik 〈sj 〉 + a

(2)
jk 〈si〉 (23)

where the coefficients a
(1)
i and a

(2)
ij are assumed to depend not

on time, but only on the system parameters, such as D, ω,
and λ. These coefficients are assumed to be exactly zero when
D = 0, hence matching the GCA. These NGCAs are tested
with Eq. (7). The next logical step is to determine the values of
these coefficients. As the third-order cumulants are symmetric

under permutation of the coordinate indices, the coefficients
a

(2)
ij are symmetric too, and only nine coefficients have to be

determined.
According to Nicolis et al. [49], these coefficients satisfy

constraining identities that express physical properties of the
considered spin systems. However, finding the general cor-
responding identities is quite nontrivial. To circumvent this
difficulty, a fully computational approach was chosen. It is
useful to stress that this approach is not without its proper
theoretical basis: These identities indeed express properties of
the functional integral [42].

Atomistic spin dynamics calculations are used to fit the
coefficients a

(1)
i and a

(2)
ij for a given set of system parameters.

At a given time, a distance function d, defined from the results
of ASD simulations and our closed model as

d2(t ) ≡
3∑

i=1

[〈si (t )〉ASD − 〈si (t )〉]2

+
3∑

i,j=1

[〈sisj 〉ASD(t ) − 〈sisj 〉(t )]2, (24)

is computed and a least-squares-fitting method is applied. In
this distance expression, each term is weighted equally to
avoid any bias. At each step of the solver, a solution of the sys-
tem of equations (6), (7), (11), (12), (16), and (17), closed by
Eq. (23), is computed and the distance function is evaluated.
From the evolution of this distance, the method determines
another guess for the coefficients a

(1)
i and a

(2)
ij . When the

distance reaches a minimum, the hierarchy is assumed to be
closed with the corresponding coefficients.

In order to check the validity of the NGCA, this was
applied for the simulation performed at T = 1000 K presented
in the preceding section, as in these situations neither the
equilibrium nor the transient regimes of the ASD simulations
were recovered by the GCA.

Another trial is carried out by performing again the sim-
ulation of Fig. 3(b). At the equilibration time, a minimum
distance is found by considering a restriction to the third
values only; thus we find a

(1)
3 = 0.145 and a

(2)
33 = 0.145. All

the other coefficients are assumed to be zero. As expected,
these dimensionless coefficients are small, demonstrating a
slight departure of the GCA, which has to increase when the
temperature increases. The uniqueness of these coefficients is
not obvious and may depend on the choice of the distance
function and its corresponding weights.

Figure 5 displays the result of this closure, with and with-
out the anisotropic interaction. The two models present some
slight differences in the beginning of the transient regime, but
quickly match. This could be surely managed by increasing
the number of distance points to match and by relaxing all the
coefficients.

We now investigate the situation of including all interac-
tions. For a different set of equations, a similar situation has
already been investigated [43], with a slightly different closure
method.

To close the hierarchy of moments in that case, an expres-
sion for the fourth-order moments 〈sisj sksl〉 is required. This
is performed by assuming that the fourth-order cumulants
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FIG. 5. Average dynamics up to 20 ps for T = 1000 K, with
λ = 0.1 and initial conditions 〈sx (0)〉 = 1 for (a) a constant external
field of 10 T applied along the z axis and (b) a uniaxial anisotropic
field (Ka = 4.17 meV) and a constant external field of 10 T, both
applied along the z axis. The ASD results are shown by solid lines
(〈sx〉 in black, 〈sy〉 in red, 〈sz〉 in blue, and |s| in green), whereas
the DLLB results with the NGCA approximation are shown as open
circles.

are negligible (i.e., 〈〈sisj sksl〉〉 = 0) and that each of the
third-order moments is computed by Eq. (23). Yet again, one
can systematically improve this hypothesis by increasing the
number of desired coefficients up to this order such as

〈〈sisj sksl〉〉 = b
(1)
i 〈〈sj sksl〉〉 + permutation

+ b
(2)
ij 〈〈sksl〉〉 + permutation

+ b
(3)
ijk〈sl〉 + permutation.

Once again, invariance under permutation of indices enhances
the symmetries of the b(2) and b(3) tensors and reduces the
number of independent coefficients.

