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Structured Sparse Principal Components Analysis
with the TV-Elastic Net Penalty

Amicie de Pierrefeu, Tommy Löfstedt, Fouad Hadj-Selem, Mathieu Dubois, Renaud Jardri, Thomas Fovet, Philippe
Ciuciu Senior Member, Vincent Frouin and Edouard Duchesnay

Abstract—Principal component analysis (PCA) is an ex-
ploratory tool widely used in data analysis to uncover dominant
patterns of variability within a population. Despite its ability to
represent a data set in a low-dimensional space, PCA’s inter-
pretability remains limited. Indeed, the components produced by
PCA are often noisy or exhibit no visually meaningful patterns.
Furthermore, the fact that the components are usually non-sparse
may also impede interpretation, unless arbitrary thresholding is
applied. However, in neuroimaging, it is essential to uncover clin-
ically interpretable phenotypic markers that would account for
the main variability in the brain images of a population. Recently,
some alternatives to the standard PCA approach, such as Sparse
PCA, have been proposed, their aim being to limit the density
of the components. Nonetheless, sparsity alone does not entirely
solve the interpretability problem in neuroimaging, since it may
yield scattered and unstable components. We hypothesized that
the incorporation of prior information regarding the structure of
the data may lead to improved relevance and interpretability
of brain patterns. We therefore present a simple extension
of the popular PCA framework that adds structured sparsity
penalties on the loading vectors in order to identify the few stable
regions in the brain images that capture most of the variability.
Such structured sparsity can be obtained by combining e.g., `1
and total variation (TV) penalties, where the TV regularization
encodes information on the underlying structure of the data.
This paper presents the structured sparse PCA (denoted SPCA-
TV) optimization framework and its resolution. We demonstrate
SPCA-TV’s effectiveness and versatility on three different data
sets. It can be applied to any kind of structured data, such as
e.g., N -dimensional array images or meshes of cortical surfaces.
The gains of SPCA-TV over unstructured approaches (such as
Sparse PCA and ElasticNet PCA) or structured approach (such
as GraphNet PCA) are significant, since SPCA-TV reveals the
variability within a data set in the form of intelligible brain
patterns that are easier to interpret and more stable across
different samples.

Keywords—MRI, unsupervised machine learning, PCA, total
variation.

I. INTRODUCTION

Principal components analysis (PCA) is an unsupervised
statistical procedure whose aim is to capture dominant patterns
of variability in order to provide an optimal representation of a
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data set in a lower-dimensional space defined by the principal
components (PCs). Given a data set X ∈ RN×P of N samples
and P centered variables, PCA aims to find the most accurate
rank-K approximation of the data:

min
U,D,V

∥∥X−UDVT
∥∥2
F
, (1)

s.t. UTU = I,VTV = I, d1 ≥ · · · ≥ dK > 0

where ‖.‖F is the Frobenius norm of a matrix, V =
[v1, · · · ,vK ] ∈ RP×K are the K loading vectors (right
singular vectors) that define the new coordinate system where
the original features are uncorrelated, D is the diagonal matrix
of the K singular values, and U = [u1, · · · ,uK ] ∈ RN×K are
the K projections of the original samples in the new coordinate
system (called principal components (PCs) or left singular
vector). Using K = rank(X) components leads to the singular
value decomposition (SVD). A vast majority of neuroimaging
problems involve high-dimensional feature spaces (≈ 105

features i.e. voxels or mesh (nodes over the cortical surface)
with a relatively limited sample size (≈ 102 participants. With
such “large P , small N” problems, the SVD formulation,
based on the data matrix, is much more efficient than an
eigenvalue decomposition of the large P×P covariance matrix.

In a neuroimaging context, our goal is to discover the
phenotypic markers accounting for the main variability in a
population’s brain images. For example, when considering
structural images of patients that will convert to Alzheimer
disease (AD), we are interested in revealing the brain patterns
of atrophy explaining the variability in this population. This
provides indications of possible stratification of the cohort into
homogeneous sub-groups that may be clinically similar but
with a different pattern of atrophy. This could suggest different
sub-types of patients with AD or some other etiologies such
as dementia with Lewy bodies. Clustering methods might be
natural approaches to address such situations, however, they
can not reveal subtle differences that go beyond a global and
trivial pattern of atrophy. Such patterns are usually captured by
the first component of PCA which, after being removed, offers
the possibility to identify spatial patterns on the subsequent
components.

However, PCA provides dense loading vectors (patterns),
that cannot be used to identify brain markers without arbitrary
thresholding.

Recently, some alternatives propose to add sparsity in this
matrix factorization problem [33], [36], [43]. The sparse
dictionary learning framework proposed by [36] provides a
sparse coding (rows of U) of samples through a sparse
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linear combination of dense basis elements (columns of V).
However, the identification of biomarkers requires a sparse
dictionary (columns of V). This is precisely the objective of
Sparse PCA (SPCA) proposed in [30], [51], [14], [49], [31]
which adds a sparsity-inducing penalty on the columns of V.
Imposing such sparsity constraints on the loading coefficients
is a procedure that has been used in fMRI to produce sparse
representation of brain functional networks [20],[45].

However, sparse PCA is limited by the fact that it ignores
the inherent spatial correlation in the data. It leads to scattered
patterns that are difficult to interpret. Furthermore, constraining
only the number of features included in the PCs might not
always be fully relevant since most data sets are expected to
have a spatial structure. For instance, MRI data is naturally
encoded on a grid; some voxels are neighbors, while others
are not.

We hypothesize that brain patterns are organized into dis-
tributed regions across the brain([11],[21],[41]). Recent studies
tried to overcome this limitation by encoding prior information
concerning the spatial structure of the data (see [29], [24],
[48]). However, they used methods that are difficult to plug
into the optimization scheme (e.g., spline smoothing, wavelet
smoothing) and incorporated prior information that sometimes
may be difficult to define. One simple solution is the use of
a GraphNet penalty ([23], [32], [40], [18], [38]). It promotes
local smoothness of the weight map by simply forcing adjacent
voxels to have similar weights using an λ2 penalty on the
gradient of the weight map. Nonetheless, we hypothesized
that Graph-net provided smooth solution rather than clearly
identified regions. In data classification problems, when ex-
tracting structured and sparse predictive maps, the goals are
largely aligned with those of PCA. Some classification studies
have revealed stable and interpretable results by adding a
total variation (TV) penalty to the sparsity constraint (see
[19]). TV is widely used as a tool in image denoising and
restoration. It accounts for the spatial structure of images by
encoding piecewise smoothness and enabling the recovery of
homogeneous regions separated by sharp boundaries.

