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Abstract—The use of machine-learning (ML) in neuroimaging
offers new perspectives in early diagnosis and prognosis of brain
diseases. Indeed, ML algorithms can jointly examine all brain
features to capture complex relationships in the data in order
to make inferences at a single-subject level. To deal with such
high dimensional input and the associated risk of overfitting on
the training data, a proper regularization (or feature selection)
is required. Standard `2-regularized predictors, such as Support
Vector Machine, provide dense patterns of predictors. However,
in the context of predictive disease signature discovery, it is
now essential to understand the brain pattern that underpins
the prediction. Despite `1-regularized (sparse) has often been
advocated as leading to more interpretable models, they generally
lead to scattered and unstable patterns. We hypothesize that the
integration of prior knowledge regarding the structure of the
input images should improve the relevance and the stability of
the predictive signature. Such structured sparsity can be obtained
by combining together `1 (possibly `2) and Total variation (TV)
penalties. We demonstrated the relevance of using ML with
structured sparsity on a large multisite dataset of schizophrenia
patients and controls. Using 3D maps of grey matter den-
sity, we obtained promising inter-site prediction performances.
More importantly, we have uncovered a predictive signature of
schizophrenia that is clinically interpretable and stable across
resampling. This suggests that structured sparsity provides a
major breakthrough over ’off-the-shelf’ algorithms to perform
a robust selection of important brain regions in the context of
biomarkers discovery.

I. INTRODUCTION

Schizophrenia is a disabling chronic mental disorder char-
acterized by deficits in cognition. Over the years, struc-
tural MRI has been increasingly used to gain insight into
the abnormalities inherent to the pathology. [12]. Recent
progress in machine-learning together with the availability
of large datasets now pave the way for automatic detection
of schizophrenia disease based on neuroanatomical features.

[2, 8–11] However, to date, despite initial promising results,
these studies have barely impacted clinical practice. Significant
challenges still need to be tackled for translational implemen-
tation of such findings in psychiatry. First, in the context of
predictive signature discovery, it is crucial to understand the
brains structural patterns that underpin a prediction. Unfortu-
nately, in most cases, despite accurate prediction performance,
classifiers still behave as black box models, not providing
objective neuroanatomical markers and by that, ruling out the
prospect of clinical applications. Second, reproducibility of the
predictive model across sites is also questionable. So far, most
studies used individuals scanned at a single acquisition site.
Such results are difficult to generalize to large-scale clinical
settings, with subjects scanned in multiple sites. Consequently,
multi-site populations are instrumental to achieve consistency
and reproducibility in the results. To our knowledge, only a
few studies have relied on a completely independent validation
cohort to estimate prediction performances of a classifier
[8, 10, 11].

In this work, we intended to address those important ques-
tions in a large multi-site cohort of 606 subjects. We propose to
evaluate the inter-site prediction performance of schizophrenia
patients using sMRI-based features. Different state-of-the-art
classifiers were compared to assess their performance replica-
bility across sites and the interpretability and stability of their
predictive weight maps.

II. METHODS

A. Participants

Brain imaging data from 4 independent studies with no prior
coordination were gathered in the current analysis (COBRE,
NMorphCH and NUSDAST from the public repository Schiz-
connect and VIP cohort). The full dataset included 276 patients
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TABLE I: Demographic characteristics of the dataset.

Datasets Diagnosis n age gender (%F)

Site 1 schizophrenia 118 33.95 + 12.87 32
controls 152 27.96 + 12.58 54

Site 2 schizophrenia 77 37.28 + 13.56 16
controls 87 38.33 11.80 27

Site 3 schizophrenia 42 32.78 + 6.75 33
controls 38 31.23 7.94 52

Site 4 schizophrenia 39 32.21 + 9.48 28
controls 53 35.97 11.32 56

All sites schizophrenia 276 34.46 + 11.99 27
controls 330 32.36 12.53 47

with strict schizophrenia, according to DSM-IV criteria, and
330 healthy controls. Subjects provided informed consent to
participate in their respective studies. Demographic details of
all four datasets are summarized in Table 1.

B. MRI preprocessing and features extraction

Prior to training classifiers, the first step was to compute
samples from the structural MRI scans. Grey matter voxel-
based morphometry (VBM) maps were computed for each
subject using the procedure described in [1] using SPM12.
The MNI brain mask was used to restrict voxels considered in
the subsequent steps to 125,959 features representing the local
grey matter volume (tissue probability with Jacobian intensity
modulation) at each voxel.

