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Abstract We derive hydrodynamic equations from Vicsek-style dry active mat-
ter models in three dimensions (3D), building on our experience on the 2D case
using the Boltzmann-Ginzburg-Landau approach. The hydrodynamic equations
are obtained from a Boltzmann equation expressed in terms of an expansion in
spherical harmonics. All their transport coefficients are given with explicit depen-
dences on particle-level parameters. The linear stability analysis of their spatially-
homogeneous solutions is presented. While the equations derived for the polar case
(original Vicsek model with ferromagnetic alignment) and their solutions do not
differ much from their 2D counterparts, the active nematics case exhibits remark-
able differences: we find a true discontinuous transition to order with a bistability
region, and cholesteric solutions whose stability we discuss.
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1 Introduction

For about twenty years now, active matter has attracted much attention from the
soft matter and statistical physics communities [1,2]. This field refers to assemblies
of agents capable of producing systematic motion by consuming the energy present
in their environment. Many examples of active units can be found within living
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systems, ranging from animal groups [3,4,5] to bacteria, cells [6,7,8], and in vitro

mixtures of biofilaments and motor proteins [9,10,11]. But today many man-made
active matter systems have been designed and studied such as motile colloids
[12,13], artificial microswimmers [14], or vertically-shaken granular particles [15,
16]. These two decades of work have revealed, beyond the intrinsic interest to
biology, the emergence of new physics such as generic long-range correlations and
anomalous fluctuations arising from short-range interactions, the possibility of
long-range orientational order in 2D, and that of phase separation in the absence
of explicit attractive interactions.

All active particles evolve surrounded by a fluid. This fluid, though, can be
safely neglected in a number of situations such as granular particles. This “dry
limit” is anyway worth studying because it is typically simpler. Arguably the sim-
plest models of dry active matter dominated by alignment interactions are Vicsek-
style models designed after the 1995 seminal work of Vicsek et al.[17]. Vicsek-style
models consist in constant-speed point-like particles that, in the presence of noise,
align their velocity with that of neighbors. The original Vicsek model consists of
polar particles aligning ferromagnetically and is a member of the “polar” class for
which global polar order can emerge. Particles aligning nematically (i.e. roughly
anti-aligning when incoming at obtuse angle), on the other hand, give rise to global
nematic order, and are customarily divided into two classes depending on whether
they have a finite velocity reversal rate (active nematics) or not (“self-propelled
rods”). Although the Vicsek framework may seem too restrictive, it has allowed
to study in depth many of the fascinating properties of dry aligning active matter
[18,19,20,21]. In particular, work in 2D at both levels of microscopic simulations
and hydrodynamic equations has revealed that the transition of orientational or-
der is best described as a phase separation scenario between a disordered gas and
an ordered fluid, so that there is usually no direct transition to order due to the
presence of a coexistence phase where dense ordered structures evolve in the gas
(Fig. 1)[20,21,22,23].

Fig. 1 The central panel shows the schematic phase diagram of Vicsek-style models in two
dimensions. All classes (polar, active nematics, rods) show a disordered gas phase at low
densities and large noise, a (quasi)-ordered liquid phase for large densities and low noise, and
a coexistence phase in between them. Left panel: snapshot of the coarse-grained density field
in the coexistence phase of the polar class. Here two parallel high-density high-order bands
travel from left to right above a residual disorder gas. Right panel: same as left panel but in
the active nematics class. Here the nematic order is along the band. Such nematic bands do
not travel ballistically as in the polar class, but they are known to be linearly unstable, so that
the coexistence phase consists in a spatiotemporal chaos of bands.
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Field theories describing the evolution of the slow modes of the dynamics in
these models were first written on the basis of symmetry arguments [24,25,26,
27,28]. Such a phenomenological approach can succeed in capturing the large-
scale behavior of active matter systems, but is strongly impaired by the lack of
connection between the parameters governing the microscopic dynamics and the
(typically) many transport coefficients present at the hydrodynamic level.

Several direct coarse-graining approaches have been proposed to derive hy-
drodynamic equations from simple microscopic models, which allows to keep a
connection with microscopic-level parameters at hydrodynamic level. They have
been successful in 2D, allowing, in the best cases, to recover at hydrodynamic level
the phase diagram determined at particle level[29,30,31,32,33,34,35,36,37]. They
are usually based on a kinetic equation for the single particle distribution, which
is expressed in terms of Fourier angular modes and then truncated and closed.
Among them, the “Boltzmann-Ginzburg-Landau” (BGL) framework [38] is now
known to allow for a controlled derivation of well-behaved nonlinear hydrodynamic
equations. In particular, the BGL approach is able to reproduce qualitatively the
microscopic phase diagrams of Vicsek-style models, and provides a simple theo-
retical understanding of the phase-separation scenario [21,34,39,40,41].

Again, the above successes were all obtained in 2D. Not much is known in 3D.
In particular, the connection between the microscopic and hydrodynamic levels
remains essentially unexplored. In this paper, we apply the BGL formalism in
three dimensions in order to derive hydrodynamic equations for the basic classes of
dry aligning active matter, starting from Vicsek-style models. We study the linear
stability of the spatially-homogeneous solutions to these equations. All results are
compared to the 2D case.

In Section 2 we define the microscopic models that we use as a starting point.
Section 3 introduces the general framework for the BGL approach in three dimen-
sions. In 3.1 we build the Boltzmann equation for the single particle distribution
starting from the microscopic dynamics. The decomposition of this distribution in
terms of spherical harmonics and the connections to physical fields is presented
in 3.2. The expression of the Boltzmann equation in terms of spherical harmonics is
given in 3.4. Sections 4 and 5 are dedicated to the derivation of the hydrodynamic
equations and the linear stability analysis of their homogeneous solutions for, re-
spectively, systems with ferromagnetic and nematic alignment. A brief discussion
of our results and an outlook of future work can be found in Section 6.

2 Microscopic models

Vicsek-style models consist of N pointlike particles moving at a constant speed v0

in a periodic domain of volume V. The only interaction, competing with noise, is
the local alignment of particle velocities. Here velocity and position of particle i
are updated at discrete time steps following:

vi(t+ 1) = (Rη ◦ ϑ) 〈v(t)〉i (1)

ri(t+ 1) = ri(t) + ε(t)vi(t+ 1) , (2)

where ϑ is an operator returning unit vectors (ϑ(u) = u/‖u‖), and Rηv rotates
the vector v by a random angle drawn from a uniform distribution inside the
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cap of surface 2π(1 − cos(η)) (an arc of length 2πη in 2D) centered on v. In the
polar and rods cases, ε = 1, while in the active nematics case where velocity
reversals occur, ε = ±1 and changes sign with probability α. Finally, 〈·〉i stands
for the (equal-weight) average of the polarities of all particles present in the local
neighborhood of particle i (including i itself), ∂i, defined in 3D (2D) by the sphere
(disk) of radius r0 centered on ri. Particles interacting ferromagnetically align
their polarities while nematic symmetry involves anti-alignment of polarities that
initially point in opposite directions:

〈v(t)〉fi =
∑
j∈∂i

vj(t) ; 〈v(t)〉ni =
∑
j∈∂i

sign[vi(t) · vj(t)]vj(t) . (3)

It is now well-known that the main parameters of these models are the global
number density ρ0 = N/V and the noise strength η, while the speed of particles v0

and the reversal rate α play only minor roles. As already shown previously [35], r0
and v0 can be set to unity at the kinetic level, and thus also at hydrodynamic level.
Anticipating our results, we will confirm that in 3D also, the reversal rate α has no
qualitative influence (at least at the deterministic, linear level considered below),
leaving us with the usual two main parameters ρ0 and η. In this parameter plane,
the phase diagrams of these models for the 2D case all take the form depicted
in Fig. 1. In the polar case (ferromagnetic alignment and no velocity reversals),
the liquid phase has true long-range polar order, and the coexistence phase is a
smectic arrangement of dense, ordered, traveling bands moving in a disordered gas
(left panel of Fig. 1). With nematic alignment, the liquid shows global nematic
order (quasi-long-range for active nematics and possibly truly long-range for rods),
and a spatiotemporal chaos of dense, ordered, nematic bands is observed in the
coexistence phase (right panel of Fig. 1) [20,21,22,34,41].

3 Boltzmann-Ginzburg-Landau approach in 3 dimensions

In this section we describe the implementation of the Boltzmann-Ginburg-Landau
(BGL) approach in three dimensions. The path followed is the same as in two di-
mensions, and was described in detail in [38]. The aim is to derive hydrodynamic
equations from microscopic models of dry aligning active matter, keeping track of
the particle-level parameters in the transport coefficients. The starting point is a
Boltzmann equation, considered a good approximation in the dilute regime, al-
though the results obtained in two dimensions have proven to remain qualitatively
good even at high densities as long as steric interactions do not become domi-
nant. The Boltzmann equation governs a one-body density. Expanding it in term
of spherical harmonics modes of the orientations, a hierarchy of field equations is
obtained. A scaling ansatz valid near the onset of orientational order is then used
to truncate and close this hierarchy, keeping only the slow modes.

3.1 Building blocks of the Boltzmann equation

The easiest way to transform the microscopic model in a time-continuous model
is to consider that the tumbling events, given by the angular noise, become prob-
abilistic with a time rate λ ∼ 1

∆t = 1. This preserves the statistical properties
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of the angular noise of the microscopic model. Therefore, a particle experiences a
random variation of its direction of motion, drawn from a distribution of width σ

that plays the role of the microscopic angular noise strength η.
In the dilute limit and assuming the molecular chaos hypothesis [42], the evolu-

tion of the system can be reduced to the study of the evolution of the coarse-grained
single particle distribution function f(r,v, t), which counts the density of particles
in a phase space domain of mesoscopic dimensions centered on (r,v) where r is the
spatial location of the particles and v = v0e is their velocity, with e a unit vector.
The dynamics of f(r,v, t) is governed by the generic Boltzmann equation [38]

∂tf(r,v, t) + v̄ e ·∇f(r,v, t) = D0∆f(r,v, t) +D1qαβ∂α∂βf(r,v, t)

−a [f(r,v, t)− f(r,−v, t)] + Isd[f ] + Icol[f ] , (4)

where ∇ = (∂x, ∂y, ∂z).
The first line of equation (4) is the general form of the free motion contribution,

which we derive in detail now [38]. In the case of polar particles, or when velocity
reversals occur on timescales larger than the ones resolved by the Boltzmann
equation, we trivially have v̄ = v0 and D0 = D1 = 0. On the other hand if the
reversal rate of velocities is sent to infinity the free motion of particles is apolar
at the kinetic level. In that case particles update their positions with a random
displacement ṽ∆t drawn from the distribution

Φ(ṽ − v0e) =
1

2

[
δ(3)(ṽ − v0e) + δ(3)(ṽ + v0e)

]
. (5)

The corresponding evolution of f can then be computed from Itô calculus to second
order and reads

∂tf(r,v, t) =
v2
0∆t

6

(
∆f(r,v, t) + 3qαβ∂α∂βf(r,v, t)

)
, (6)

where qαβ = eαeβ − δαβ/3 and summation over repeated indices is assumed. We
thus obtain the free transport terms in (4) with v̄ = 0, D0 = v2

0∆t/6 and D1 = 3D0.
We note that these relations only hold for simple Vicsek-style dynamics while in
more complicated cases v̄, D0 and D1 can be different. However as we will see in
the following v̄ can be eliminated by nondimensionalizing the Boltzmann equation
and the diffusion coefficients do not affect qualitatively the results, therefore and
for simplicity we focus this work on simple Vicsek-like models.

The second line of equation (4) regroups terms that account for the dynamics
of velocities. From left to right we find an exchange term that models reversal of
v at a finite (small) rate a and the integrals describing angular self diffusion of
velocities and collision events.