As a test, if we take all these coefficients b to be zero, at
equilibrium, a minimum is found with a

(1)
3 = 0.07 in the case

where the z axis is preferred. Figure 5 displays the results of
the application of the NGCA in that case. Again, the equilib-
rium state is recovered, even if some differences remain in the
transient regime. By making educated guesses, we saw that
the NGCA allows us to recover the equilibrium state of the
magnetization, and much better agreement between ASD and
DLLB models is also observed during the transient regimes.

IV. CONCLUSION

A framework based on a functional calculus approach was
presented in the SM [14] associated with this article.

In Sec. II we showed that under controlled assumptions,
this formalism can be applied to the derivation of open hierar-
chies of LLB equations on the moments of the magnetization
dynamics. Within this study, the approach was limited to the
situation of Markovian processes, even if it can be applied to
more general correlation functions of the noise.

In Sec. III we saw that when the magnetic interactions
include the exchange (within a mean-field approximation) and
the Zeeman energy, a Gaussian closure assumption proved
sufficient to recover both the transient regime and the equi-
librium state of the average magnetization, for temperatures
up to two-thirds of the Curie temperature. For higher temper-
atures, or when a magnetic anisotropy is taken into account,
departures from the GCA can be observed. In those situations,
a non-Gaussian closure method was proposed. It proved to be
efficient at recovering the equilibrium state and improving the
transient regime.

Finally, it should be emphasized that those sets of DLLB
equations can be used to directly recover macroscopic mag-
netic quantities in micromagnetic simulations, such as the
norm of the effective magnetization, the effective magnetic
anisotropy, or the magnetic stiffness due to the exchange inter-
action, as well as performing direct simulations of the dynam-
ics of nanomagnets. Only a prior knowledge of atomic-scale
interactions (such as the interatomic exchange interaction or
the per-atom magnetic anisotropy) is necessary. The imple-
mentation of those DLLB models as fundamental equations
of micromagnetic numerical tools could greatly improve the
accuracy of the latter and lead to new methodologies allowing
us to bridge the gap between atomistic magnetic methods
and micromagnetic simulations. Furthermore, whether they
can describe deterministic chaos in micromagnetic systems
deserves further study [26].

ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engi-
neering Solutions of Sandia LLC, a wholly owned subsidiary
of Honeywell International Inc. for the U.S. Department
of Energy’s National Nuclear Security Administration under
Contract No. DE-NA0003525. This paper describes objective
technical results and analysis. Any subjective views or opin-
ions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or
the United States Government. J.T. acknowledges financial
support through a joint CEA-NNSA fellowship and would
also like to thank C. Serpico for helpful comments about this
work.

[1] R. F. L. Evans, R. W. Chantrell, U. Nowak, A. Lyberatos, and
H.-J. Richter, Appl. Phys. Lett. 100, 102402 (2012).

[2] H. Suhl, Relaxation Processes in Micromagnetics, 1st ed.,
International Series of Monograph on Physics Vol. 133 (Oxford
University Press, Oxford, 2007).

[3] R. John, M. Berritta, D. Hinzke, C. Müller, T. Santos, H.
Ulrichs, P. Nieves, J. Walowski, R. Mondal, O. Chubykalo-
Fesenko, J. McCord, P. M. Oppeneer, U. Nowak, and M.
Münzenberg, Sci. Rep. 7, 4114 (2017).

[4] L. Néel, Rev. Mod. Phys. 25, 293 (1953).

042101-7

https://doi.org/10.1063/1.3691196
https://doi.org/10.1063/1.3691196
https://doi.org/10.1063/1.3691196
https://doi.org/10.1063/1.3691196
https://doi.org/10.1038/s41598-017-04167-w
https://doi.org/10.1038/s41598-017-04167-w
https://doi.org/10.1038/s41598-017-04167-w
https://doi.org/10.1038/s41598-017-04167-w
https://doi.org/10.1103/RevModPhys.25.293
https://doi.org/10.1103/RevModPhys.25.293
https://doi.org/10.1103/RevModPhys.25.293
https://doi.org/10.1103/RevModPhys.25.293


JULIEN TRANCHIDA, PASCAL THIBAUDEAU, AND STAM NICOLIS PHYSICAL REVIEW E 98, 042101 (2018)