C. Machine learning algorithms

Machine Learning applied to whole brain neuroimaging
data faces an imbalance situation where the large number
of features (usually voxels) exceeds the number of sam-
ples. Learning with hundreds of samples using such high-
dimensional data is associated with a high risk of overfitting on
the training set, leading to poor performances on independent
subjects. Such issues of replicability can also be addressed
using state-of-the-art regularized learning algorithms, such as
linear SVM with a ridge penalty, or with elastic net [13], a
combination of a sparsity-inducing (`1) penalty and a ridge
penalty `2. We compared several different linear classifiers for
binary classification. First, we used a regular linear SVM that
produces dense patterns of predictors. In the context of pre-
dictive signature discovery, it is crucial to understand the brain
structural patterns that underpin the prediction. We, therefore,
seek an approach that selects a reduced number of predictive
regions. Feature selection methods, such as recursive feature
elimination (RFE) [7], have been used to select a reduced
set of predictors [3]. However, since wrappers are prone to
local minima, those ad hoc heuristics tend to be replaced
by sparse models, based on convex minimization problems,
that optimize the prediction performance and simultaneously
performs feature selection.

Despite the fact that `1-regularized (sparse) classifiers often
have been advocated as leading to more interpretable models,
they appear to lead to scattered and unstable patterns in
practice [6]. One solution to obtain more interpretable models

is to take benefit of the known structure of brain MRI
images in order to force the solution to adhere to biological
priors, thereby producing more plausible and interpretable
solutions. Indeed, MRI data is naturally encoded on a 3-
dimensional grid where some voxels are neighbors, and others
are not. Structured sparsity can be obtained with several
different penalties. The GraphNet (GN) penalty, described in
[6]. GN combines `1 with a squared `2 penalty. It promotes
local smoothness of the weight map by forcing adjacent
voxels/vertices to have similar weights, and it does this by
imposing a squared `2 penalty on the gradient of the weight
map. Nonetheless, we hypothesized that GN would provide
smooth solutions rather than clearly identified regions. On
the basis of this hypothesis, we propose to use an alterna-
tive to the GN penalty: The Enet-TV penalty [5]. Enet-TV
combines `1, `2 and the total variation (TV) penalties. This
combination of penalties enforces spatial smoothness of the
solution while simultaneously segmenting predictive regions
from the background. The `1 and `2 penalties served the
purpose of addressing overfitting induced from the MRI data’s
high intrinsic dimensionality. Meanwhile, the TV penalty also
regularizes the solution, but also take advantage of the spatial
3D structure. It has been demonstrated that these penalties,
together, generate a coherent, parsimonious, and interpretable
weight map. Moreover, these penalties provide a segmentation
of the predictive weight map into spatially contiguous parcels
with almost constant values, a highly desirable characteristic
in the scope of predictive signature discovery. Enet-TV has
been successfully used, recently, in the prediction of pre-
hallucination functional MRI patterns in a clinical population
of schizophrenia patients [4]

D. Cross-validation and model-selection

The performance was assessed through a double cross-
validation pipeline. Such process consists of two nested cross-
validation loops. In the outer (external) loop, a set of subjects
is considered as the training data, while the remaining subjects
are held out and used as the test data. The test sets were
exclusively used for model assessment while the train sets
were used in inner five loops for model fitting and model
selection. Any hyper-parameters of the methods were set
internally in the nested 5-fold cross-validation loop.

Fig. 1: Leave-one-site-out procedure

The splitting process of the samples into train and test
subsets is crucial for performance evaluation. In order to in-
vestigate the reproducibility of prediction performance across
sites, we chose to carry out a leave-one-site-out procedure
(Figure 1). Subjects from all sites except one are referred as
the training data, while all subjects of the remaining site were
held out and used as the test data. This strategy was repeated



four times, with each site being held out once. Such inter-
site strategy is essential to evaluate the reproducibility of a
prediction model on completely independent datasets.

E. Performance assessment

The classifier performances were assessed by computing
the balanced accuracy, sensitivity and specificity using the
test samples. We also implemented the receiver operating
characteristic (ROC) curve for each classifier, from which the
area under the curve (AUC) was computed.