The integrals Isd and Icol depend on the microscopic model as well. The micro-
scopic dynamics can be described in terms of rotations of the direction of motion of
the particles. Rotation transformations in three dimensions belong to the SO(3)
group, which can be parameterized by the three Euler’s angles. Rotations of a
generic vector v are thus obtained by

v′ = R(α, θ, ψ)v = Rz(ψ)Ry(θ)Rz(α)v , (7)

where Ri(ϕ) represents a rotation around the i axis of an angle ϕ and α, θ, ψ are
the Euler’s angles. Any velocity vector can be obtained from rotations of the north
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pole ez, which is the unit vector pointing along the z axis. Such a rotation is only
given by the two zenith and azimuthal angles (θ, ψ) (position on the unit sphere,
0 ≤ θ ≤ π, 0 ≤ ψ < 2π) since the north pole is invariant under rotations around
the z axis. In order to lighten the notations we define the two angles as Ω = (θ, ψ),
and a velocity vector is represented by

v(Ω) = v0e(Ω) = v0R(Ω)ez . (8)

In order to map the action of the microscopic angular noise in the self-diffusion
integral Isd[f ] we consider tumbling events that are rotations of the velocity of a
particle. We define the angular noise operator as

PΛv(Ω) = R(Ω)R(Λ)R−1(Ω)v(Ω) = v0R(Ω)R(Λ)ez , (9)

where the couple of angles Λ is drawn from a probability distribution Psd(Λ). The
noise operator first rotates the velocity direction to a reference direction ez, then
it adds the noise in the form of a rotation and finally it rotates back the vector.
This way of applying the noise was chosen so that Psd does not depend on the
current orientation Ω. The self-diffusion operator is then given by the sum of a
loss and a gain terms

Isd[f ] = −λf(Ω) + λ

∫
dΩ′

∫
dΛPsd(Λ)f(Ω′)δ(3) (v(Ω)− PΛv(Ω′)

)
= −λf(Ω) + λ

∫
dΩ′f(Ω′)Psd(Arg[R−1(Ω′)R(Ω)ez])

= −λf(Ω) + λ(f ∗ Psd)(Ω) , (10)

where
∫
dΩ stands for

∫ π
0

sin(θ)dθ
∫ 2π
0

dφ. The short notation f(Ω) stands for
f(r,v(Ω)) where we have hidden the spatial dependency in order to lighten the
notations. The Arg function returns the couple of angles defining the direction of a
vector on the unit sphere, thus Arg[e(Ω)] = Ω . The gain term of the self-diffusion
corresponds to a kind of angular convolution1 [43,44] between the distribution
function f and the noise probability Psd.

The collision integral is also the sum of a loss and a gain terms, considering the
two processes by which the direction of motion of a reference particle can move
away from or reach Ω during a two-body collision

Icol[f ] = −Icol,loss[f ] + Icol,gain[f ] . (11)

The loss part of the integral counts all the collisions of a reference particle moving
initially along the direction Ω with the other particles at distance r0 and moving
in a direction parameterized by Ω′

Icol,loss[f ] = f(Ω)

∫
dΩ′f(Ω′)K(Ω,Ω′) , (12)

1 In our notation using both rotations and angles, the convolution operation between two
functions A(Ω), B(Ω) corresponds to (A ∗ B)(Ω) =

∫
dΩ1A(Ω1)B(Arg[R−1(Ω1)R(Ω)ez ])

where ez is the north pole. In 2 dimensions it correspond to the usual convolution opera-
tor because Arg[R−1(Ω1)R(Ω)ez ] = θ − θ1.
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where the function K(Ω,Ω′) is the collision kernel that measures the frequency of
collisions. The gain part of the integral, on the contrary, counts all the collisions
after which the reference particle aligns its motion along the direction Ω

Icol,gain[f ] =

∫
dΩ1

∫
dΩ2

∫
dΛPcol(Λ)f(Ω1)f(Ω2)K(Ω1, Ω2)×

δ(3) ([R(Ω)− PΛR(Ψ(Ω1, Ω2))] ez) . (13)

The function Ψ(Ω1, Ω2) returns the direction of the post collision state of the two
aligned particles and Pcol is the probability distribution of the collisional noise.

The collision integral varies with the symmetries of the microscopic dynamics
that define the different classes. First of all, the kernel is proportional to the relative
velocity between the two colliding particles, and depends on how the two particles
approach each other in the microscopic free motion. In the propagative cases with
polar particles not reversing their velocity, such as in the standard Vicsek and
rods models, the kernel reads Kp(Ω1, Ω2) = πr20v0|(R(Ω1)−R(Ω2))ez |. Thanks to
its invariance under global rotations it depends only on the relative zenith angle
between the particles

Kp(Ω1, Ω2) = πr20v0

∣∣(Id−R(Ω̄))ez
∣∣ = K̃p(Ω̄) = 2πr20v0

∣∣∣∣sin( θ̄2
)∣∣∣∣ , (14)

where R(Ω̄) = R−1(Ω1)R(Ω2). Conversely, when particles reverse their velocity at
some finite rate (e.g. in active nematics), they locally diffuse and the same collision
cannot discriminate if the colliding particle comes from the front or from the back.
In this case the collisional kernel reads

Ka(Ω1, Ω2) ∼ |e1 − e2|+ |e1 + e2| , (15)

since the particles move forward or backward to their velocity director with equal
probability. In the reference frame of the particle 1, the kernel for apolar particles
reads

K̃a(Ω̄) = πr20v0

(∣∣∣∣sin( θ̄2
)∣∣∣∣+ ∣∣∣∣cos

(
θ̄

2

)∣∣∣∣) , (16)

where θ̄ is the relative zenith angle defining the orientation of the particle 2 with
respect to 1.

The post collisional state of the particles is encoded in the function Ψ that
depends on the alignment rules. In the case of polar (ferromagnetic) alignment
the function Ψ(Ω1, Ω2) returns the mean direction between R(Ω1)ez and R(Ω2)ez.
Using the rotation properties of Ψ , the alignment rule is

R (Ψ(Ω1, Ω2)) = R(Ω1)R
(
Ψ̃(Ω̄)

)
, (17)

where the aligned angle for ferromagnetic alignment is

Ψ̃f(Ω) =

(
θ

2
, ψ

)
. (18)

It corresponds to the mean direction of the colliding particles in the reference
frame of the vector v(Ω1). In the case of nematic alignment the post collisional
direction is

Ψ̃n(Ω) =

(
θ

2
+ h(θ), ψ

)
with

{
h(θ) = 0 if 0 ≤ θ ≤ π

2

h(θ) = π
2 if π2 < θ ≤ π (19)
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which is polar alignment at small relative angles and anti-alignment when the
relative angle between the particles is larger than π

2 .
In order to simplify the derivation of the hydrodynamic equations we con-

sider that the distributions of the angular noise in the self-diffusion and collision
processes are identical and that they are isotropic with respect to the azimuthal
angle

Psd(Ω) = Pcol(Ω) = P (Ω) = P (θ) . (20)

The same symmetry is also present in the collision kernel K̃. Finally, we nondimen-
sionalize the Boltzmann equation by rescaling space, time and the homogeneous
density. This is equivalent to set the speed v̄ = v0 and the rate of angular self-
diffusion λ to unity without loss of generality (equivalently for apolar particles
v̄ = 0 and we set D0 to 1

3 ). The interaction radius r0 is eliminated defining the

nondimensional homogeneous density ρ̃0 =
2πr20v0
λ ρ0 (we remove the tilde in the

following). We are left with only three free parameters: the nondimensional homo-
geneous density ρ0, the noise strength σ and the nondimensional velocity reversal
rate a.

3.2 Generalities on spherical harmonics

In the following we manipulate functions (distributions) that depend on the two an-
gles parameterizing the velocity (while the speed is kept constant). This motivates
us to decompose the distribution using Laplace’s spherical harmonics (SH) [45]

f(θ, ψ) =
∞∑
l=0

l∑
m=−l

f̂ lmY
m
l (θ, ψ) =

∞∑
l=0

l∑
m=−l

f̂ lmY
m
l (Ω) ,

f̂ lm =

∫ π

0

sin(θ)dθ

∫ 2π

0

dψYm
∗

l (θ, ψ)f(θ, ψ) =

∫
dΩYm

∗

l (Ω)f(Ω) ,

(21)

where f̂ lm are called hereafter the modes of the SH decomposition of the function
f(Ω), or shortly the modes. The functions Yml are the spherical harmonics. They
are defined by

Yml (θ, ψ) = Aml L
m
l (cos(θ))eımψ , (22)

where Aml =
√

(2l+1)(l−m)!
4π(l+m)! is a normalization constant and Lml is the associated

Legendre polynomial of degree l and order m defined by:

Lml (x) =
(−1)m

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l . (23)

From this definition and after lengthy but straightforward algebra we obtain the
following useful recurrence relations

xLml (x) =
1

2l + 1
((l −m+ 1)Lml+1(x) + (l +m)Lml−1(x)) (24a)√

1− x2Lml (x) =
1

2l + 1

(
(l −m+ 1)(l −m+ 2)Lm−1

l+1 (x)

−(l +m− 1)(l +m)Lm−1
l−1 (x)

)
(24b)√

1− x2Lml (x) =
1

2l + 1

(
Lm+1
l−1 (x)− Lm+1

l+1 (x)
)
, (24c)
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for all l ≥ 0,−l ≤ m ≤ l and x ∈ [−1; 1].
As a natural basis of L2(S2), the spherical harmonics are an orthogonal and

normalized set: ∫
dΩ Ym1

l1
(Ω)Y

m∗2
l2

(Ω) = δl1l2δm1m2 . (25)

The SH decomposition of distributions (real, positive and normalizable functions)
induces relations between the modes. The reality of the distribution implies that

f̂ l−m = (−1)mf̂ l∗m . (26)

The positivity of the distribution implies a bound on the modes

|f̂ lm| ≤
∫
dΩ|Ym∗l (Ω)||f(Ω)| =

∫
dΩ|Ym∗l (Ω)|f(Ω) ≤ Aml

A0
0

f̂0
0 , (27)

since the associated Legendre polynomials are functions of cos(θ) and bounded to 1
in the window [−1 : 1]. This relation allows us to separate physical and unphysical
solutions, since all the modes must be smaller or equal to the zero mode times a
constant. 2

The rotation of a spherical harmonic of degree l is simply given by a linear
combination in terms of spherical harmonics of same degree. Denoting R(Ω′)ez =
R−1(α, θ, ψ)R(Ω)ez, with R(α, θ, ψ) defined in Eq. (7), we have

Yml (Ω′) =
l∑

m′=−l
Dlm′,m(α, θ, ψ)Ym

′

l (Ω) , (28)

where Dlm′,m(α, θ, ψ) = dlm′,m(θ) exp(−ımα − ım′ψ) are the Wigner D-matrices,
with

dlm′,m(θ) =
[
(l +m′)!(l −m′)!(l +m)!(l −m)!

] 1
2 ×∑

k

(−1)k
[
cos
(
θ
2

)]2l+m−m′−2k [
sin
(
θ
2

)]m′−m+2k

(l +m− k)!k!(m′ −m+ k)!(l −m′ − k)!
(29)

and the sum over k is taken such that the factorials are non negative. Note that
in the following we will consider only the case corresponding to α = 0 since we
deal with rotations of vectors on the sphere. We therefore introduce the notation
Dlm′,m(Ω) for Dlm′,m(0, θ, ψ), which are related to the spherical harmonics from

Dlm,0(Ω) =

√
4π

2l + 1
Ym

∗

l (Ω) , (30)

and follow the condition∫
dΩDl1m′1,m1

(Ω)Dl2m′2,m2
(Ω)D

l∗3
m′3,m1+m2

(Ω) =
4π

2l3 + 1
〈l1 l2m′1m′2|l3m′3〉 ×

〈l1 l2m1m2|l3m1 +m2〉 , (31)

with 〈l1 l2m1m2|l3m3〉 the Clebsch-Gordan coefficient [46] which is non zero only
if |l1 − l2| ≤ l3 ≤ l1 + l2 and m1 +m2 = m3.