For simplicity, rather than solving Eq. (2), we solve a
slightly different criterion which results from using the La-
grange form, rather than the bound form, of the constraints on
V. Then, we extend the Lagrangian form by adding penalties
(`1, `2 and TV) to the minimization problem:

min
U,D,V

1

N
‖X−UDV>‖2F

+
K∑
k=1

{
λ2‖vk‖22 + λ1‖vk‖1 + λ

∑
g∈G
‖Agv‖2

}
, (2)

s. t. ‖uk‖22 = 1,∀k = 1, · · · ,K,

where λ1, λ2 and λ are hyper-parameters controlling the
relative strength of each penalty. We further propose a generic
optimization framework that can combine any differentiable
convex (penalized) loss function with: (i) penalties whose
proximal operator is known (here ‖·‖1) and (ii) a large range
of complex, non-smooth convex structured penalties that can
be formulated as a ‖·‖2,1-norm defined over a set of groups G.

Such group-penalties cover e.g., total variation and overlapping
group lasso.

This new problem aims at finding a linear combination
of original variables that points in directions explaining as
much variance as possible in data while enforcing sparsity and
structure (piecewise smoothness for TV) of the loadings.

To achieve this, it is necessary to sacrifice some of the
explained variance as well as the orthogonality of both the
loading and the principal components. Most existing SPCA
algorithms [51], [14], [49], [31], do not impose orthogonal
loading directions either. While we forced the components
to have unit norm for visualization purposes, we do not, in
this formulation, enforce ‖vk‖2 = 1. Instead, the value of
‖v‖2 is controlled by the hyper-parameter λ2. This penalty
on the loading, together with the unit norm constraint on the
component, prevents us from obtaining trivial solutions. The
optional 1

N factor acts on and conveniently normalizes the loss
to account for the number of samples in order to simplify the
settings of the hyper-parameters: λ1, λ2, λ.

This paper presents an extension of the popular PCA frame-
work by adding structured sparsity-inducing penalties on the
loading vectors in order to identify the few stable regions in
the brain images accounting for most of the variability. The
addition of a prior that reflects the data’s structure within the
learning process gives the paper a scope that goes beyond
Sparse PCA. To our knowledge, very few papers ([1], [24],
[29], [48]) addressed the use of structural constraint in PCA.
The study [29] proposes a norm that induces structured sparsity
(called SSPCA) by restraining the support of the solution to
be sparse with a certain set of group of variables. Possible
supports include set of variables forming rectangles when
arranged on a grid. Only one study, recently used the total
variation prior [1], in a context of multi-subject dictionary
learning, based on a different optimization scheme [5].

Section II presents our main contribution: a simple optimiza-
tion algorithm that combines well known methods (deflation
scheme and alternate minimization) with an original continua-
tion algorithm based on Nesterov’s smoothing technique. Our
proposed algorithm has the ability to include the TV penalty,
but many other non-smooth penalties, such as e.g. overlapping
group lasso, could also be used. This versatile mathematical
framework is an essential feature in neuroimaging. Indeed, it
enables a straightforward application to all kinds of data with
known structure such as N -dimensional images (of voxels) or
meshes of (cortical) surfaces. Section III demonstrates the rele-
vance of structured sparsity on both simulated and experimen-
tal data, for structural and functional MRI (fMRI) acquisitions.
SPCA-TV achieved a higher reconstruction accuracy and more
stable solutions than ElasticNet PCA, Sparse PCA, GraphNet
PCA and SSPCA (from [29]) . More importantly, SPCA-TV
yields more interpretable loading vectors than other methods.

II. METHOD

A common approach to solve the PCA problem, see [14],
[31], [49]), is to compute a rank-1 approximation of the
data matrix, and then repeat this on the deflated matrix [34],
where the influence of the PCs are successively extracted and
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discarded. We first detail the notation for estimating a single
component (Section II-A), and its solution using an alternating
minimization pipeline (Section II-B). Then, we develop the
TV regularization framework (Section II-C and Section II-D).
Last, we discuss the algorithm used to solve the minimization
problem and its ability to converge toward stable pairs of
components/loading vectors (Section II-E) and (Section II-F).

A. Single component computation
Given a pair of loading/component vectors, u ∈ RN ,v ∈

RP , the best rank-1 approximation of the problem given in
Eq. (2) is equivalent [49] to:

min
u,v

f ≡

smooth︷ ︸︸ ︷
− 1

N
u>Xv + λ2‖v‖22︸ ︷︷ ︸

l(v)

+

non-smooth︷ ︸︸ ︷
λ1 ‖v‖1︸ ︷︷ ︸

h(v)

+λ
∑
g∈G
‖Agv‖2︸ ︷︷ ︸
s(v)

(3)

s. t. ‖u‖22 ≤ 1,

where l(v) is the penalized smooth (i.e. differentiable) loss,
h(v) is a sparsity-inducing penalty whose proximal operator
is known and s(v) is a complex penalty on the structure of
the input variables with an unknown proximal operator.

This problem is convex in u and in v but not in (u,v).

B. Alternating minimization of the bi-convex problem
The objective function to minimize is bi-convex [9]. The

most common approach to solve a bi-convex optimization
problem (which does not guarantee global optimality of the
solution) is to alternatively update u and v by fixing one
of them at the time and solving the corresponding convex
optimization problem on the other parameter vector.

On the one hand, when v is fixed, the problem to solve is

min
u∈RN

− 1

N
u>Xv (4)

s. t. ‖u‖22 ≤ 1,

with the associated explicit solution

u∗(v) =
Xv

‖Xv‖2
. (5)

On the other hand, solving the equation with respect to v
with a fixed u presents a higher level of difficulty that will be
discussed in Section II-E.

C. Reformulating TV as a linear operator
Before discussing the minimization with respect to v, we

provide details on the encoding of the spatial structure within
the s(v) penalty.

It is essential to note that the algorithm is independent of
the spatial structure of the data. All the structural information
is encoded in a linear operator, A, that is computed outside
of the algorithm. Thus the algorithm has the ability to address

various structured data and, most importantly, other penalties
than just the TV penalty. The algorithm requires the setting
of two parameters: (i) the linear operator A; (ii) a projection
function detailed in Eq. (12).

This section presents the formulation and the design of A in
the specific case of a TV penalty applied to the loading vector
v measured on a 3-dimensional (3D) image or a 2D mesh of
the cortical surface.

1) 3D image: The brain mask is used to establish a mapping
g(i, j, k) between the coordinates (i, j, k) in the 3D grid, and
an index g ∈ [[1;P ]] in the collapsed image. We extract the
spatial neighborhood of g, of size ≤ 4, corresponding to voxel
g and its 3 neighboring voxels, within the mask, in the i, j and
k directions. By definition, we have

TV(v) ≡
P∑
g=1

∥∥∇ (vg(i,j,k)) ∥∥2. (6)

The first order approximation of the spatial gradient
∇(vg(i,j,k)) is computed by applying the linear operator A

′

g ∈
R3×4 to the loading vector vg in the spatial neighborhood of
g, i.e.