[5] W. Brown, IEEE Trans. Magn. 15, 1196 (1979).
[6] W. T. Coffey and Y. P. Kalmykov, J. Appl. Phys. 112, 121301

(2012).
[7] C. W. Gardiner, Handbook of Stochastic Methods (Springer,

Berlin, 1985).
[8] N. G. Van Kampen, Stochastic Processes in Physics and Chem-

istry, 3rd ed. (Elsevier, Amsterdam, 2007), Vol. 1.
[9] E. Simon, K. Palotás, B. Ujfalussy, A. Deák, G. M. Stocks, and

L. Szunyogh, J. Phys.: Condens. Matter 26, 186001 (2014).
[10] J. Tranchida, P. Thibaudeau, and S. Nicolis, Physica B 486, 57

(2016).
[11] T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
[12] I. D. Mayergoyz, G. Bertotti, and C. Serpico, Nonlinear Mag-

netization Dynamics in Nanosystems (Elsevier, Amsterdam,
2009).

[13] K.-H. Yang and J. O. Hirschfelder, Phys. Rev. A 22, 1814
(1980).

[14] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.98.042101 for a detailed derivation of the
hierarchy of LLB equations.

[15] F. Romá, L. F. Cugliandolo, and G. S. Lozano, Phys. Rev. E 90,
023203 (2014).

[16] M. d’Aquino, C. Serpico, and G. Miano, J. Comput. Phys. 209,
730 (2005).

[17] R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A.
Ellis, and R. W. Chantrell, J. Phys.: Condens. Matter 26, 103202
(2014).

[18] B. Skubic, J. Hellsvik, L. Nordström, and O. Eriksson, J. Phys.:
Condens. Matter 20, 315203 (2008).

[19] N. Kazantseva, D. Hinzke, U. Nowak, R. W. Chantrell, U.
Atxitia, and O. Chubykalo-Fesenko, Phys. Rev. B 77, 184428
(2008).

[20] T. W. McDaniel, J. Appl. Phys. 112, 013914 (2012).
[21] C. Vogler, C. Abert, F. Bruckner, and D. Suess, Phys. Rev. B

90, 214431 (2014).
[22] D. A. Garanin, V. V. Ishchenko, and L. V. Panina, Theor. Math.

Phys. 82, 169 (1990).
[23] D. A. Garanin, Phys. Rev. B 55, 3050 (1997).
[24] A. F. Franco and P. Landeros, J. Phys. D 51, 225003 (2018).
[25] U. Atxitia, Phys. Rev. B 98, 014417 (2018).
[26] O. J. Suarez, D. Laroze, J. Martínez-Mardones, D. Altbir,

and O. Chubykalo-Fesenko, Phys. Rev. B 95, 014404
(2017).

[27] P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269
(1953).

[28] J. N. Reimers, A. J. Berlinsky, and A.-C. Shi, Phys. Rev. B 43,
865 (1991).

[29] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov
(Cambridge University Press, Cambridge, 2004).

[30] G. L. Mellor and T. Yamada, J. Atmos. Sci. 31, 1791 (1974).
[31] J. S. Nicolis, Dynamics of Hierarchical Systems, edited by H.

Haken, Springer Series in Synergetics Vol. 25 (Springer, Berlin,
1986).

[32] V. P. Antropov, M. I. Katsnelson, M. van Schilfgaarde, and
B. N. Harmon, Phys. Rev. Lett. 75, 729 (1995).

[33] V. P. Antropov, M. I. Katsnelson, B. N. Harmon, M. van
Schilfgaarde, and D. Kusnezov, Phys. Rev. B 54, 1019 (1996).

[34] U. Nowak, O. N. Mryasov, R. Wieser, K. Guslienko, and R. W.
Chantrell, Phys. Rev. B 72, 172410 (2005).

[35] J. Tranchida, S. Plimpton, P. Thibaudeau, and A. Thompson,
J. Comput. Phys. 372, 406 (2018).

[36] M. Krech, A. Bunker, and D. P. Landau, Comput. Phys. Com-
mun. 111, 1 (1998).

[37] I. P. Omelyan, I. M. Mryglod, and R. Folk, Comput. Phys.
Commun. 151, 272 (2003).

[38] P.-W. Ma, C. H. Woo, and S. L. Dudarev, Phys. Rev. B 78,
024434 (2008).