2 The normalization condition means that the distribution f(r, θ, φ, t) is L1(R3 × S2) and
the SH decomposition requires the modes to be L2(R3) integrable.
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3.3 Relations between the spherical harmonics modes and the physical fields

We first define the decomposition of the useful observable fields we are interested
in. In order to accomplish this we simplify the notations considering the functions

ĝlm(r, t) ≡ f̂ lm(r, t)

Aml
. (32)

The density field is the zero mode

ρ(r, t) =
f̂0
0 (r, t)√

4π
= ĝ0

0(r, t) . (33)

The polar field as function of {ĝ1
m} reads

w(r, t) =

∫
dvf(r,v, t)v =

2<(ĝ1
−1)

2=(ĝ1
−1)

ĝ1
0

 (r, t) . (34)

Therefore when the global polar order points in the z direction, the scalar order
parameter is simply given by |ĝ1

0 |.
The nematic tensor q in terms of the director n is defined by

q(θ, φ) = e(θ, ψ)te(θ, ψ)− 1

3
I , (35)

with I the identity matrix. Note that this tensor is traceless and symmetric. Like
the polar field, q can be expressed in term of the spherical harmonics of order
l = 2. Thus the nematic order parameter is related to the {ĝ2

m} modes by

Q =

∫
dΩ q(Ω)f(Ω) = 2

2<(ĝ2
−2)− 1

6 ĝ
2
0 2=(ĝ2

−2) <(ĝ2
−1)

2=(ĝ2
−2) −2<(ĝ2

−2)− 1
6 ĝ

2
0 =(ĝ2

−1)
<(ĝ2
−1) =(ĝ2

−1) 1
3 ĝ

2
0

 . (36)

The scalar nematic order parameter is usually defined as the largest eigenvalue (in
absolute value) of the tensor Q [47]. In the reference frame where the nematic order
lies along the z direction, Q is diagonal and the scalar nematic order parameter is
given by ĝ2

0 .

3.4 Spherical harmonics decomposition of the Boltzmann equation

Using the SH decomposition (21), the advection part of the free transport operator,
−e(Ω) ·∇, can be recast into the following form

− e(Ω) ·∇ =

√
2π

3

[
Y 1

1 (Ω)∇∗ − Y −1
1 (Ω)∇−

√
2Y 0

1 (Ω)∂z
]
, (37)

where ∇ = ∂x + ı∂y and ∇∗ = ∂x − ı∂y. The decomposition of the corresponding
term in the Boltzmann equation reads

T lm
[{
ĝlm

}]
≡ − 1

Aml

∫
dΩ Ym

∗

l (Ω)e(Ω) ·∇f(Ω) =
1

2(2l + 1)
∇
[
ĝl+1
m+1 − ĝ

l−1
m+1

]
+

1

2(2l + 1)
∇∗
[
(l +m− 1)(l +m)ĝl−1

m−1 − (l −m+ 1)(l −m+ 2)ĝl+1
m−1

]
− 1

2l + 1
∂z

[
(l −m+ 1)ĝl+1

m + (l +m)ĝl−1
m

]
, (38)



Deriving hydrodynamic equations from dry active matter models in 3D 11

which follows from the recurrence relations (24) between associated Legendre poly-
nomials.

The Laplacian operator is isotropic and thus commutes with the SH decom-
position. On the contrary, the term associated to the anisotropic spatial diffusion
operator, qαβ∂α∂β , is transformed into

Dlm
[{
ĝlm

}]
≡ 1

Aml

∫
dΩ Ym

∗

l (Ω)qαβ(Ω)∂α∂βf(Ω) =

[
1

(2l + 1)(2l + 3)
×(

(l −m+ 4)!

4(l −m)!
∇∗

2

ĝl+2
m−2 +

(l −m+ 3)!

(l −m)!
∂z∇∗ĝl+2

m−1 +
(l −m+ 2)!

2(l −m)!
�ĝl+2

m

−(l −m+ 1)∂z∇ĝl+2
m+1 +

1

4
∇2ĝl+2

m+2

)
− 1

(2l − 1)(2l + 3)

(
(l −m+ 2)!(l +m)!

2(l −m)!(l +m− 2)!
∇∗

2

ĝlm−2 −
l2 + l − 3m2

3
�ĝlm

+(2m− 1)(l −m+ 1)(l +m)∂z∇∗ĝlm−1 + (2m+ 1)∂z∇ĝlm+1 +
1

2
∇2ĝlm+2

)
+

1

(2l + 1)(2l − 1)

(
(l +m)!

4(l +m− 4)!
∇∗

2

ĝl−2
m−2 −

(l +m)!

(l +m− 3)!
∂z∇∗ĝl−2

m−1

+
(l +m)!

2(l +m− 2)!
�ĝl−2

m + (l +m)∂z∇ĝl−2
m+1 +

1

4
∇2ĝl−2

m+2

)]
, (39)

where � = 2∂2
zz − ∂2

xx − ∂2
yy.

Considering l = 0 we get the continuity equation

∂tρ = −
[
2<(∇∗ĝ1

−1) + ∂z ĝ
1
0

]
+D0∆ρ+D1

[
4<
(
∇∗

2

ĝ2
−2

)
+ 4<

(
∂z∇∗ĝ2

−1

)
+

1

3
�ĝ2

0

]
, (40)

which exhibits similar terms as in 2D: if the dynamics of particles is propagative
the density will be advected by the polar field as pointed out on the first line.
On the other hand the terms in the second line reflect a diffusive dynamics with
isotropic spatial diffusion of the density and advection by the curvature induced
current generated by the nematic field.

The SH decomposition of the velocity reversal term is straightforward knowing
how spherical harmonics transform under parity: Yml (Ω)→ Yml (ΠΩ) = (−1)lYml (Ω)
with ΠΩ = (π − θ, ψ + π). This relation yields

− a

Aml

∫
dΩ Ym

∗

l (Ω) (f(Ω)− f(ΠΩ)) = −a
(

1− (−1)l
)
ĝlm . (41)

The angular self-diffusion operator, defined in (10), can be seen as a convo-
lution between the distribution and the noise probability. Therefore as in the 2
dimensional case, the SH decomposition of the self-diffusion term of the Boltzmann
equation is simply given by the multiplication of the two modes of the convoluted
functions.

1

Aml

∫
dΩYm

∗

l (Ω)Isd[f ] = −ĝlm +

√
4π

2l + 1
P̂ l0ĝ

l
m = −ĝlm + P̃ l0ĝ

l
m , (42)
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where P̃ l0 = P̂ l0/A
0
l and P̂ l0 is the SH mode of degree l of the noise distribution (20).

Note that from the symmetry of P its modes are different from 0 only for m = 0.
We now turn to the spherical harmonics decomposition of the collision gain

term (13). In the following and for simplicity we will use a slight abuse of notations
and denote by R(Ω1)Ω2 the orientation of the vector given by R(Ω1)R(Ω2)ez.
Using the rotational symmetry properties of the kernel and alignment rule (14)
and (17), with Ω̄ = R−1(Ω1)Ω2, the collision integral reads

Icol,gain[f ] =

∫
dΩ1

∫
dΩ̄ P

(
R−1

(
Ψ̃(Ω̄)

)
R−1(Ω1)Ω

)
f(Ω1)f(R(Ω1)Ω̄)K̃(Ω̄) .(43)

Expanding the distributions in spherical harmonics modes, with the rotation iden-
tity (28) and the axial symmetry of P (20), gives

1

Aml

∫
dΩ Ym

∗

l (Ω)Icol,gain[f ] =
1

Aml

∑
l1,m1

Am1

l1
ĝl1m1

∑
l2,m2

Am2

l2
ĝl2m2

∑
l3

P̂ l30 ×

∑
m′2,m

′
3,m
′′
3

∫
dΩ Ym

∗

l (Ω)Y
m′′3
l3

(Ω)×

∫
dΩ1Y

m1

l1
(Ω1)D

l∗2
m2,m′2

(Ω1)Dl3m′′3 ,m′3
(Ω1)×∫

dΩ̄ Y
m′2
l2

(Ω̄)Dl3m′3,0

(
Ψ̃(Ω̄)

)
K̃(Ω̄) , (44)

where
∑
l,m is the shortened form of

∑∞
l=0

∑l
m=−l and the sum over integers m

with index i are taken between −li and li. We now make use of the orthogonal-
ity relation (25) and the identity (31) together with the correspondence between
spherical harmonics and Wigner D-matrices (30), this yields

1

Aml

∫
dΩ Ym

∗

l (Ω)Icol,gain[f ] =
P̂ l0
A0
l

∑
l1,m1

∑
l2,m2

Am1

l1
Am2

l2

Aml

√
2l1 + 1

2l + 1
〈l1 l2m1m2|l m〉 × Min(l,l2)∑

m′2=−Min(l,l2)

K̃l2,l
m′2
〈l1 l2 0m′2|l m′2〉

 ĝl1m1
ĝl2m2

, (45)

where, from the properties of the Clebsch-Gordan coefficients, the sum over l2 is
now taken between |l − l1| and l + l1, and

K̃l1,l2
m2

=

√
4π

2l2 + 1

∫
dΩ̄ Ym2

l1
(Ω̄)Y

m∗2
l2

(
Ψ̃(Ω̄)

)
. (46)

Note that the decomposition of the angular self diffusion integral (42) can be
obtained using the same properties of spherical harmonics as the ones that have
been employed for this calculation. After computation of the SH decomposition
of the loss part of the collision integral, which follows straightforwardly from this
derivation and is thus not detailed here, the decomposition of the full collision
term reads

1

Aml

∫
dΩ Ym

∗

l (Ω)Icol[f ] =
∑
l1,m1

l+l1∑
l2=|l−l1|,m2

J l,l1,l2m,m1,m2
ĝl1m1

ĝl2m2
, (47)
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where
J l,l1,l2m,m1,m2

= P̃ l0J̃
l,l1,l2
m,m1,m2

− Ĩ l,l1,l2m,m1,m2
, (48)

and

J̃ l,l1,l2m,m1,m2
=
Am1

l1
Am2

l2

Aml

√
2l1 + 1

2l + 1
〈l1 l2m1m2|l m〉δm,m1+m2 × Min(l2,l)∑

m′2=−Min(l2,l)

K̃l2,l
m′2
〈l1 l2 0m′2|l m′2〉

 ,
Ĩ l,l1,l2m,m1,m2

=
Am1

l1
Am2

l2

Aml

√
2l1 + 1

2l + 1
K̂l2

0 〈l1 l2m1m2|l m〉〈l1 l2 0 0|l 0〉 .

The function K̂l
m is the SH decomposition of the collision kernel and it is zero

∀m 6= 0 thanks to the global rotation invariance of the system.
Collecting all the SH transformed terms of the kinetic equation we obtain the

mode decomposition of the 3 dimensional Boltzmann equation (4)

∂tg
l
m = T lm

[{
glm

}]
+D0∆g

l
m +D1Dlm

[{
glm

}]
− a

(
1 + (−1)l

)
glm

+
[
P l0 − 1

]
glm +

∑
l1,m1

l+l1∑
l2=|l−l1|,m2

J l,l1,l2m,m1,m2
gl1m1

gl2m2
, (49)

where we have removed the hats and tildes in order to simplify the notations.
Although this computation holds for any axisymmetric noise distribution, nu-

merical evaluations of the coefficients of the hydrodynamic equations derived in
the following have been done using Gaussian weights P l0 = exp(−l2σ2/2). We have
checked that results that are presented are not qualitatively influenced by the
precise form of the distribution.