∇
(
vg(i,j,k)

)
=

[ −1 1 0 0
−1 0 1 0
−1 0 0 1

]
︸ ︷︷ ︸

A′g

 vg(i,j,k)
vg(i+1,j,k)

vg(i,j+1,k)

vg(i,j,k+1)


︸ ︷︷ ︸

vg

, (7)

where vg(i,j,k) is the loading coefficient at index g in the
collapsed image corresponding to voxel (i, j, k) in the 3D
image. Then A

′

g is extended, using zeros, to a large but very
sparse matrix Ag ∈ R3×P in order to be directly applied on
the full vector v. If some neighbors lie outside the mask, the
corresponding rows in Ag are removed. Noticing that for TV
there is one group per voxel in the mask (G = [[1;P ]]), we can
reformulate TV from Eq. (6) using a general expression:

TV(v) =
∑
g∈G
‖Agv‖2. (8)

Finally, with a vertical concatenation of all the Ag matrices,
we obtain the full linear operator A ∈ R3P×P that will be
used in Section II-E.

2) Mesh of cortical surface: The linear operator A
′

g used
to compute a first order approximation of the spatial gradient
can be obtained by examining the neighboring vertices of
each vertex g. With common triangle-tessellated surfaces, the
neighborhood size is ≤ 7 (including g). In this setting, we
have A

′

g ∈ R3×7, which can be extended and concatenated to
obtain the full linear operator A.

D. Nesterov’s smoothing of the structured penalty
We consider the convex non-smooth minimization of Eq. (3)

with respect to v, where thus u is fixed. This problem includes
a general structured penalty, s(·), that covers the specific case
of TV. A widely used approach when dealing with non-smooth
problems is to use methods based on the proximal operator of
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the penalties. For the `1 penalty alone, the proximal operator
is analytically known and efficient iterative algorithms such as
ISTA and FISTA are available (see [4]). However, since the
proximal operator of the TV+`1 penalty is not closed form,
standard implementation of those algorithms is not suitable. In
order to overcome this barrier, we used Nesterov’s smoothing
technique [39]. It consists of approximating the non-smooth
penalties for which the proximal operator is unknown (e.g.,
TV) with a smooth function (of which the gradient is known).
Non-smooth penalties with known proximal operators (e.g., `1)
are not affected. Hence, as described in [50], it allows to use
an exact accelerated proximal gradient algorithm. Thus we can
solve the PCA problem penalized by TV and elastic net, where
an exact `1 penalty is used.

Using the dual norm of the `2-norm (which happens to be
the `2-norm too), Eq. (8) can be reformulated as

s(v) =
∑
g∈G
‖Agv‖2 =

∑
g∈G

max
‖αg‖2≤1

α>gAgv, (9)

where αg ∈ Kg = {αg ∈ R3 : ‖αg‖2 ≤ 1} is a vector
of auxiliary variables, in the `2 unit ball, associated with
Agv. As with A ∈ R3P×P which is the vertical concate-
nation of all the Ag , we concatenate all the αg to form the
α ∈ K = {[α>1 , . . . ,α>P ]> : αg ∈ Kg} ∈ R3P . K is the
Cartesian product of 3D unit balls in Euclidean space and,
therefore, a compact convex set. Eq. (9) can further be written
as

s(v) = max
α∈K

α>Av. (10)

Given this formulation of s(v), we can apply Nesterov’s
smoothing. For a given smoothing parameter, µ > 0, the s(v)
function is approximated by the smooth function

sµ(v) = max
α∈K

{
α>Av − µ

2
‖α‖22

}
, (11)

for which limµ→0 sµ(v) = s(v). Nesterov [39] demonstrates
this convergence using the inequality in Eq. (15). The value
of α∗µ(v) = [α∗>µ,1, . . . ,α

∗>
µ,g, . . . ,α

∗>
µ,P ]

> that maximizes
Eq. (11) is the concatenation of projections of vectors Agv ∈
R3 to the `2 ball (Kg): α∗µ,g(v) = projKg

(
Agv
µ

)
, where

projKg (x) =

{
x if ‖x‖2 ≤ 1

x
‖x‖2 otherwise.

. (12)

The function sµ, i.e. the Nesterov’s smooth transform of s,
is convex and differentiable. Its gradient given by [39]

∇(sµ)(v) = A>α∗µ(v), (13)

is Lipschitz-continuous with constant

L
(
∇(sµ)

)
=
‖A‖22
µ

, (14)

where ‖A‖2 is the matrix spectral norm of A. Moreover,
Nesterov [39] provides the following inequality relating sµ
and s

sµ(v) ≤ s(v) ≤ sµ(v) + µM, ∀v ∈ Rp, (15)

where M = maxα∈K
‖α‖22

2 = P
2 .

Thus, a new (smoothed) optimization problem, closely re-
lated to Eq. (3) (with fixed u), arises from this regularization
as

min
v

smooth︷ ︸︸ ︷
− 1

n
u>Xv+ λ2‖v‖22︸ ︷︷ ︸

l(v)

+λ
{
α∗µ(v)

>
Av − µ

2
‖α∗‖22

}
︸ ︷︷ ︸

sµ(v)

+λ1

non-smooth︷ ︸︸ ︷
‖v‖1︸ ︷︷ ︸
h(v)

.

(16)

Since we are now able to explicitly compute the gradient of
the smooth part ∇(l + λsµ) (Eq. (18)), its Lipschitz constant
(Eq. (19)) and also the proximal operator of the non-smooth
part, we have all the ingredients necessary to solve this
minimization function using an accelerated proximal gradient
methods [4]. Given a starting point v0 and a smoothing
parameters µ, FISTA (Algorithm 1) minimizes the smoothed
problem and reaches a prescribed precision εµ.

However, in order to control the convergence of the algo-
rithm (presented in Section II-E1), we introduce the Fenchel
dual function and the corresponding dual gap of the objective
function. The Fenchel duality requires the loss to be strongly
convex, which is why we further reformulate Eq. (16) slightly:
All penalty terms are divided by λ2 and by using the following
equivalent formulation for the loss, we obtain the minimization
problem

min
v
fµ ≡

l(v)︷ ︸︸ ︷
1

2

∥∥∥∥v − X>u

nλ2

∥∥∥∥2
2︸ ︷︷ ︸

L(v)

+
1

2
‖v‖22 +

λ

λ2

sµ(v)︷ ︸︸ ︷{
α∗µ(v)

>
Av − µ

2
‖α∗‖22

}
+
λ1
λ2

h(v)︷ ︸︸ ︷
‖v‖1︸ ︷︷ ︸

ψµ(v)

.