Along with the prediction performances, we also targeted
a more important goal: the estimation of reproducible weight
maps against variations of the learning samples. Indeed, clin-
icians expect that the identified markers, i.e. the non-null
weights of the weight map, to be similar if other patients,
with identical clinical conditions, would have been used. We
therefore used a similarity measure to assess the stability of
those weights maps across re-sampling in the cross-validation
scheme: The mean correlation between pairs of weights maps
computed across the four folds and denoted rβ .

We also investigated the prediction performance behavior
when varying number of subjects in the training set, while
keeping the testing set identical. The goal is to evaluate the
number of subjects required to reach the optimal prediction
accuracy possible.

III. RESULTS

A. Performance

All four classifiers were able to significantly distinguish
patients from healthy controls using grey matter VBM features
(Table 2). However, the stability across folds of the weight
maps (rβ) is much higher with TV-Enet than with other sparse
classifiers (Table II).

TABLE II: Prediction accuracies: Sensitivity (Sen, recall rate
of trans samples), Specificity (Spe, recall rate of off samples)
and Balanced accuracy (Acc): (Sen+Spe)/2; AUC indicates
area under the curve, rβ (Mean correlation between pairs of
weights maps)

Classifier AUC Acc Spe Sen rβ

SVM 0.74 0.69 0.68 0.69 -

ElasticNet 0.76 0.71 0.68 0.73 0.34

GraphNet 0.75 0.70 0.71 0.69 0.42

TV-Enet 0.74 0.68 0.68 0.68 0.74

B. Predictive weight maps

Predictive weights maps yielded by each classifier are pre-
sented in Figure 2. When using the regular SVM classifier, the
relevance of the obtained discriminative weight map appears
limited. It is very dense and all grey-matter voxels seem to
contribute to the prediction: it is clinically challenging to
interpret. When using ElasticNet and GraphNet classifiers, the
predictive patterns are very sparse and scattered across the

brain. Despite the fact that the prediction performance is rel-
atively good, in a clinical setting, a physician will never draw
a conclusion from such a black-box model. Understanding the
structural brain patterns that drive the prediction is crucial.
Meanwhile, the predictive map obtained with TV-Enet appears
much more interpretable, since it provides a smooth map made
of several clearly identifiable regions.

Fig. 2: VBM weight maps yielded by SVM, ElasticNet,
GraphNet and TV-Enet classifiers

C. Learning curve

Figure 3 represents the inter-site prediction accuracy yielded
when varying the number of subjects in the training set
while holding a fixed testing set. The accuracy of prediction
improves until 80% of the samples of training set are used.

IV. DISCUSSION

The inter-site prediction score (around 70-75%) obtained in
this current study is consistent with the average performance
reported in the literature [10, 11]. The predictive models
developed on such heterogeneous data can reliably learn inter-
site markers of schizophrenia that have the ability to generalize
to the prediction of subjects from unseen site.

In term of prediction score, all classifiers under study
perform similarly. However, besides the prediction scores,



Fig. 3: Learning curve: Performance of the predictive model
over a varying number of training instances. The colored band
represents the standard error of the prediction.

we are also interested in the interpretability and stability of
the discriminative weight map. The predictive weight map
provided by TV-Enet is much more interpretable than the
maps yielded by the other classifiers. Indeed, a clearly defined
predictive signature of schizophrenia is provided by TV-Enet,
composed of areas such as the thalamus, hippocampus, amyg-
dala, cingulate gyrus and striatum. Those markers are largely
consistent with the current understanding of the neural basis
of schizophrenia [12]. Moreover, the weight maps yielded by
TV-Enet at each fold of the cross validation are very similar
(rβ = 0.74). Indeed, when different subjects are used in the
training set, the identified markers that discriminate between
schizophrenia patients and controls are almost identical. There-
fore, the incorporation of spatial constraint in the learning
scheme, through the TV penalty, has the ability to provide an
interpretable predictive signature of the disease while having
minimal impact on the predictive performance.

V. CONCLUSION

We developed effective predictive models of schizophrenia
relying on MRI-based features. Leveraging spatial constraints
with the TV penalty, we obtained promising inter-site predic-
tion accuracy together with an interpretable and stable pre-
dictive signature of schizophrenia. Such results are promising
given the heterogeneity of the datasets. Future work would
benefit from the aggregation of large independent cohorts.
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