4 Hydrodynamic equations for ferromagnetic alignment

In this section we derive hydrodynamic equations for particles which align their
velocities in a ferromagnetic way. In the restricted Vicsek framework, this symme-
try of the interaction requires the particles to exhibit polar free motion in order
to be able to generate spontaneous order. Therefore, we only consider Vicsek-like
particles moving at constant speed with no velocity reversal.

4.1 Derivation of the hydrodynamic equations

As argued in Sec. 3.1, the Boltzmann equation does not show any spatial diffusion
nor velocity reversal term:

∂tg
l
m = T lm

[{
glm

}]
+
[
P l0 − 1

]
glm +

∑
l1,m1

l+l1∑
l2=|l−l1|,m2

J l,l1,l2m,m1,m2
gl1m1

gl2m2
. (50)

The system of equations (50) exhibits a trivial solution: the homogeneous disor-
dered (HD) solution, existing for any value of the microscopic parameters (ρ0, σ).
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2D
3D

σ

0
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0.4

0.6

0.8

1

ρ0

0 2 4 6 8 10

Fig. 2 Linear stability limit of the homogeneous disordered solution in the density-noise plane
for the polar class. The transition line given by µ1 = 0, the stable region is above. The black
and red lines, below which the disordered solution is unstable to homogeneous perturbations,
correspond respectively to the 2D and 3D cases.

For this solution the zero mode is equal to the homogeneous density: g0
0 = ρ0, and

all the other modes vanish: glm = 0 for all l > 0 and m. Linearizing the Boltzmann
hierarchy (50) around the HD state with respect to homogeneous perturbations
(space independent), the modes evolve as

g0
0 = ρ = ρ0 + δρ, glm = δglm ∀l > 0, (51a)

∂tδg
l
m =

[(
P l0 − 1

)
+
(
J l,0,lm,0,m + J l,l,0m,m,0

)
ρ0

]
δglm, (51b)

≡ µlm[ρ0]δglm, (51c)

where the linear coefficients µlm are given by

µlm[ρ0] = P l0 − 1 +
ρ0√
4π

P l0
 1√

2l + 1

l∑
m′=−l

K̃l,l
m′ + K̃0,l

0

− K̂l
0√

2l + 1
− K̂0

0

 .

(52)
Note that, as a consequence of global rotational invariance, they do not depend
on the index m, which we omit in the following. The HD state is linearly stable
when all the linear coefficients µl are negative, while the physical field associated
to gl grows when µl becomes positive. For l = 0, 1, 2 the coefficients are

µ0 = 0 , (53a)

µ1 = (P 1
0 − 1) +

(
π

4
P 1

0 −
8

15

)
ρ0 , (53b)

µ2 = (P 2
0 − 1) +

(
2

15
P 2

0 −
68

105

)
ρ0 (≤ 0) . (53c)

The linear coefficient µ1 associated to the polar field becomes positive at large
densities ρ0 and small angular noise strength σ. Figure 2 shows the line σt(ρ0) along
which the coefficient µ1 = 0 in the (ρ0, σ) plane, comparing the 2 dimensional [31]
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Fig. 3 Numerical evaluation of the homogeneous ordered solution of the Boltzmann equation
for the polar class truncating the hierarchy at the 10th mode (density ρ0 = 1). The solid black
line indicates the first mode |g1

0 |, saturating at a finite value. The dashed red and dashed-
dotted blue lines correspond respectively to the second and third modes. The next modes from
l = 4 to l = 9 are shown with grey lines. The inset shows the scaling between ∼ |g1

0 |2, |g2
0 | and

∼ |g3
0 |

2
3 close to the transition point.

and the 3 dimensional results. The HD state is stable above this line. Below, the
Boltzmann equation possesses another homogeneous solution with polar order that
we call the homogeneous ordered (HO) state. We checked until l = 10 that the
linear coefficients µl are more and more negative with l. We assume that for larger
values of l they do the same.

From the global rotational invariance of the system we can choose the refer-
ence frame such that the global polar order is along the z axis. In Section 3.3
we have shown that this comes down to set the g1

m fields to 0 for any m 6= 0.
Then from the property of the nonlinear coefficients in the Boltzmann equation,
J l,l1,l2m,m1,m2

= J l,l1,l2m,m1,m2
δm,m1+m2 , the numerical evaluation of its HO solution can

be done considering only real gl0 fields for all l.
Figure 3 shows the result for the Boltzmann equation (49) truncated at the

10th mode with homogeneous density ρ0 = 1, varying the noise strength σ. (We
checked that results are stable considering up to 20 modes.) As expected, |g1

0 | grows
below the critical noise σc ' 0.551 like

√
σc − σ, and all the others modes grow

consequently due to nonlinear couplings in the Boltzmann equation. The inset of
Figure 3 shows that the first three modes exhibit a scaling behavior in the vicinity
of the transition: comparing |g2

0 | with |g1
0 |2 and |g3

0 |
2
3 we show that they fall on

the same curve. (This is also true for the next modes, but they are not shown for
clarity.) Defining the scaling small parameter ε by the amplitude of the polar field
(|g1| ≈ ε), we thus find that

glm ≈ εl, ∀l > 0, ∀m , (54)

which we assume to be true in all generality.
Moreover, it is assumed that the spatial and the temporal variations of the

modes are small and comparable in magnitude to the small parameter introduced
above. For systems such as the 3 dimensional polar class considered here, one uses
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the propagative ansatz where the temporal variations are of the same order as the
spatial variations:

∇ ≈ ∇∗ ≈ ∂x ≈ ∂z ≈ ∂t ≈ ε , (55)

implying that the density variation goes as δρ ≈ ε in order to balance the first
equation of the hierarchy.

Using this scaling ansatz, we expand the Boltzmann hierarchy in series of ε
and we truncate it at the first non-trivial order, ε3. This leads to equations for the
density, polar and nematic fields. The density and polar fields are governed by

∂tρ = −∇∗g1
−1 +

1

2
∇g1

1 − ∂zg1
0 (56a)

∂tg
1
−1 = −2∇∗g2

−2 +
1

6
(∇g2

0 −∇ρ)− ∂zg2
−1 + µ1[ρ]g1

−1 +X1 1 1
−1−1 0 g

1
0g

1
−1

+X1 1 2
−1−1 0 g

2
0g

1
−1 +X1 1 2

−1 0−1 g
1
0g

2
−1 +X1 1 2

−1 1−2 g
1
1g

2
−2 (56b)

∂tg
1
0 = −∇∗g2

−1 +
1

6
∇g2

1 −
2

3
∂zg

2
0 −

1

3
∂zρ+ µ1[ρ]g1

0 +X1 1 1
0−1 1 g

1
−1g

1
1

+X1 1 2
0−1 1 g

1
−1g

2
1 + J1 1 1

0 0 0 g
1
0g

1
0 +X1 1 2

0 0 0 g
1
0g

2
0 +X1 1 2

0 1−1 g
1
1g

2
−1 (56c)

with Xl l1 l2
mm1m2

= J l l1 l2mm1m2
+J l l2 l1mm2m1

. The nematic field g2, at this order, is slaved
to the density and the polar fields, as in the 2 dimensional case [31]:

g2
−2 =

1

10µ2
∇g1
−1 −

J2 1 1
−2−1−1

µ2
g1
−1g

1
−1 ,

g2
−1 =

1

10µ2
∇g1

0 +
1

5µ2
∂zg

1
−1 −

X2 1 1
−1−1 0

µ2
g1
−1g

1
0 ,

g2
0 = − 2

5µ2
<(∇∗g1

−1) +
2

5µ2
∂zg

1
0 + 2

X2 1 1
0−1 1

µ2
|g1
−1|2 −

J2 1 1
0 0 0

µ2
g1
0g

1
0 .

Injecting these relations into Eq. (56) we obtain a closed set of equations for the
density and the polar fields. After some algebra and going back to the represen-
tation in the real space (34), the hydrodynamic equations for the 3 dimensional
polar class are

∂tρ = −∇ ·w , (57a)

∂tw =

(
µ1[ρ]− ξ

4
|w|2

)
w − 1

3
∇ρ+DB∇ (∇ ·w) +DT∆w

−λ1 (w ·∇) w − λ2 (∇ ·w) w − λ3∇
(
|w|2

)
. (57b)

These equations are nothing but the Toner-Tu equations. They are formally the
same as those derived in 2D using the same method. The definition of all the
hydrodynamic parameters are given in Table 1 and their dependency on the local
fields is made explicit with the use of the square brackets.

The non conservation of the momentum in the microscopic model forces the
hydrodynamic equations to reflect the absence of Galilean invariance which would
have required λ1 = 1

ρ0
and λ2 = λ3 = 0. Moreover, although breakdown of Galilean

invariance is also allowed at equilibrium, derivation of Equations (57) from a free
energy implies that λ3 = −2λ2 [1]. This relation holds in the 2 dimensional equa-
tions for the Vicsek model without steric interactions, derived from the BGL ap-
proach, but remarkably it is no more the case in 3 dimensions as shown in Table 1.
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3D 2D

µ1[ρ] P 1
0 − 1 +

(
π
4
P 1

0 −
8
15

)
ρ P1 − 1 + 8

π

(
P1 − 2

3

)
ρ

ξ (> 0)
2(128−105πP1

0 )(2+7P2
0 )

25(−105−68ρ0+7(15+2ρ0)P2
0 )

240
π

15(5P1−2)(3P2+1)
−15π+112ρ0+(15π+80ρ0)P2

DT (> 0) 42
2(105+68ρ0−7(15+2ρ0)P2

0 )
15π

4(−15π+112ρ0+(15π+80ρ0)P2)

DB
DT
3

0

λ1 − 3(352−105πP1
0 +784P2

0 )

40(−105−68ρ0+7(15+2ρ0)P2
0 )

4(16+30P2−15P1)
−15π+112ρ0+(15π+80ρ0)P2

λ2 − 208+105πP1
0 +1176P2

0

20(−105−68ρ0+7(15+2ρ0)P2
0 )

− 4(4+30P2+15P1)
−15π+112ρ0+(15π+80ρ0)P2

λ3
224(2+7P2

0 )+(384−315πP1
0 )

80(105+68ρ0−7(15+2ρ0)P2
0 )

−λ2
2

Table 1 Comparison of the hydrodynamic parameters of the polar class between the 3
dimensional case and the 2 dimensional case [31]. The main difference between the two cases
lies in the fact that there is an anisotropic diffusion term and λ2 6= −2λ3 in three dimensions.
In the right column the Pi parameters are the moments of the angular noise distribution in
2D, analogous to the P i0 in 3D.

Another difference is the presence of the anisotropic diffusion term∇ (∇ ·w) which
is allowed in 2D although it has a zero coefficient [31]. Finally, similarly to the 2
dimensional result, the isotropic pressure term is not modified by activity and
remains linear in ρ.