(17)

This new formulation of the smoothed objective func-
tion (noted fµ) preserves the decomposition of fµ into a sum
of a smooth term l + λ

λ2
sµ and a non-smooth term h. Such

decomposition is required for the application of FISTA with
Nesterov’s smoothing. Moreover, this formulation provides a
decomposition of fµ into a sum of a smooth loss L and
a penalty term ψµ required for the calculation of the gap
presented in Section II-E1).

We provide all the required quantities to minimize Eq. (17)
using Algorithm 1. Using Eq. (13) we compute the gradient
of the smooth part as

∇
(
l +

λ

λ2
sµ

)
= ∇(l) + λ

λ2
∇(sµ)

= (2v − X>u

nλ2
) +

λ

λ2
A>α∗µ(v

k), (18)

and its Lipschitz constant (using Eq. (14))

L

(
∇
(
l +

λ

λ2
sµ

))
= 2 +

λ

λ2

‖A‖22
µ

. (19)
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Algorithm 1 FISTA
(
X>u, v0, εµ, µ, A, λ, L(∇(g))

)
1: v1 = v0; k = 2
2: Compute the gradient of the smooth part ∇(g + λsµ)

(Eq. (18)) and its Lipschitz constant Lµ (Eq. (19)).
3: Compute the size tµ = L−1µ
4: repeat
5: z = vk−1 + k−2

k+1

(
vk−1 − vk−2

)
6: vk = proxh

(
z− tµ∇(g + λsµ)(z)

)
7: until GAPµ(v

k) ≤ εµ
8: return vk

E. Minimization of the loading vectors with CONESTA

The step size tµ computed in Line 3 of Algorithm 1, depends
on the smoothing parameter µ (see Eq. (19)). Hence, there is a
trade-off between speed and precision. Indeed, high precision,
with a small µ, will lead to a slow convergence (small tµ).
Conversely, poor precision (large µ) will lead to rapid con-
vergence (large tµ). Thus we propose a continuation approach
(Algorithm 2) which decreases the smoothing parameter with
respect to the distance to the minimum. On the one hand, when
we are far from v∗ (the minimum of Eq. (17)), we can use a
large µ to rapidly decrease the objective function. On the other
hand, when we are close to v∗, we need a small µ in order
to obtain an accurate approximation of the original objective
function.

1) Duality gap: The distance to the unknown f(v∗) is
estimated using the duality gap. Duality formulations are often
used to control the achieved precision level when minimizing
convex functions. They provide an estimation of the error
f(vk) − f(v∗), for any v, when the minimum is unknown.
The duality gap is the cornerstone of the CONESTA algorithm.
Indeed, it is used three times:

i As the stopping criterion in the inner FISTA loop (Line
7 in Algorithm 1). FISTA will stop as soon as the cur-
rent precision is achieved using the current smoothing
parameter, µ. This prevents unnecessary convergence
toward the approximated (smoothed) objective function.

ii In the ith CONESTA iteration, as a way to estimate the
current error f(vi)−f(v∗) (Line 7 in Algorithm 2). The
error is estimated using the gap of the smoothed prob-
lem GAPµ=µi(v

i+1) which avoid unnecessary compu-
tation since it has already been computed during the last
iteration of FISTA. The inequality in Eq. (15) is used to
obtain the gap εi to the original non-smoothed problem.
The next desired precision εi+1 and the smoothing
parameter, µi+1, are derived from this value.

iii Finally, as the global stopping criterion within CON-
ESTA (Line 10 in Algorithm 2). This will guarantee
that the obtained approximation of the minimum, vi, at
convergence, satisfies f(vi)− f(v∗) < ε.

Based on Eq. (17), which decomposes the smoothed ob-
jective function as a sum of a strongly convex loss and the
penalty,

fµ(v) = L(v) + ψµ(v),

we compute the duality gap that provides an upper bound
estimation of the error to the optimum. At any step k of
the algorithm, given the current primal vk and the dual
σ(vk) ≡ ∇L(vk) variables [8], we can compute the duality
gap using the Fenchel duality rules [35]:

GAP(vk) ≡ fµ(vk) + L∗
(
σ(vk)

)
+ ψ∗µ

(
− σ(vk)

)
, (20)

where L∗ and ψ∗µ are respectively the Fenchel conjugates of
L and ψµ. Denoting by v∗ the minimum of fµ (solution of
Eq. (17)), the interest of the duality gap is that it provides an
upper bound for the difference with the optimal value of the
function. Moreover, it vanishes at the minimum:

GAP(vk) ≥ f(vk)− f(v∗) ≥ 0
GAP(v∗) = 0.

(21)

The dual variable is

σ(vk) ≡ ∇L(vk) = v − X>u

nλ2
, (22)

the Fenchel conjugate of the squared loss L(vk) is

L∗(σ(vk)) = 1

2
‖σ(vk)‖22 + σ(vk)>

X>u

nλ2
. (23)

In [25] the authors provide the expression of the Fenchel
conjugate of the penalty ψµ(vk):

ψ∗µ(−σ(vk)) =
1

2

P∑
j=1

([∣∣∣− σ(vk)j − λ

λ2

(
A>α∗µ(v

k)
)
j

∣∣∣− λ1
λ2

]2
+

)

+
λµ

2λ2

∥∥α∗µ(vk)∥∥22 (24)

where [·]+ = max(0, ·).
The expression of the duality gap in Eq. (20) provides an

estimation of the distance to the minimum. This distance is
geometrically decreased by a factor τ = 0.5 at the end of each
continuation, and the decreased value defines the precision that
should be reached by the next iteration (Line 8 of Algorithm
2). Thus, the algorithm dynamically generates a sequence of
decreasing prescribed precisions εi. Such a scheme ensures the
convergence [25] towards a globally desired final precision, ε,
which is the only parameter that the user needs to provide.

2) Determining the optimal smoothing parameter: Given the
current prescribed precision εi, we need to compute an optimal
smoothing parameter µopt(εi) (Line 9 in Algorithm 2) that
minimizes the number of FISTA iterations needed to achieve
such precision when minimizing Eq. (3) (with fixed u) via
Eq. (17) (i.e., such that f(v(k))− f(v∗) < εi).

In [25], the authors provide the expression of this optimal
smoothing parameter:

µopt(ε
i) =

−λM‖A‖22 +
√
(λM‖A‖22)2 +ML(∇(l))‖A‖22εi
ML(∇(l))

,

(25)

where M = P/2 (Eq. (15)) and L(∇(l)) = 2 is the Lipschitz
constant of the gradient of l as defined in Eq. (17).
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We call the resulting algorithm CONESTA (short for
COntinuation with NEsterov smoothing in a Shrinkage-
Thresholding Algorithm). It is presented in detail, with con-
vergence proofs in [25].