[39] D. Beaujouan, P. Thibaudeau, and C. Barreteau, Phys. Rev. B
86, 174409 (2012).

[40] V. Méndez, W. Horsthemke, P. Mestres, and D. Campos, Phys.
Rev. E 84, 041137 (2011).

[41] V. Méndez, S. I. Denisov, D. Campos, and W. Horsthemke,
Phys. Rev. E 90, 012116 (2014).

[42] J. Zinn-Justin, Phase Transitions and Renormalization Group,
1st ed. (Oxford University Press, Oxford, 2013).

[43] P. Thibaudeau, J. Tranchida, and S. Nicols, IEEE Trans. Magn.
52, 1300404 (2016).

[44] M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno,
Phys. Rev. B 64, 174402 (2001).

[45] S. Lounis and P. H. Dederichs, Phys. Rev. B 82, 180404 (2010).
[46] C. D. Levermore, J. Stat. Phys. 83, 1021 (1996).
[47] B. C. Eu, Nonequilibrium Statistical Mechanics: Ensemble

Method, edited by A. van der Merwe, Fundamental Theories
of Physics Vol. 93 (Kluwer Academic, Dordrecht, 1998).

[48] R. V. Bobryk, Phys. Rev. E 83, 057701 (2011).
[49] C. Nicolis and G. Nicolis, Phys. Rev. E 58, 4391 (1998).