4.2 Homogeneous solutions

The homogeneous solutions of (57) satisfy ρ = ρ0 and evolve according to the
Ginzburg-Landau equation

∂tw0 =

(
µ1[ρ0]− ξ

4
w2

0

)
w0 , (58)

where w0 = |w|.
The homogeneous disordered solution w0 = 0 becomes unstable whenever µ1

becomes positive. Below the transition line in the (ρ0, σ) parameter plane, the
polar field grows until the cubic nonlinearity is saturated, and the homogeneous
ordered solution is found:

ρ = ρ0 w0 = 2

√
µ1[ρ0]

ξ
. (59)

When it exists, the HO solution is always physical, being smaller than the homo-
geneous density ρ0 in all the parameter space. This is shown in Figure 4 where
the red isolines correspond to the values w0 = 1, 2, 3. Remarkably, the global or-
der w0 is not monotonous and shows a maximum at finite noise at any fixed



18 Benôıt Mahault et al.

3D

0

0.5

1

1.5

2

2.5

3

3.5σ

0

0.2

0.4

0.6

0.8

1

ρ0

0 1 2 3 4 5

2D

0

1

2

3

4σ

0

0.2

0.4

0.6

0.8

1

ρ0

0 1 2 3 4 5

Fig. 4 Phase diagram in the density-noise plane of the hydrodynamic equations for the polar
class. The color codes for w0, the strength of the polar order of the homogeneous ordered
solution. Solid black line: µ1[ρ] = 0, limit of linear stability of the homogeneous disordered
solution. Red lines: contours w0 = 1, 2, 3. Left panel: 3D case for which w0 is not monotonously
varying with σ. Right panel: 2D case, with monotonous variation of w0.

density, in contrast with the 2 dimensional case. This effect depends on the dis-
tribution of the noise considered. For instance, if one uses the Von Mises distribu-
tion, P (θ) ∝ exp

(
cos(θ)/σ2

)
, this non-monotonicity is reduced although it is not

removed.

4.3 Linear stability analysis

We now compute the linear stability of the homogeneous solutions assuming small
fluctuations of the fields around ρ = ρ0 + δρ and w = w0 + δw. The linearized
hydrodynamic equations are

∂tδρ = −∇ · δw , (60a)

∂tδw = ∂µ1w0δρ−
ξ

2
w0(w0 · δw) +DB∇(∇ · δw) +DT4δw

−λ1(w0 ·∇)δw − λ2w0(∇ · δw)− 2λ3∇(w0 · δw) (60b)

+(µ1[ρ0]− ξ

4
|w0|2)δw − 1

3
∇δρ ,

with ∂µ1 = ∂µ1/∂ρ. Using Fourier transform in space (q is the wave-vector) these
linear equations become

∂tδρ = −ıq · δw , (61a)

∂tδw = ∂µ1w0δρ−
ξ

2
w0(w0 · δw)−DBq(q · δw)−DT q2δw

−λ1ı(w0 · q)δw − λ2ıw0(q · δw)− 2λ3ıq(w0 · δw) (61b)

+(µ1[ρ0]− ξ

4
|w0|2)δw − ı

3
qδρ .

Solving this eigenvalue problem yields four solutions si = si(q,w0), with i =
1, . . . , 4. The system is linearly unstable whenever any real part of these solutions
is positive.
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Fig. 5 Behavior of the real part of the eigenvalue governing the long wavelength linear stability
of the homogeneous ordered solution of the polar hydrodynamic equations, given by Eq. (68).
Parameters: ρ0 = 1 and σ = 0.55. Solid black line: real part of s+. Solid red line: real part of
s−.

In the disordered case (w0 = 0) the global rotational invariance implies that
only wave-vectors parallel to the perturbation δw ‖ q evolve and can destabilize the
system. Inserting the solution of (61a) in (61b) we obtain the following relations
between the wavevectors and the eigenvalues(

s+DT q
2 − µ1

)2
= 0 , (62)

s2 + s
(
(DT +DB)q2 − µ1

)
+ 1

3q
2 = 0, q = |q| . (63)

Defining D = DT +DB to lighten notations, the independent solutions are

sr = µ1 −DT q2 , (64)

s± =
µ1 −Dq2

2
± 1

2

√
µ2 − 2µ1Dq2 − 1

3
q2 +D2q4 . (65)

They are negative for all DT > 0, DT + DB > 0 and µ1 < 0. Consequently, the
disordered state is stable in all the region where µ1 < 0, as in the 2 dimensional
case.

Considering only longitudinal perturbations of the ordered state w0 = w0e 6= 0,
we have q = qe and δw = δwe. The equations for this family of perturbations are

∂tδρ = −ıqδw , (66a)

∂tδw = w0∂µ
1δρ− ξ

2
w2

0δw −
ı

3
qδρ−Dq2δw − λw0ıqδw , (66b)

where λ = λ1 + λ2 + 2λ3. After some algebra, the corresponding equation for the
eigenvalues 3 reads

s2 + s

(
ξ

2
w2

0 +Dq2 + ıλw0q

)
+

(
1

3
q2 + ı∂µ1w0q

)
= 0 . (67)

3 The other two relations come from the transverse perturbations.
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Fig. 6 (a): phase diagram of the hydrodynamic equations for the polar class. Solid black line:
µ1[ρ] = 0. Below this line the homogeneous ordered solution exists. It is linearly unstable in
the colored regions, where the color represents the direction of the most unstable mode. In the
red region close to the transition the instability is parallel to the global order w0. The green
region of transversal modes deep in the ordered phase corresponds to the spurious instability
described in the text. (b): variation of the upper limit of spurious instability with the spatial
diffusion constant D. Solid red line: D = 0. Dashed blue lines: D = 0.01, 0.1, 0.5, 1.

Defining B(q) = ξ
2w

2
0 +Dq2 + ıλw0q and C(q) = 1

3q
2 + ı∂µ1w0q, the two solutions

of this equation are

sl± = −B(q)

2
± 1

2

√
B2(q)− 4C(q) . (68)

The real part of the (−) solution is negative, while the real part of the (+) solution
has a range of wave-vectors for which it is positive as shown in Figure 5. Hence,
the ordered phase is longitudinally unstable in the region close to the transition
line. At small wave-vectors the solutions behave as

sl− = − ξ
2
w2

0 + ıw0

(
2∂µ1

w2
0ξ
− λ
)
q −

(
D + 8

(
δµ1
)2

w4
0ξ

3
− 4

λ∂µ1

w2
0ξ

2
− 2

3w2
0ξ

)
q2 ,

sl+ = −2ı
∂µ1

w0ξ
q +

(
2

(
δµ1
)2

w2
0ξ

2
− λ∂µ1

ξ
− 1

6

)
4

w2
0ξ
q2 . (69)

The real part of the (+) solution is driven by a q2 term that grows at small wave-
vectors on a scale 1

µ1 which is diverging at the transition. The resulting instability
is thus due to the δµ term, which comes from the density dependence of the linear
coefficient µ1[ρ] in the polar field equation.

The full linear stability analysis of the homogeneous solutions was also com-
puted numerically (Figure 6(a)). Close to the order/disorder threshold (black line),
the ordered solution is linearly unstable with respect to longitudinal perturbations
at a finite wavelength. Deeper in the ordered phase the ordered solution becomes
linearly stable. At even lower noise, a second instability appears. This instability
is likely to be an artifact of the truncation procedure 4. Moreover, like in 2D [38],
its impact strongly depends on the presence of spatial diffusion: adding spatial dif-
fusion directly at the kinetic level, its domain in parameter space shrinks rapidly
(Fig. 6(b)). We hereafter call it the spurious instability.

4 We actually studied semi-numerically the linear stability of the homogeneous ordered so-
lution in the 2D case at the kinetic level and found that this instability is not present then
[48].
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5 Hydrodynamic equations for nematic alignment

In this section we derive the hydrodynamic equations for 3D Vicsek-style systems
with nematic alignment, represented by the active nematics and the rods classes.

5.1 Boltzmann equations for classes with nematic alignment

5.1.1 Kinetic equations for active nematics and rods

In the active nematics class particles reverse their velocity on short time scales, the
computation sketched in Section 3.1 shows that the resulting Boltzmann equation
has no drift term but only spatial diffusion with coefficients D0 = 1

3 and D1 = 3D0.
Moreover, as this problem possesses a full nematic symmetry, only even modes
(with respect to l index) need to be considered. Hence, for active nematics the
Boltzmann equation becomes

∂tg
2l
m = D0∆g

2l
m +D1D2l

m

[{
g2l
m

}]
,

+
[
P 2l

0 − 1
]
g2l
m +

∑
l1,m1

l+l1∑
l2=|l−l1|,m2

JA 2l,2l1,2l2
m,m1,m2

g2l1
m1
g2l2
m2

, (70)

where the coefficients JA 2l,2l1,2l2
m,m1,m2

are the ones computed in Sec. 3.4 using the
apolar kernel (16) and the nematic alignement rule (19).

On the contrary, in the rods class particles reverse their directions of motion on
a finite timescale a such that no spatial diffusion is attained at the kinetic level.
Their dynamics is therefore propagative and the resulting Boltzmann equation
reads

∂tg
l
m = T lm

[{
glm

}]
− a

(
1 + (−1)l

)
glm +

[
P l0 − 1

]
glm

+
∑
l1,m1

l+l1∑
l2=|l−l1|,m2

JR l,l1,l2
m,m1,m2

gl1m1
gl2m2

, (71)

with JR l,l1,l2
m,m1,m2

evaluated considering the polar kernel (14) and nematic alignment
rule (19). Here, as the motion possesses polar symmetry, we can not set the odd
modes to zero.

The large reversal rate diffusive limit (70) can be retrieved from the propagative
hierarchy (71) with finite reversal. To do this we need to temporarily reintroduce
v0, the microscopic velocity of particles, which was set to 1 in Section 3.1 when
the Boltzmann equation was de-dimentionalized. Indeed, in the infinite reversal
rate limit the odd field equations (with respect to l index) possess a diverging
damping term ∼ −2a and can thus be enslaved to the even fields. The latter then

acquire an effective diffusion coefficient that scales like
v20
a . In order to keep it finite,

we assume that v2
0 ∼
a→∞

a. After enslaving the odd modes, the hierarchy (71) at

O
(
v20
a

)
is formally the same as (70), with D0 =

v20
6a and D1 = 3D0. Therefore, in

the following, when we refer to the large reversal rate limit for the rods we will
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Fig. 7 The transition line (µ2 = 0) delimiting the stability region of the homogeneous disor-
dered solution in the density-noise plane for the active nematics class. The solution is unstable
to homogeneous perturbations below the black line in 2D, and below the red line in 3D.

implicitly consider a nondimensionalization where v2
0 ∼ a instead of v0 = 1 as

previously set for the polar class. For numerical evaluations, we have considered
the scaling form v0 =

√
1 + a such that v0 = 1 when a = 0 and v2

0 ∼ a when a

becomes large.

5.1.2 Homogeneous solutions of the Boltzmann equation

In this section we compute the homogeneous solutions of the Boltzmann equation
considering nematic alignment (both active nematics and rods classes). Since the
rods hierarchy (71) does not show any homogeneous solution with non-zero odd
modes, the two classes are formally the same at this stage. Therefore we will focus
on the active nematics class, the results of this section being easily generalized to
the rods class.

The Boltzmann hierarchy (70) has the trivial homogeneous disordered solution:
g0
0 = ρ0, g2l

m = 0 ∀l > 0 ∀m. Homogeneous perturbations of this solution are

g0
0 = ρ = ρ0 + δρ, g2l

m = δg2l
m ∀l > 0 , ∀m (72)

and linearizing the Boltzmann hierarchy around this particular solution gives the
linear coefficients

∂tδg
2l
m(r, t) =

[(
P 2l

0 − 1
)

+
(
J 2l,0,2l
m,0,m + J 2l,2l,0

m,m,0

)
ρ0

]
δg2l
m

≡ µ2l
m[ρ0]δg2l

m .
(73)
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As in the polar case, the coefficients µ2l
m do not depend on the index m, and we

thus omit it thereafter. The first three coefficients are

µ2 = (P 2
0 − 1) +

2

15

(
(8 + 3

√
2)P 2

0 −
68

7

)
ρ0 , (74a)

µ4 = (P 4
0 − 1) +

1

3

(
1√
2
P 4

0 −
920

131

)
ρ0 (≤ 0) , (74b)

µ6 = (P 6
0 − 1)− 1

5

(
59

24
√

2
P 6

0 +
952

143

)
ρ0 (≤ 0) . (74c)

Only the µ2 coefficient, corresponding to the nematic field, can change sign while
the others are negative. The disordered solution is stable at large noise and small
densities and it becomes unstable to homogeneous perturbations below the line
σt(ρ0) defined by µ2 = 0, as shown in Fig 7. Like for the polar case studied in
the previous section, the transition line in 3D is at lower noises than in the 2
dimensional case.