Let K be the total number of FISTA loops used in CON-
ESTA, then we have experimentally verified that the conver-
gence rate to the solution of Eq. (16) is O

(
1/K2

)
(which is

the optimal convergence rate for first-order methods). Also,
the algorithm works even if some of the weights λ1 or λ
are zero, which thus allows us to solve e.g., the elastic net
using CONESTA. Note that it has been rigorously proved
that the continuation technique improves the convergence rate
compared to the simple smoothing using a single value of µ.
Indeed, it has been demonstrated in [6] (see also [50]) that
the convergence rate obtained with single value of µ, even
optimised, is O

(
1/K2

)
+ O(1/K). However, it has recently

been proved in [25] that the CONESTA algorithm achieves a
O(1/K) for general convex functions.

We note that CONESTA could easily be adapted to many
other penalties. For example, to add the group lasso (GL)
constraint to our structure, we just have to design a specific
linear operator AGL and concatenate it to the actual linear
operator A.

Algorithm 2 CONESTA
(
X>u, ε

)
1: Initialize v0 ∈ RP
2: ε0 = τ · GAPµ=10−8(v0)
3: µ0 = µopt

(
ε0
)

4: repeat
5: εiµ = εi − µiγM
6: vi+1 = FISTA(X>u, vi, εiµ, . . . )
7: εi = GAPµ=µi(v

i+1) + µiγM
8: εi+1 = τ · εi
9: µi+1 = µopt

(
εi+1

)
10: until εi ≤ ε
11: return vi+1

F. The algorithm for the SPCA-TV problem
The computation of a single component through SPCA-TV

can be achieved by combining CONESTA and Eq. (5) within
an alternating minimization loop. Mackey [34] demonstrated
that further components can be efficiently obtained by incor-
porating this single-unit procedure in a deflation scheme as
done in e.g. [14], [31]. The stopping criterion is defined as

STOPPINGCRITERION =

∥∥∥Xk − ui+1vi+1>
∥∥∥
F
−
∥∥∥Xk − uivi

>
∥∥∥
F∥∥Xk − ui+1vi+1>

∥∥
F

.

(26)

All the presented building blocks were combined into Al-
gorithm 3 to solve the SPCA-TV problem.

III. EXPERIMENTS

We evaluated the performance of SPCA-TV using three
experiments: One simulation study carried out on a synthetic

Algorithm 3 SPCA-TV(X, ε
)

1: X0 = X
2: for all k = 0, . . . ,K do . Components
3: Initialize u0 ∈ RN
4: repeat . Alternating minimization
5: vi+1 = CONESTA(X>ku

i, ε)

6: ui+1 = Xkv
i+1

‖Xkvi+1‖2
7: until STOPPINGCRITERION ≤ ε
8: vk+1 = vi+1

9: uk+1 = ui+1

10: Xk+1 = Xk − uk+1vk+1> . Deflation
11: end for
12: return U = [u1, · · · ,uK ],V = [v1, · · · ,vK ]

data set and two on neuroimaging data sets. In order to
compare the performance of SPCA-TV with existing sparse
PCA models, we also included results obtained with Sparse
PCA, ElasticNet PCA, GraphNet PCA and SSPCA from
[29]. We used the scikit-learn implementation [42] for the
Sparse PCA while we used the Parsimony package (https:
//github.com/neurospin/pylearn-parsimony) for the ElasticNet,
GraphNet PCA and SPCA-TV methods. Concerning SSPCA,
we used the MATLAB implementation provided in [29].

The number of parameters to set for each method is differ-
ent: For Sparse PCA, the λ1 parameter selects its optimal value
from the range {0.1 , 1.0 , 5.0 , 10.0}. ElasticNet PCA requires
the setting of the λ1 and the λ2 penalties weights. Meanwhile,
GraphNet PCA and SPCA-TV requires the settings of an
additional parameter, namely the spatial constraint penalty λ.
We operated a re-parametrization of these penalty weights in
ratios. A global parameter α ∈ {0.01, 0.1, 1.0} controls the
weight attributed to the whole penalty term, including the
spatial and the `1 regularization. Individual constraints are
expressed in terms of ratios: the `1 ratio: λ1/(λ1 + λ2 + λ),
∈ {0.1, 0.5, 0.8} and the `TV (or `GN for GraphNet) :
λ/(λ1+λ2+λ), ∈ {0.1, 0.5, 0.8}. For ElasticNet, we explore
the grid of parameters composed of the Cartesian product of
α and `1 ratio subsets. For GraphNet PCA and SPCA-TV,
we perform a parameter search on a grid of parameters given
by the Cartesian product of respectively (α, `1 `GN ) subsets
and (α, `1 `TV ) subsets . Concerning SSPCA method, the
regularization parameter selects its optimal value in the range
{10−8, ..., 108}

However, in order to ensure that the components extracted
have a minimum amount of sparsity, we also included a
criteria controlling sparsity: At least half of the features of
the components have to be zero. For both real neuroimaging
experiments, performance was evaluated through a 5-fold x
5-fold double cross validation pipeline. The double cross-
validation process consists of two nested cross-validation loops
which are referred to as internal and external cross-validation
loops. In the outer (external) loop, all samples are randomly
split into subsets referred to as training and test sets. The test
sets are exclusively used for model assessment while the train
sets are used in the inner (internal) loop for model fitting

https://github.com/neurospin/pylearn-parsimony
https://github.com/neurospin/pylearn-parsimony
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and selection. The inner folds select the set of parameters
minimizing the reconstruction error on the outer fold. For
the synthetic data, we used 50 different purposely-generated
data sets and 5 inner folds for parameters selection. In or-
der to evaluate the reconstruction accuracy of the methods,
we reported the mean Frobenius norm of the reconstruction
error across the folds/data sets, on independent test data.
The hypothesis we wanted to test was whether there was a
substantial decrease in the reconstruction error of independent
data when using SPCA-TV compared to when using Sparse
PCA, ElasticNet PCA, GraphNet PCA and SSPCA . It was
tested through a related two samples t-test. This choice to
compare methods performance on independent test data was
motivated by the fact that the optimal reconstruction of the
training set is necessarily hindered by spatial and sparsity
constraints. We therefore expect SPCA-TV to perform worse
on train data than other less constrained methods. However,
the TV penalty has a more important purpose than just to
minimize the reconstruction error: the estimation of coherent
and reproducible loadings. Indeed, clinicians expect that, if
images from other patients with comparable clinical conditions
had been used, the extracted loading vectors would have turned
out to be similar. Therefore, since the ultimate goal of SPCA-
TV is to yield stable and reproducible weight maps, it is more
relevant to evaluate methods on independent test data.