042101-8

https://doi.org/10.1109/TMAG.1979.1060329
https://doi.org/10.1109/TMAG.1979.1060329
https://doi.org/10.1109/TMAG.1979.1060329
https://doi.org/10.1109/TMAG.1979.1060329
https://doi.org/10.1063/1.4754272
https://doi.org/10.1063/1.4754272
https://doi.org/10.1063/1.4754272
https://doi.org/10.1063/1.4754272
https://doi.org/10.1088/0953-8984/26/18/186001
https://doi.org/10.1088/0953-8984/26/18/186001
https://doi.org/10.1088/0953-8984/26/18/186001
https://doi.org/10.1088/0953-8984/26/18/186001
https://doi.org/10.1016/j.physb.2015.10.012
https://doi.org/10.1016/j.physb.2015.10.012
https://doi.org/10.1016/j.physb.2015.10.012
https://doi.org/10.1016/j.physb.2015.10.012
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/PhysRevA.22.1814
https://doi.org/10.1103/PhysRevA.22.1814
https://doi.org/10.1103/PhysRevA.22.1814
https://doi.org/10.1103/PhysRevA.22.1814
http://link.aps.org/supplemental/10.1103/PhysRevE.98.042101
https://doi.org/10.1103/PhysRevE.90.023203
https://doi.org/10.1103/PhysRevE.90.023203
https://doi.org/10.1103/PhysRevE.90.023203
https://doi.org/10.1103/PhysRevE.90.023203
https://doi.org/10.1016/j.jcp.2005.04.001
https://doi.org/10.1016/j.jcp.2005.04.001
https://doi.org/10.1016/j.jcp.2005.04.001
https://doi.org/10.1016/j.jcp.2005.04.001
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/20/31/315203
https://doi.org/10.1088/0953-8984/20/31/315203
https://doi.org/10.1088/0953-8984/20/31/315203
https://doi.org/10.1088/0953-8984/20/31/315203
https://doi.org/10.1103/PhysRevB.77.184428
https://doi.org/10.1103/PhysRevB.77.184428
https://doi.org/10.1103/PhysRevB.77.184428
https://doi.org/10.1103/PhysRevB.77.184428
https://doi.org/10.1063/1.4733311
https://doi.org/10.1063/1.4733311
https://doi.org/10.1063/1.4733311
https://doi.org/10.1063/1.4733311
https://doi.org/10.1103/PhysRevB.90.214431
https://doi.org/10.1103/PhysRevB.90.214431
https://doi.org/10.1103/PhysRevB.90.214431
https://doi.org/10.1103/PhysRevB.90.214431
https://doi.org/10.1007/BF01079045
https://doi.org/10.1007/BF01079045
https://doi.org/10.1007/BF01079045
https://doi.org/10.1007/BF01079045
https://doi.org/10.1103/PhysRevB.55.3050
https://doi.org/10.1103/PhysRevB.55.3050
https://doi.org/10.1103/PhysRevB.55.3050
https://doi.org/10.1103/PhysRevB.55.3050
https://doi.org/10.1088/1361-6463/aabed0
https://doi.org/10.1088/1361-6463/aabed0
https://doi.org/10.1088/1361-6463/aabed0
https://doi.org/10.1088/1361-6463/aabed0
https://doi.org/10.1103/PhysRevB.98.014417
https://doi.org/10.1103/PhysRevB.98.014417
https://doi.org/10.1103/PhysRevB.98.014417
https://doi.org/10.1103/PhysRevB.98.014417
https://doi.org/10.1103/PhysRevB.95.014404
https://doi.org/10.1103/PhysRevB.95.014404
https://doi.org/10.1103/PhysRevB.95.014404
https://doi.org/10.1103/PhysRevB.95.014404
https://doi.org/10.1103/RevModPhys.25.269
https://doi.org/10.1103/RevModPhys.25.269
https://doi.org/10.1103/RevModPhys.25.269
https://doi.org/10.1103/RevModPhys.25.269
https://doi.org/10.1103/PhysRevB.43.865
https://doi.org/10.1103/PhysRevB.43.865
https://doi.org/10.1103/PhysRevB.43.865
https://doi.org/10.1103/PhysRevB.43.865
https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevB.72.172410
https://doi.org/10.1103/PhysRevB.72.172410
https://doi.org/10.1103/PhysRevB.72.172410
https://doi.org/10.1103/PhysRevB.72.172410
https://doi.org/10.1016/j.jcp.2018.06.042
https://doi.org/10.1016/j.jcp.2018.06.042
https://doi.org/10.1016/j.jcp.2018.06.042
https://doi.org/10.1016/j.jcp.2018.06.042
https://doi.org/10.1016/S0010-4655(98)00009-5
https://doi.org/10.1016/S0010-4655(98)00009-5
https://doi.org/10.1016/S0010-4655(98)00009-5
https://doi.org/10.1016/S0010-4655(98)00009-5
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1103/PhysRevB.78.024434
https://doi.org/10.1103/PhysRevB.78.024434
https://doi.org/10.1103/PhysRevB.78.024434
https://doi.org/10.1103/PhysRevB.78.024434
https://doi.org/10.1103/PhysRevB.86.174409
https://doi.org/10.1103/PhysRevB.86.174409
https://doi.org/10.1103/PhysRevB.86.174409
https://doi.org/10.1103/PhysRevB.86.174409
https://doi.org/10.1103/PhysRevE.84.041137
https://doi.org/10.1103/PhysRevE.84.041137
https://doi.org/10.1103/PhysRevE.84.041137
https://doi.org/10.1103/PhysRevE.84.041137
https://doi.org/10.1103/PhysRevE.90.012116
https://doi.org/10.1103/PhysRevE.90.012116
https://doi.org/10.1103/PhysRevE.90.012116
https://doi.org/10.1103/PhysRevE.90.012116
https://doi.org/10.1109/TMAG.2016.2522502
https://doi.org/10.1109/TMAG.2016.2522502
https://doi.org/10.1109/TMAG.2016.2522502
https://doi.org/10.1109/TMAG.2016.2522502
https://doi.org/10.1103/PhysRevB.64.174402
https://doi.org/10.1103/PhysRevB.64.174402
https://doi.org/10.1103/PhysRevB.64.174402
https://doi.org/10.1103/PhysRevB.64.174402
https://doi.org/10.1103/PhysRevB.82.180404
https://doi.org/10.1103/PhysRevB.82.180404
https://doi.org/10.1103/PhysRevB.82.180404
https://doi.org/10.1103/PhysRevB.82.180404
https://doi.org/10.1007/BF02179552
https://doi.org/10.1007/BF02179552
https://doi.org/10.1007/BF02179552
https://doi.org/10.1007/BF02179552
https://doi.org/10.1103/PhysRevE.83.057701
https://doi.org/10.1103/PhysRevE.83.057701
https://doi.org/10.1103/PhysRevE.83.057701
https://doi.org/10.1103/PhysRevE.83.057701
https://doi.org/10.1103/PhysRevE.58.4391
https://doi.org/10.1103/PhysRevE.58.4391
https://doi.org/10.1103/PhysRevE.58.4391
https://doi.org/10.1103/PhysRevE.58.4391