As in the polar case, assuming that the nematic order is along the z direction
we can set all the m 6= 0 modes to zero for the numerical evaluation of the HO
solution of the Boltzmann equation (see Section 3.3 for details). Figure 8(a) shows
the result for the first 10 even modes of the Boltzmann hierarchy (70) for ρ0 = 1
as function of the noise. This computation was done using the Newton method
in order to capture both stable and unstable solutions. Decreasing the noise the
disordered solution becomes unstable for σ ≤ σt and the l > 0 modes jump dis-
continuously to a positive value. Then a hysteresis loop can be built increasing
the noise up to σc > σt defining an upper bound for the existence of the ordered
solution. Therefore, active nematics in three dimensions exhibit a discontinuous
transition with coexistence of disordered and homogeneous ordered solutions at
the mean field level. As for equilibrium liquid crystals, we will show that this can
be understood at the hydrodynamic level from symmetry reasons [47]. We also see
that equations (70) admit solutions with a negative order parameter which will be
discussed in the following and are always unstable to homogeneous perturbations5.

5.2 Derivation of the hydrodynamic equations

The following sections are dedicated to the derivation of the hydrodynamic equa-
tions for classes with nematic alignment. As in Section 4.1, they are obtained using
a scaling parameter ε that allows to truncate and close the Boltzmann hierarchy
with an ansatz compatible with the symmetries of the problem.

5.2.1 Hydrodynamic equations for the active nematics class

The scaling ansatz necessary to truncate and close the infinite Boltzmann hierarchy
(70) for active nematics relates space and time diffusively:

∇2 ≈ ∇∗
2

≈ ∂2
ij ≈ ∂t ≈ ε

2 , (75)

5 These solutions are stable considering only the m = 0 modes as we do for the computation
of the HO solution. This is because below σt the instability is located on the other components
of the nematic field (those for which m 6= 0), as shown in Section 5.3.
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Fig. 8 Numerical evaluation of the homogeneous ordered solution of the Boltzmann equa-
tion for the active nematics class, truncating the hierarchy at the 10th mode. (a) shows the
discontinuous character of the transition with the bistability region between σt and σc. The
full lines are the values of the modes following the uniaxial solution, while the dotted lines
are the values of the modes along the biaxial solution at the transition. The biaxial solution
below σt are shown with a dot-dashed line. (b) shows the rescaled modes following the scaling
ansatz (76), giving a good collapse close to the transition, although the first non zero mode g2

0
is not small. For convenience the positive values of the modes g4

0 , g
6
0 , . . ., following the biaxial

solution (negative g2
0) are shown with a minus sign in order to highlight the validity of the

scaling.

with i, j = x, y, z. Close to and below the transition line σt(ρ0), we assume that
the nematic field saturates to a small value ε, therefore, balancing the hierarchy
terms we can obtain the self-consistent scaling

g2l
m ≈ εl, ∀l > 0, ∀m . (76)

As usual, the first non trivial order is then ε3, leaving the density field ρ, the
nematic field g2

m and g4
m. The dynamics of the g4

m’s is completely slaved to the
lower order modes.

After lengthy algebraic calculations, similar to those shown in the previous
section for ferromagnetic alignment, the continuity equation in real space takes
the simple form

∂tρ = D0∆ρ+D1 (Γ : Q) , (77)

where the traceless symmetric matrix Γ is

Γ =
1

3

2∂2
xx − ∂2

yy − ∂2
zz 3∂2

xy 3∂2
xz

3∂2
xy 2∂2

yy − ∂2
xx − ∂2

zz 3∂2
yz

3∂2
xz 3∂2

yz 2∂2
zz − ∂2

xx − ∂2
yy

 , (78)

and the Frobenius inner product between rank 2 tensors is defined by A : B =∑
α,β AαβBαβ .
Knowing the relation between the second angular mode of the single-particle

distribution f and the nematic order parameter, explicited in Eq. (36), we can
write the hydrodynamic equations in real space in the following compact form:

∂tQ =
2D1

15
Γρ+

[
µ2[ρ]− ξ(Q : Q)

]
Q + α [QQ]ST +D0∆Q +

4D1

7
[ΓQ]ST , (79)

where [A]ST = 1
2 (A + At)− 1

3I(TrA) is the symmetric traceless part of the tensor
A and I is the identity matrix. The dependencies of the coefficients in terms of
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3D 2D

µ2[ρ] P 2
0 − 1 + 2

15

(
(8 + 3

√
2)P 2

0 −
68
7

)
ρ P2 − 1 + 8

3π

(
(2
√

2− 1)P2 − 7
5

)
ρ

ξ (> 0)
393
√

2(304−11(−32+203
√

2)P2
0 )(16+(384+35

√
2)P4

0 )

528220((393
√

2+131ρ0)P4
0−393

√
2−920

√
2ρ0)

4
45π

(1+15P2)(9(1+6
√

2)P4−13)
315π(1−P4)+8(21P4+155)ρ0

α 2
49

(
4 + (−16 + 21

√
2)P 2

0

)
(> 0) 0

D0
1
3

1
2

D1 3D0 2D0

Table 2 Comparison of the hydrodynamic coefficients of active nematics equations between
the 3 and 2 dimensional cases [35]. The functional form of the linear (µ2) and the cubic (ξ)
parameters is comparable between the two cases. The quadratic term (α) is absent in 2D
because of rotational invariance while it gets a non zero (positive for rod shaped particles)
value in 3D. In the right column the Pi parameters are the moments of the angular noise
distribution in 2D, analogous to the P i0 in 3D.

the microscopic parameters ρ0 and σ are listed in Table 2. Once more Eq. (79)
has the familiar Ginzburg-Landau structure and a linear coupling to the density
field. Note, however, the presence of the quadratic term in the field tensor Q with
coefficient α in addition to anisotropic spatial diffusion, allowed by the symmetries
of the system 6. Unlike in 2D and because of the presence of anisotropic spatial
diffusion, the structure of Eq. (79) cannot be derived from a free energy in the
single Frank constant approximation [35] 7. Moreover, as in 2D, the active current
in Eq. (77) cannot be derived from a free energy, therefore Eqs. (77) and (79)
cannot be obtained together at equilibrium.

We note that the discontinuous nature of the transition, in principle, prevents
us from using a perturbative analysis to truncate the hierarchy around σt. In-
deed when the disordered solution starts to be unstable, the global nematic order,
and thus ε, does not go continuously to zero. However, Fig. 8(b) shows that the
Ginzburg-Landau ansatz is a good approximation around σc, supporting the en-
slaving of the higher order modes to the nematic field in this region. Moreover, as
shown in the following, the hydrodynamic equations obtained at the usual third
order are well-behaved, with bounded solutions. We expect them to continue pro-
viding the right qualitative picture.

5.2.2 Hydrodynamic equations for the rods class

Even though only nematic order arises in the rods class, we retain the polar field in
our description because its dynamics depends non-linearly on the density and the
nematic fields. In this case the reversal rate of velocities is sufficiently small so that

6 In 2 dimensions both these terms are not allowed by rotational symmetry. Although using
the tensorial notation of Eq.(79) the reason why these terms are not allowed in 2D is not
evident, it is easy to show that [QQ]ST = 0 = [ΓQ]ST in 2D.

7 The structure of Eq. (79) can be obtained from a free energy density F = aQij∂
2
ijρ +

b
2

(∂iQkl)
2 + c

2
(∂kQik)2 + ..., then denoting by ΓQ the coupling constant with the nematic

order parameter we have D0 = ΓQ

(
b− c

3

)
and D1 = 7

4
ΓQc = − 15

2
ΓQa. In the single Frank

constant approximation c = 0 [49].
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no diffusive dynamics is attained on the kinetic timescales. Therefore, we consider
the propagative ansatz from Eq. (55) for space and time. Since only nematic order
grows in such system, we consider its saturated value as a small parameter ε ≈ |g2|.
Balancing the modes in the Boltzmann hierarchy, we obtain the following ansatz
for the relative strength of the fields

δρ ≈ ε, g2l
m ≈ g2l−1

m ≈ εl, ∀l > 1, ∀m . (80)

The computation of the terms in the hydrodynamic equations follows the proce-
dure described in the previous sections, truncating the Boltzmann hierarchy at
order ε3. We thus retain equations for the fields up to l = 4, but the l = 3, 4 fields
can be enslaved to the l = 0, 1, 2 fields. After tedious calculations, we obtain the
lengthy equations:

∂tρ = −∂iwi , (81a)

∂twi = −∂kQik −
1

3
∂iρ+ γ

(
2Qkl∂kQil +Qkl∂iQkl −

4

5
Qik∂lQkl

)
+
(
µ1[ρ]− βQklQlk

)
wi + ζQikwk −

6

5
βQikQklwl , (81b)

∂tQij = −2

5
[∂iwj ]ST

+DI∆Qij +DA
[
ΓikQkj

]
ST

−κ
(
wk∂kQij + 2

[
wk∂iQkj −

2

5
wi∂kQkj

]
ST

)
−χ
(
∂k (wkQij) + 2

[
∂k
(
wiQkj

)
− 2

5
∂i
(
wkQkj

)]
ST

)
+
(
µ2[ρ]− ξQklQlk

)
Qij + α

[
QikQkj

]
ST

+ω [wiwj ]ST
+ τ

(
|w|2Qij +

6

5
[Qikwkwj ]ST

)
, (81c)

where implicit summation over repeated indices is assumed. Although this repre-
sentation differs from the compact form (79) for active nematics, we kept explicit

3D 2D

µ1[ρ] (< 0) P 1
0 − 1 +

(
π
8
P 1

0 −
8
15

)
ρ− 2a P1 − 1 + 4

π

(
P1 − 4

3

)
ρ− 2a

µ3 (< 0) P 3
0 − 1 +

(
20−3π

96
P 3

0 −
208
315

)
ρ0 − 2a P3 − 1− 272

35π
ρ0 − 2a

β (> 0)
((−3360+315π)P1

0 +512)(35(4+9π)P3
0 +512)

21073920µ3 − 32(5P3+4)(7P1−2)

105π2µ3

ζ (> 0) 16
35

+
3(4−π)

16
P 1

0
16
5π

γ (> 0) 1
µ3

[
4

147
− 5(32−3π)

896
P 1

0

]
− 4(7P1−2)

21πµ3

Table 3 Comparison of the hydrodynamic coefficients of the equation for the polar field in
the rods class in 3 and 2 dimensions [34]. The form of the equation does not change with
respect to the 2 dimensional case and thus no new parameter appears. In the right column the
Pi parameters are the moments of the angular noise distribution in 2D, analogous to the P i0
in 3D.
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notations for tensorial and inner products in order to avoid possible confusions
between similar terms. As before, square brackets take the symmetric traceless
part of a tensor: [A]ST = 1

2 (A + At) − 1
3I(TrA), and the operator Γ, defined in

(78), is Γij =
[
∂2
ij

]
ST

.

The coefficients in the equation for the polar field are listed in Table 3. The
number of parameters does not change between the 2 and the 3 dimensional cases,
although terms coupling the polar field with its gradients are still allowed by
rotational symmetry.