The stability of the loading vectors obtained across various
training data sets (variation in the learning samples) was
assessed through a similarity measure: the pairwise Dice index
between loading vectors obtained with different folds/data sets
[16]. We tested whether pairwise Dice indices are significantly
higher in SPCA-TV compared other methods. Testing this
hypothesis is equivalent to testing the sign of the difference of
pairwise Dice indices between methods. However, since the
pairwise Dice indices are not independent from one another
(the folds share many of their learning samples), the direct
significance measures are biased. We therefore used permuta-
tion testing to estimate empirical p-values. The null hypothesis
was tested by simulating samples from the null distribution.
We generated 1 000 random permutations of the sign of the
difference of pairwise Dice index between the PCA methods
under comparisons, and then the statistics on the true data
were compared with the ones obtained on the reshuffled data
to obtain empirical p-values.

For each experiment, we made the initial choice to retrieve
the first ten components. However, given the length constraint,
we only present the weights maps associated to the top three
components for Sparse PCA and SPCA-TV in this paper.
ElasticNet PCA, GraphNet PCA and SSPCA ’s weights maps
of experiments are presented in the supplementary materials
(supplementary materials are available in the supplementary
files /multimedia tab).

A. Simulation study

We generated 50 sets of synthetic data, each composed of
500 images of size 100 × 100 pixels. Images are generated
using the following noisy linear system :

u1V
1 + u2V

2 + u3V
3 + ε ∈ R10 000, (27)

where V = [V 1, V 2, V 3] ∈ R10 000×3 are sparse and structured
loading vectors, illustrated in Fig. 1. The support of V 1 defines
the two upper dots, the support of V 2 defines the two lower
dots, while V 3 ’s support delineates the middle dot. The
coefficients u = [u1, u2, u3] that linearly combine the com-
ponents of V are generated according to a centered Gaussian
distribution. The elements of the noise vector ε are independent
and identically distributed according to a centered Gaussian
distribution with a 0.1 signal-to-noise ratio (SNR). This SNR
was selected by a previous calibration pipeline, where we
tested the efficiency of data reconstruction at multiple SNR
ranges running from 0 to 0.5. We decided to work with a 0.1
SNR because it is located in the range of values where standard
PCA starts being less efficient in the recovery process.

component 1 component 2 component 3
Fig. 1: Loading vectors V = [V 1, V 2, V 3] ∈ R10 000×3 used
to generate the images

We splitted the 500 artificial images into a test and a training
set, with 250 images in each set and learned the decomposition
on the training set. Sparse PCA

SPCA - TVcomponent 1 

component 1 

component 2 

component 2 

component 3

component 3
Fig. 2: Loading vectors recovered from 250 images using
Sparse PCA and SPCA-TV.

Fig. 2 represents the loading vectors extracted with one data
set. Please note that the sign is arbitrary. Indeed, if we consider
the loss of Eq. (3), u> and v can be both multiply by -1
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TABLE I: Scores are averaged across the 50 independent data
sets. We tested whether the scores obtained with existing PCA
methods are significantly different from scores obtained with
SPCA-TV. Significance notations: ***: p ≤ 10−3

Scores

Methods Test Data Reconstruction Error MSE Dice Index

Sparse PCA 1576.0*** 0.91*** 0.28***
ElasticNet PCA 1572.4*** 0.83*** 0.43***
GraphNet PCA 1570.8*** 0.83*** 0.30***
SSPCA 1571.9*** 1.54*** 0.07***
SPCA-TV 1570.1 0.64 0.52

without changing anything. We observe that Sparse PCA yields
very scattered loading vectors. The loading vectors of SPCA-
TV, on the other hand, are sparse; but also organized in clear
regions. SPCA-TV provides loading vectors that closely match
the ground truth. The reconstruction error is evaluated on the
test sets (Tab. I), with its value over the 50 data sets being sig-
nificantly lower in SPCA-TV than in Sparse PCA (T = 94.5,
p = 3.9 · 10−57), ElasticNet PCA (T = 33.2, p = 2.7 · 10−35,
GraphNet PCA (T = 12.7, p = 3.6 · 10−17 and SSPCA from
[29] (T = 18.9, p = 3.9 ·10−24) ) methods. Additional details
concerning the reconstruction accuracy of both the train and
test data is presented in Figure 1 of supplementary materials
(supplementary materials are available in the supplementary
files /multimedia tab).

A different way of quantifying the reconstruction accuracy
for each method is to evaluate how closely the extracted
loadings match the known ground truth of simulated data
set. We computed the mean squared error (MSE) between
the ground truth and the estimated loadings. The results are
presented in Tab. I. We note that the MSE is significantly
lower with SPCA-TV than with Sparse PCA (T = 6.9,
p = 8.0 · 10−9), ElasticNet PCA (T = 6.2, p = 1.1 · 10−07),
GraphNet-PCA (T = 4.1, p = 1.4 · 10−04) and SSPCA
(T = 22.6, p = 1.5 · 10−27).

Moreover, when evaluating the stability of the loading
vectors across resampling, we found a higher statistically
significant mean Dice index when using SPCA-TV compared
to the other methods (p < 0.001). The results are presented in
Tab. I. They indicate that SPCA-TV is more robust to variation
in the learning samples than the other sparse methods. SPCA-
TV yields reproducible loading vectors across data sets.

These results indicate that the SPCA-TV loadings are not
only more stable across resampling but also achieve a better
recovery of the underlying variability in independent data than
the Sparse PCA, ElasticNet PCA,GraphNet PCA and SSPCA
methods.

One of the issues linked to biconvex optimization is the
risk of falling into locals minima. Conscious of this potential
risk, we set up an experiment in which we ran 50 times the
optimization of the same problem, with a different starting
point at each run. We then compare the resulting loading
vectors obtained at each run, and computed a similarity mea-
sure, the Dice index. It quantifies the proximity between each

independently-run solution with a different starting point. We
obtained a Dice index of 0.99 on the 1st component, 0.99 on
the 2nd component, and 0.72 on the 3rd component. Off the
strength of this indices, we are confident of this algorithm
robustness and ability to converge toward the same stable
solution independently from the choice of the starting point.

B. 3D images of functional MRI of patients with schizophrenia
We then applied the methods on 3D images of BOLD

functional MRI (fMRI) acquired with the same scanner and
pulse sequence. Imaging was performed on a 1.5 T scanner
using a standard head-coil. For all functional scans the field-
of-view was 206∗206∗153 mm, with a resolution close to 3.5
mm in all directions. The parameters of the PRESTO sequence
were TE = 9.6 ms, TR = 19.25 ms, EPI-factor = 15, flip angle
= 9. Each fMRI run consisted of 900 volumes collected. The
cohort is composed of 23 patients with schizophrenia (average
age = 34.96 years, 8 Females/15 Males). Brain activation
was measured while subjects experienced multimodal hallu-
cinations. The fMRI data was pre-processed using SPM12,
(WELLCOME Department of Imaging Neuroscience, Lon-
don, UK). Data preprocessing consisted of motion correction
(realignment), coregistration of the individual anatomical T1
image to the functional images, spatial normalization to MNI
space using DARTEL based on segmented T1 scans.