The coefficients in the equation for the nematic field are listed in Table 4. Like
in the case of active nematics, the nematic field equation has a Ginzburg-Landau
term with a quadratic contribution with coefficient α and shows anisotropic spa-
tial diffusion. Both are not allowed for symmetry reasons in 2 dimensions. The
coefficient in front of the anisotropic diffusion term is smaller in modulus than
the isotropic diffusion one |DA| < |DI |, this prevents a trivial short wavelength
instability to occur and we thus expect these equations to be well behaved.

3D 2D

µ2[ρ] P 2
0 − 1 +

(
8+3
√

2
15

P 2
0 −

68
105

)
ρ P2 − 1 + 16

3π

(
P2(2

√
2− 1)− 7

5

)
ρ

µ4 (< 0) P 4
0 − 1 +

(
1

6
√

2
P 4

0 −
460
693

)
ρ0 P4 − 1 + 16

15π

(
P4 + 155

21

)
ρ0

DI (> 0) − 1
5µ3 − 1

4µ3

DA (> 0) − 6
35µ3 0

κ − 44+(24−45
√

2)P2
0

735µ3

8(19−P27(1+
√

2))
105πµ3

χ − 512+35(4+9π)P3
0

7840µ3
2(5P3+4)

5πµ3

α
4+(21

√
2−16)P2

0
49

(> 0) 0

ξ (> 0)
(304+(352−2233

√
2)P2

0 )(16+(384+35
√

2)P4
0 )

528220µ4 − 128(15P4+1)(13−P29(1+6
√

2))
4725π2µ4

ω
8+(15

√
2−32)P2

0
50

8(1−P23(
√

2−1))
3π

τ − (44+(24−45
√

2)P2
0 )(512+35(4+9π)P3

0 )
823200µ3 − 64(5P3+4)(19−P27(1+

√
2))

525π2µ3

Table 4 Comparison of the hydrodynamic coefficients of the equation for the nematic field
in the rods class in 3 and 2 dimensions [34]. The functional form of the linear (µ2) and the
cubic (ξ) parameters is comparable between the two dimensions, whereas the quadratic term
(α) is zero in 2 dimensions because of rotational invariance while it takes a positive value in 3
dimensions. Moreover, anisotropic diffusion appears in 3D, like for the polar class. In the right
column the Pi parameters are the moments of the angular noise distribution in 2D, analogous
to the P i0 in 3D.
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5.3 Homogeneous and periodic solutions

5.3.1 Homogeneous solutions

Since no polar order can grow homogeneously in this case, both the hydrodynamic
equations for active nematics (79) and for rods (81) share the same Ginzburg-
Landau functional form when setting spatial derivatives to zero

∂tQ = [µ[ρ]− ξ(Q : Q)] Q + α [QQ]ST , (82)

with µ[ρ] = µ2[ρ]. This equation admits both the homogeneous disordered (ρ = ρ0,
Qij = 0 ∀i, j) and homogeneous ordered solutions. The case where all particles’
orientations are aligned along a given direction is referred as uniaxial. Assuming
without loss of generality that the direction of global order is along the z axis, the
nematic tensor reads

Q =

−Q̄/2 0 0
0 −Q̄/2 0
0 0 Q̄

 , (83)

where the parameter Q̄ solves

µ+
α

2
Q̄− 3

2
ξQ̄2 = 0 . (84)

This quadratic equation has two solutions

Q̄± =
α

6ξ
± 1

3ξ

√
α2

4
+ 6µξ , (85)

that are both real only for α2/4 + 6µξ ≥ 0. Since α and ξ are strictly positive in
the range of density and noise we consider (see Tables 2 and 4), we can define a
critical linear coefficient

µc = − α2

24ξ
(< 0) , (86)

such that these solutions exist for µ ≥ µc. Thus σc(ρ0) is defined at the hydro-
dynamic level by the line where µ = µc, two homogeneous solutions stable with
respect to homogeneous perturbations coexist in the region σt < σ < σc: the disor-
dered solution and Q̄+, as shown in Fig. 9. Therefore, the transition from disorder
to order is discontinuous, something already shown at kinetic level in Section 5.1.2.
Remarkably, like in the polar case, the order is not a monotonous function of the
noise, as shown in Fig. 11, whereas it is in the 2D case (not shown).

Below the transition line σt the disordered solution becomes unstable and the
solution Q̄− is negative. To get a physical insight of this solution we remark that
a unit vector n can represent both a direction or the Hodge dual of this direction,
corresponding to any plane orthogonal to n in 3 dimensions. The dual space can
be represented in tensorial notations by

Mij = εijknk ,

where {i, j, k} ∈ {1, 2, 3} and ε is the Levi-Civita totally antisymmetric tensor.
From the definition of the nematic order (35), multiplying M by its transpose,
removing the trace, we obtain

M tM− 2

3
I = −Q . (87)
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Fig. 9 The homogeneous solutions Q̄ of the hydrodynamic equations for particles with nematic
interactions using the active nematics parameters of Table 2 for ρ0 = 1. Like at the kinetic
level, there is a region in between σt and σc where the disordered and uniaxial solutions are
both stable, showing a “true” discontinuous transition.

Thus, the negative tensor −Q states that the order is orthogonal to the direction
given by n, while the positive tensor Q states that the order is parallel to the
direction n. 8

Solutions with negative nematic order are physically possible and represent
so-called biaxial phases [47], pictured in Fig. 10. There are two typical homoge-
neous configurations: planes of uniaxial particles with random orientations (in the
planes), and oblate particles moving along their axis, with their axes ordered. An
elementary linear stability analysis with respect to homogeneous perturbations
shows that Q̄− is always unstable whenever the quadratic coefficient α is positive.
For instance, in the case of active nematics, the homogeneous linear perturbations
around this state evolve as

∂tδQzz = ∓Q̄±
√

6ξ(µ− µc)δQzz ,

∂tδQxx = −3α

2
Q̄±δQxx + Q̄±

(
3

2
ξQ̄± − α

)
δQzz ,

∂tδQxy = −α
2
Q̄±δQxy ,

∂tδQxz = −α
2
Q̄±δQxz ,

∂tδQyz = −α
2
Q̄±δQxy .

In the region σt < σ < σc the solution Q̄− is positive and δQzz is unstable, while
below the transition point σt it is negative and the instability is transferred to the
other directions.

Physically, this instability relies on particle’s shape. Having a homogeneous
negative order along z for rod shaped agents, a small perturbation in the region of
µ ≤ 0 brings the system to the disordered phase. On the contrary, if µ ≥ 0 a small

8 In 2 dimensions −Q corresponds to a rotation of the space of π/2 of the order because the
geometric object perpendicular to a unit vector is a vector itself, instead of a plane.
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Fig. 10 Sketch of configurations of particles in parallel layers leading to a nematic order
parameter Q̄ < 0. (a): cholesteric configuration where rod-like particles are aligned on parallel
planes and order rotates along the third direction. In (b) the same particles are still arranged
on parallel layers but with random orientations. (c): ordering of oblate particles on parallel
layers.

perturbation of the order in the (x,y) plane is not damped, aligning the rods in
the same direction favoring the Q̄ > 0 solution. From the previous linear stability
analysis, a stable biaxial nematic state requires the coefficient α to be negative.
This would be the case, for example, considering oblate agents with an alignment
rule privileging biaxial phases, as shown in Fig. 10(c). However, this is beyond the
scope of this work that deals only with rod shaped particles.

5.3.2 Periodic solutions: Cholesterics

The hydrodynamic equations for active nematics and rods possess spatially-periodic
solutions (with zero polar field), called cholesteric, that depend on only one di-
rection, say x. Borrowing from liquid crystals theory, a cholesteric phase is the
assembly of identical 2 dimensional homogeneously ordered “layers” into a helical
structure (see Fig. 10(a)). In such solutions, the density and the local norm of the
nematic tensor are homogeneous ρ(x) = ρ0, ‖Q‖2(x) = (Q : Q)(x) = Q2

0. More-
over, as the nematic field is constrained in the plane formed by the y and z axis
we impose Qxy = Qxz = 0 and Qxx = −Q̄/2 constant. With these constraints, and
after some lengthy algebra, the hydrodynamic equations for the density and the
nematic fields simplify to (

µ− αQ̄
2
− ξQ2

0

)
Q̄

2
+ α

Q2
0

3
= 0 , (88a)(

µ+ αQzz − ξQ2
0

)
Qzz + α

(
Q2
yz −

Q2
0

3

)
+D∂2

xxQzz = 0 , (88b)(
µ+ α

Q̄

2
− ξQ2

0

)
Qyz +D∂2

xxQyz = 0 , (88c)

with D = D0−4D1/21 (or D = DI−DA/3 for rods) positive. Equation (88a) gives
a relation between Q̄ and Q0 and Eq. (88c) describes a harmonic oscillator

∂2
xxQyz + ω2Qyz = 0 , (89)

with a twist frequency related to the norm of the nematic field

Dω2 = µ+ α
Q̄

2
− ξQ2

0 , (90)
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Fig. 11 Phase diagrams in the density-noise plane indicating the degree of nematic order
(scalar order parameter) for various homogeneous ordered solutions of the hydrodynamic equa-
tions (79) for the active nematics class. In each panel, the solid and dashed black lines corre-
spond to σc and σt, respectively. Top panels: uniaxial and biaxial solutions Q̄+ and Q̄− where
the red lines mark the contours Q̄+ = 0.5, 0.75, 1 and Q̄− = 0, −0.25, −0.5. Bottom panels:
order Q0 of the cholesteric solution for twists ω2 = 0.5 and 2.

As we are looking for solutions periodic along x, we are interested in the case
where ω2 is positive. Assuming then that the order is along the z-axis at x = 0 a
general solution of (89) can be written as

Qyz(x) = B sin(ωx) . (91)

Equations (88a) and (90) give the expressions of Q̄ and Q2
0 as a function of ω2

and of the hydrodynamic parameters

Q̄ =
α

6ξ
+
Dω2

2α
+

√
2

3ξ
(µ− µc(ω2)) , (92)

Q2
0 =

1

ξ

(
µ− 3Dω2

4
+

α2

12ξ
+
α

2

√
2

3ξ
(µ− µc(ω2))

)
, (93)

µc(ω
2) = Dω2 − 3ξ

8α2

(
Dω2 +

α2

3ξ

)2

. (94)

Note that in the limit ω2 → 0 the period of the oscillations goes to infinity, and
one recovers the homogeneous uniaxial phase.

In order to find a solution to Eq. (88b) we assume the functional form

Qzz(x) = λ cos(ωx) + κ , (95)
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and we obtain

0 =

[
(µ− ξQ2

0)κ+ α

(
κ2 + λ2 − Q2

0

3

)]
+λ
[
µ− ξQ2

0 + 2ακ−Dω2
]

cos(ωx) + α
[
B2 − λ2

]
sin2(ωx) . (96)

For this equation to be satisfied, all three terms inside square brackets must vanish.
The first two correspond to the same constraint, resulting in κ = Q̄/4, while the
third term gives λ = B > 0. Finally, knowing the form of the nematic tensor we
obtain

Q2
0 =

3Q̄2

8
+ 2B2 , (97)

where B2 has to be positive. Figure 11 shows the regions of existence of the
cholesteric states in the phase diagram (ρ0, σ) plane for various twist frequencies ω.
Larger the frequency of the solution is, the more it is confined at higher densities.

5.4 Linear stability analysis

5.4.1 Homogeneous uniaxial ordered solution

We computed the linear stability analysis of the active nematics hydrodynamic
equations (77) and (79) around the uniaxial homogeneous ordered state Q̄ semi-
numerically (panel a of Fig. 12). Close to and below the line σc limiting the exis-
tence of the ordered solution a transversal instability appears at finite wavelength,
much like in the 2 dimensional case. Deeper in the ordered phase, the homogeneous
order is stable and, again like in the 2D case, no “spurious instability” is found.
The transversal instability region becomes thinner increasing the density while
the region where both the ordered and the disordered phase exist becomes larger.
Therefore, it is possible to find both the homogeneous phases linearly stable, re-
sulting in a bistability of the system. Note, however, that non-linear phenomena
and strong fluctuations may invalidate this statement.