We considered each set of consecutive images under pre-
hallucinations state as a block. Since, most of the patients
hallucinate more than once during the scanning session, we
have more blocks than patients (83 blocks). The activation
maps are computed from these blocks. Based on the general
linear model approach, we regressed for each block, the fMRI
signal time course on a linear ramp function: Indeed, we hy-
pothesized that activation in some regions presents a ramp-like
increase during the time preceding the onset of hallucinations.
(See example of regression in figure 3 in the supplementary
materials,available in the supplementary files /multimedia tab.).
The activation maps that we used as an input to the SPCA-TV
method are the statistical parametric maps associated with the
coefficients of the block regression. (See one example in Figure
4 of supplementary materials, available in the supplementary
files /multimedia tab). We obtained a data set of n = 83 maps
and p = 63 966 features. We hypothesized that the principal
components extracted with SPCA-TV from these activation
maps could uncover major trends of variability within pre-
hallucination patterns. Thus, they might reveal the existence of
subgroups of patients, according to the sensory modality (e.g.,
vision or audition) involved during hallucinations.

We applied all PCA methods under study to this data set
except SSPCA. Indeed, the SSPCA method ([29]) could not
be applied to this specific example since datasets have to be
constituted from closed cubic forms without any holes to be
eligible for SSPCA method application. It does not support
masked data such as the one used here.

The loading vectors extracted from the activation maps
of pre-hallucinations scans with Sparse PCA and SPCA-TV
are presented in Fig. 3. We observe a similar behavior as
in the synthetic example, namely that the loading vectors of
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Sparse PCA tend to be scattered and produce irregular patterns.
However, SPCA-TV seems to yield structured and smooth
sources of variability, which can be interpreted clinically.
Furthermore, the SPCA-TV loading vectors are not redundant
and revealed different patterns.

Indeed, the loading vectors obtained by SPCA-TV are of
great interest because they revealed insightful patterns of
variability in the data: the second loading is composed of
interesting areas such as the precuneus cortex and the cingulate
gyrus, but also areas related to vision-processing areas such as
the occipital fusiform gyrus and the parietal operculum cortex
regions. The third loading reveals important weights in the
middle temporal gyrus, the parietal operculum cortex and the
frontal pole. The first loading vector encompasses all features
of the brain. One might see this first component as a global
variability affecting the whole brain, such as the overarching
effect of age. SPCA-TV selects this dense configuration in
spite of the sparsity constraint: It is highly desirable to remove
any sort of global effect at first, in order to start identifying
local patterns in next components, that are not impacted by a
global variability of this kind. We can identified a widespread
set of dysfunctional language-related or vision-related areas
that present increasing activity during the time preceding the
onset of hallucinations. The regions extracted by SPCA-TV
are found to be pertinent according to the existing literature
on the topic. ([28], [27], [7]]).

These results seem to indicate the possible existence of
subgroups of patients according to the hallucination modalities
involved. An interesting application would be to use the score
of the second component extracted by SPCA-TV in order
to distinguish patients with visual hallucinations from those
suffering mainly from auditory hallucinations.

The reconstruction error is significantly lower in SPCA-TV
than in Sparse PCA (T = 13.9, p = 1.5 · 10−4), ElasticNet
PCA (T = 7.1, p = 2.1 · 10−3) and GraphNet PCA (T = 4.6,
p = 1.0 · 10−2). Moreover, when assessing the stability of the
loading vectors across the folds, we found a higher statistically
significant mean Dice index in SPCA-TV compared to: Sparse
PCA (p = 4.0 · 10−3), ElasticNet PCA (p = 4.0 · 10−3) and
GraphNet PCA (p = 2.0 · 10−3) as presented in Tab. II. Addi-
tional details regarding the reconstruction accuracy on both the
train and test sets, and the Dice index, is presented in Figure
5 of supplementary materials (available in the supplementary
files /multimedia tab).

TABLE II: Scores of the fMRI data are averaged across the
5 folds. We tested whether the averaged scores obtained with
existing PCA methods are significantly different from scores
obtained with SPCA-TV. Significance notations: ***: p ≤
10−3, **: p ≤ 10−2

Scores

Methods Test Data Reconstruction Error Dice Index

Sparse PCA 1515.2*** 0.34**
ElasticNet PCA 1482.7** 0.32**
GraphNet PCA 1428.1** 0.58**
SPCA-TV 1414.0 0.63

In conclusion, SPCA-TV significantly outperforms Sparse,
ElasticNet and GraphNet PCA in terms of the reconstruction
error on independent test data, and in the sense that loading
vectors are both more clinically interpretable and more stable.

We also evaluated the convergence speed of Sparse PCA,
Mini-Batch Sparse PCA (a variant of Sparse PCA that is
faster but less accurate), ElasticNet PCA, GraphNet PCA
and SPCA-TV for this functional MRI data set of n = 83
samples and p = 63 966 features. We compared the time of
execution required for each algorithm to achieve a given level
of precision in Tab. III. Sparse PCA and ElasticNet PCA are
similar in terms of convergence time, while mini-batch sparse
PCA is much faster but does not converge to high precision. As
expected, structured methods (GraphNet PCA and SPCA-TV)
take longer than other sparse methods because of the inclusion

Sparse PCA
compon

ent 1
compon

ent 2
compon

ent 3
0

-12.3

-11.1
0

0
-10.5

compon
ent 1

compon
ent 2

compon
ent 3

-0.63
+0.63-0.73
+0.73

+4.80
0

SPCA - TV

Fig. 3: Loading vectors recovered from the 83 activation maps
using Sparse PCA and SPCA-TV.
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TABLE III: Comparison of the execution time required for
each sparse method to reach the same precision. Times re-
ported in seconds.

Time to reach a given precision in seconds

Methods 10 1 10−1 10−2 10−3

Mini-batch Sparse PCA 5.32 - - - -
Sparse PCA 158.0 231.2 344.3 386.8 450.1
ElasticNet PCA 123.7 138.1 302.7 396.4 406.3
GraphNet PCA 301.9 521.6 813.1 881.4 888.4
SPCA-TV 427.7 2958.6 8093.0 13813.4 14459.9

of spatial constraints. Especially, SPCA-TV is much longer
than other methods but the convergence time is still reasonable
for an fMRI data set with 65 000 voxels.

C. Surfaces meshes of cortical thickness in Alzheimer disease

Finally, SPCA-TV was applied to the whole brain anatomi-
cal MRI from the ADNI database, the Alzheimer’s Disease
Neuroimaging Initiative, (http://adni.loni.usc.edu/). The MR
scans are T1-weighted MR images acquired at 1.5 T according
to the ADNI acquisition protocol. We selected 133 patients
with a diagnosis of mild cognitive impairments (MCI) from
the ADNI database who converted to AD within two years
during the follow-up period. We used PCA to reveal patterns of
atrophy explaining the variability in this population. This could
provide indication of possible stratification of the population
into more homogeneous subgroups, that may be clinically
similar, but with different brain patterns. In order to demon-
strate the relevance of using SPCA-TV to reveal variability in
any kind of imaging data, we worked on meshes of cortical
thickness. The 317 379 features are the cortical thickness
values at each vertex of the cortical surface. Cortical thickness
represents a direct index of atrophy and thus is a potentially
powerful candidate to assist in the diagnosis of Alzheimer’s
disease ([3], [17]). Therefore, we hypothesized that applying
SPCA-TV to the ADNI data set would reveal important sources
of variability in cortical thickness measurements. Cortical
thickness measures were performed with the FreeSurfer image
analysis suite (Massachusetts General Hospital, Boston, MA,
USA), which is documented and freely available for download
online (http://surfer.nmr.mgh.harvard.edu/). The technical de-
tails of this procedure are described in [46], [13] and [2]. All
the cortical thickness maps were registered onto the FreeSurfer
common template (fsaverage).

We applied all PCA methods under study to this data set
except SSPCA. Indeed, we could not applied SSPCA method
to this data set due to some intrinsic limitations of the method.
SSPCA ’s application is restricted to N -dimensional array
images. It does not support meshes of cortical surfaces such
as the data set used here.

The loading vectors obtained from the data set with sparse
PCA and SPCA-TV are presented in Fig. 4. As expected,
Sparse PCA loadings are not easily interpretable because
the patterns are irregular and dispersed throughout the brain

surface. In contrast, SPCA-TV reveals structured and smooth
clusters in relevant regions.

The first loading vector, which maps the whole surface of
the brain, can be interpreted as the variability between patients,
resulting from a global cortical atrophy, as often observed in
AD patients. The second loading vector includes variability in
the entorhinal cortex, hippocampus and in temporal regions.
Last, the third loading vector might be related to the atrophy
of the frontal lobe and captures variability in the precuneus
too. Thus, SPCA-TV provides a smooth map that closely
matches the well-known brain regions involved in Alzheimer’s
disease.[22]

Indeed, it is well-documented that cortical atrophy pro-
gresses over three main stages in Alzheimer disease.([10],
[15]) The cortical structures are sequentially being affected
because of the accumulation of amyloid plaques. Cortical
atrophy is first observed, in the mild stage of the disease, in
regions surrounding the hippocampus ([26], [44], [47]) and
the enthorinal cortex ([12]), as seen in the second component.
This is consistent with early memory deficits. Then, the dis-
ease progresses to a moderate stage; where atrophy gradually
extends to the prefrontal association cortex as revealed in the
third component ([37]). In the severe stage of the disease, the
whole cortex is affected by atrophy ([15]) (as revealed in the
first component). In order to assess the clinical significance
of these weight maps; we tested the correlation between the
scores corresponding to the three components and performance
on a clinical test: ADAS. The Alzheimer’s Disease Assessment
Scale-Cognitive subscale, is the most widely used general
cognitive measure in AD. ADAS is scored in terms of errors,
so a high score indicates poor performance. We obtained
significant correlations between ADAS test performance and
components ’scores in Fig. 5. r = −0.34, p = 4.2 · 10−11
for the first component, r = −0.26, p = 3.6 · 10−7 for the
second component and r = −0.35, p = 4.0 · 4.5−12 for the
third component) The same behavior is observable for all
three components: The ADAS score grows proportionately to
the level to which a patient is affected and to the severity
of atrophy he presents (in temporal pole, prefrontal region
and also globally). Conversely, controls subjects score low on
the ADAS metric and present low level of cortical atrophy.
Therefore, SPCA-TV provides us with clear biomarkers, that
are perfectly relevant to the scope of Alzheimer’s disease
progression.

The reconstruction error is significantly lower in SPCA-TV
than in Sparse PCA (T = 12.7, p = 2.1 · 10−4), ElasticNet
PCA (T = 6.8, p = 2.3 ·10−3) and GraphNet PCA (T = 2.83,
p = 4.7·10−2). The results are presented in Tab. IV. Moreover,
when assessing the stability of the loading vectors across the
folds, the mean Dice index is significantly higher in SPCA-
TV than in other methods. Additional details regarding the
reconstruction accuracy on both the train and test sets, and the
Dice index, is presented in Figure 7 of supplementary materials
(available in the supplementary files /multimedia tab).

IV. CONCLUSION

We proposed an extension of Sparse PCA that takes into
account the spatial structure of the data. The optimization

http://adni.loni.usc.edu/
http://surfer.nmr.mgh.harvard.edu/
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TABLE IV: Scores are averaged across the 5 folds. We tested
whether the averaged scores obtained with existing PCA meth-
ods are significantly lower from scores obtained with SPCA-
TV. Significance notations: ***: p ≤ 10−3, **: p ≤ 10−2,
*: p ≤ 10−1.

Scores

Methods Test Data Reconstruction Error Dice Index

Sparse PCA 2991.8*** 0.44**
ElasticNet PCA 2832.6** 0.43**
GraphNet PCA 2813.6* 0.62*
SPCA-TV 2795.0 0.65

scheme is able to minimize any combination of the `1, `2,
and TV penalties while preserving the exact `1 penalty. We
observe that SPCA-TV, in contrast to other existing sparse
PCA methods, yields clinically interpretable results and reveals
major sources of variability in data, by highlighting structured
clusters of interest in the loading vectors. Furthermore, SPCA-
TV ’s loading vectors were more stable across the learning
samples compared to other methods. SPCA-TV was validated
and its applicability was demonstrated on three distinct data
sets: we may reach the conclusion that SPCA-TV can be used
on any kind of structured configurations, and is able to present
structure within the data.
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Fig. 4: Loading vectors recovered from the 133 MCI patients
using Sparse PCA and SPCA-TV.

SUPPLEMENTARY MATERIAL

a) The ParsimonY Python library:
• Url: https://github.com/neurospin/pylearn-parsimony
• Description: ParsimonY is Python library for structured

and sparse machine learning. ParsimonY is open-source
(BSD License) and compliant with scikit-learn API.

b) Data sets and scripts:
• Url: ftp://ftp.cea.fr//pub/unati/brainomics/papers/pcatv
• Description: This url provides the simulation data set

and the Python script used to create Fig.2 for the paper.
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