In the case of the rods equations the linear stability at finite wavelength of the
nematic phase resembles that of the active nematics case, as shown in Fig. 12(b).
The ordered solution is unstable close to σc, but this instability is not purely
transversal, and involves a component along the order, although not a dominant
one. Increasing the reversal rate of velocities a, this instability becomes transver-
sal to the global order. Moreover, for large values of a the homogeneous ordered
solution is stable in the bistability region at large densities, and one retrieves the
active nematics structure. There is, however, a strong difference between the 3D
and 2D cases: in 3 dimensions one does not find an instability deep in the ordered
phase where nematic order triggers polar order and no purely nematic solution is
stable.

5.4.2 Transverse linear stability of cholesteric solutions

The linear stability analysis of the cholesteric solutions is not straightforward
because of their spatial dependence, leading to non diagonal matrices in Fourier
space. It can however be performed for a family of particular perturbations given
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Fig. 12 Linear stability of the homogeneous uniaxial ordered solution of the hydrodynamic
equations for the nematic classes in the density-noise plane. The solid and dashed black lines
correspond to σc and σt, respectively. The solution exists below the black solid line. It is lin-
early unstable in the colored region, and stable below the colored region. The color represents
the angle between the most unstable wave vector and the direction of order. (a): active ne-
matics case (Eqs.(77) and (79)). The instability, confined close to the upper transition line,
is transversal to the direction of the order of the unperturbed solution. Inset: zoom at low
densities where the linear instability covers the mean field bistability region although it does
not go deeper in the ordered phase. (b): rods case (Eqs.(57) at zero reversal rate (a = 0)). The
instability, confined close to the upper transition line, is nearly transversal to the direction of
the order of the unperturbed solution. Inset: zoom close to the transition line in order to show
that the linear instability covers all the region between the transition line (dashed black line)
and critical line (full black line).

by the symmetry of the solutions. The cholesteric steady solution can be written
compactly in the form

Qc =
Q̄

4
Q0 +

B

2

(
eıωxQ1 + e−ıωxQ1

∗
)
, (98)

with Q̄ and B calculated in the previous section and

Q0 =

−2 0 0
0 1 0
0 0 1

 Q1 =

0 0 0
0 −1 −ı
0 −ı 1

 . (99)

We consider perturbations of the form of spatially-varying amplitudes. The ne-
matic field then becomes

Q = A0(x, t)Q0 +A1(x, t)eıωxQ1 +A∗1(x, t)e−ıωxQ1
∗ , (100)

where A0 is real and A1 is complex. For this family of perturbations the twist ω is
kept constant such that they are transversal to the cholesteric axis. In the active
nematics setting, the coupled equations for the density ρ and the amplitudes A0
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Fig. 13 Growth rate of the instability of the cholesteric solution of the active nematics equa-
tion for various twists ω2. The dashed line represents the instability of the disordered solution
and the full line above the existence of the homogeneous ordered solution. The first three
panels show the linear stability of various fixed twist solutions in the density-noise plane. The
fourth, bottom right panel shows the linear stability at fixed noise σ = 0.1 varying twist and
density. The lower limit of the colored area corresponds to ω2 = ω2

u, the upper limit of linear
stability of the solution.

and A1 are

∂tρ = D0∂
2
xxρ− 2D1∂

2
xxA0 , (101a)

∂tA0 =
(
µ[ρ]− αA0 − 2ξ

(
3A2

0 + 4|A1|2
))

A0 +
4

3
α|A1|2

+

(
D0 +

4D1

21

)
∂2
xxA0 −

2D1

45
∂2
xxρ , (101b)

∂tA1 =
(
µ[ρ] + 2αA0 − 2ξ

(
3A2

0 + 4|A1|2
))

A1

+

(
D0 −

4D1

21

)
(∂x + ıω)2

A1 . (101c)

Figure 13 shows the numerical evaluation of the linear stability of this set of
equations around the fixed point

ρ = ρ0 ; Ā0 =
Q̄

4
; Ā1 =

B

2
. (102)

For ω = 0, we of course recover the phase diagram shown in Fig. 12. For finite ω we
observe that the cholesteric solutions are linearly unstable close to their existence
line, while they are stable deeper in the ordered phase. Note, however, that the
instability region grows quickly with twist.

To get an idea of the respective stability of cholesteric solutions, we performed
numerical simulations of the hydrodynamic equations (77) and (79) but in their
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Fig. 14 (a): The final twist of the cholesteric state ω2
final found in numerical simulations of the

one dimensional version of the active nematics equations (77) and (79) (see text), as function
of the twist of the initial cholesteric configuration ω2

init for system sizes L = 512 and 1024. The

cholesteric solutions are stable as long as ω2
init is smaller than the linear stability threshold

ω2
u, while above it they are unstable and converge to a new cholesteric solution whose twist

depends on ω2
init − ω

2
u. The inset suggest a possible exponential decay of ω2

final as function of

ω2
init−ω

2
u. (b): Space time variations of the Qyz component of the nematic tensor (∼ B sin(ωx)

for a cholesteric solution) starting from a cholesteric configuration with ω2
init − ω

2
u ' 1.69 and

ending with ω2
final ' 0.02 at system size L = 1024. All the simulations are performed at ρ0 = 2

and σ = 0.1 (ω2
u ' 1.97), with an Euler scheme with resolutions dt = 0.01 and dx = 1

8
.

reduced one-dimensional form, i.e. setting ∂y and ∂z to 0, and using a periodic
domain in x. As expected, the cholesteric solutions with ω2 < ω2

u, where ω2
u

is the threshold given by the linear stability analysis performed above, are sta-
ble (Figure 14(a)). On the other hand in the linear instability region, we find
that a cholesteric initial configuration of twist ω2

init typically settles to a stable,
lower-twist, cholesteric solution (see Fig. 14(b)). We find that the final cholesteric
solution possesses a well defined twist ω2

final independent of system size (for large-
enough domains). This final twist decreases quickly when ω2

init increases, i.e. when
the solution is more and more unstable, as shown in the last panel of Fig. 13.
Finally, as we can only simulate finite systems, the homogeneous ordered uniaxial
solution is always reached for large-enough unstable initial twist.

For rods one also needs to consider perturbations of the polar field w. Those
compatible with (100) read

w = F0(x, t)w0 + F1(x, t)e
ıωx
2 w0 + F ∗1 (x, t)e−

ıωx
2 w1

∗ (103)

where the complex vectors are

w0 =

1
0
0

 w1 =

 0
−ı
1

 (104)

and the amplitudes F0 and F1 are equal to zero in the unperturbed state.
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Inserting the perturbed cholesteric solution into the hydrodynamic equations
for rods (81) we obtain coupled equations for the density and the amplitudes

∂tρ = −∂xF0 , (105a)

∂tF0 = 2∂xA0 −
1

3
∂xρ+ γ∂x

(
27

5
A2

0 + 4|A1|2
)

+

[
µ1[ρ]− 2ζA0 − 2β

(
27

5
A2

0 + 4|A1|2
)]

F0 , (105b)

∂tF1 =

[
µ1[ρ]− 4β

5

(
9A2

0 + 16|A1|2
)]

F1 −
24

5
βA0A1F

∗
1 + ζ

(
A0F1 + 2A1F

∗
1

)
,(105c)

∂tA0 =
2

15
∂xF0 +

(
DI +

2

3
DA

)
∂2
xxA0 −

9

5
(κF0∂xA0 + χ∂x(F0A0))

+
[
µ2[ρ]− αA0 − 2ξ

(
3A2

0 + 4|A1|2
)]
A0 +

4

3
α|A1|2

−ω
3

(
F 2

0 − 2|F1|2
)

+ τ

[
9

5

(
F 2

0 + 4|F1|2
)
A0 − 8<

(
A∗1F

2
1

)]
, (105d)

∂tA1 =

(
DI −

2

3
DA

)
(∂x + ıω)2A1 − κA0(∂x + ıω)A1 − χ(∂x + ıω)(A0A1)

+
[
µ2[ρ] + 2αA0 − 2ξ

(
3A2

0 + 4|A1|2
)]
A1

+

(
ω +

12

5
τA0

)
F 2

1 + τ

(
F 2

0 +
44

5
|F1|2

)
A1 . (105e)

Linear stability analysis of these equations gives results similar to the active ne-
matics case, shown in Fig. 13, i.e. a region of instability close to the limit of
existence of the solution whose extension grows with ω2. This instability region
also increases with the reversal rate, but its size saturates in the limit of large a
such that the active nematics picture is recovered.

6 Conclusion

We have derived the hydrodynamic equations of the three main classes of dry,
aligning, dilute active matter in three spatial dimensions, and compared them
to their two-dimensional counterparts. We have used the Boltzmann-Ginzburg-
Landau approach that, by construction, yields well-behaved partial differential
equations governing the main physical fields. For convenience, we first treated the
polar class with ferromagnetic alignment, then the cases with nematic alignment,
i.e. the fast-velocity-reversal limit of active nematics, and the slow-reversal case,
including the zero-reversal “rods” limit.

For the polar ferromagnetic class, we find the classic Toner-Tu equations, al-
though here, starting from a Vicsek-style model, we obtain an anisotropic diffu-
sion term not present in 2D using the same approach. We also find other differ-
ences between 2D and 3D, notably the non-monotonicity of order as a function of
noise strength for the 3D homogeneous order solution. The linear stability of the
spatially-homogeneous solutions of the 3D Toner-Tu equations is similar to that of
the 2D case: the ordered solution shows a finite wavelength longitudinal instability
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near the continuous onset of order, and a residual, “spurious” instability deep in
the ordered phase.

In the case of nematic alignment, the differences with the 2D case are much
more pronounced: first of all, the general scenario departs from the ubiquitous
liquid-gas phase separation found in 2D, as the transition to order is found discon-
tinuous even at the mean-field level studied here. This situation is related to the
presence of a quadratic term in the nematic field equation, a term ruled out by
rotational symmetry in 2D. There is thus a genuine bistability region defining hys-
teresis loops at the level of homogeneous solutions. Nevertheless, we find that the
homogeneous ordered solution still retains the generic transversal long-wavelength
instability present in 2D, complicating further the mean-field phase diagram. In
addition, we showed that the 3D hydrodynamic equations with nematic alignment
support biaxial periodic solutions corresponding to cholesteric configurations. We
show that these solutions too are generically unstable near their existence limit,
and we discuss their relative stability. We note finally that, as in 2D, we find
no qualitative difference between the active nematics and rods cases at the level
considered here.

Naturally, this work now calls for further studies at the nonlinear and fluctu-
ating levels.

At the nonlinear but still deterministic level, the inhomogeneous solutions of
the hydrodynamic equations derived here must be found. As in the 2D case, we ex-
pect them to exist beyond the narrow band of linear instability of the homogeneous
order solution where no homogeneous solutions exist. In the phase-separation
framework described in the introduction, the lines delimiting this region are the
spinodal lines. The binodal lines, which ultimately delimit the domain of existence
of the coexistence phase sketched in Fig. 1, are determined by the existence and
stability limits of inhomogeneous solutions.

For the polar case, we expect these inhomogeneous solutions to take the form
of travelling dense sheets as observed in microscopic models [19]. For the nematic
alignment cases, as of now, not much is known: the only published account of the
structures observed in 3D can be found in [50], where a dense ordered cylinder
with its axis along the global nematic order is shown for the Vicsek-style active
nematics model.

The fluctuating level of either microscopic models or our hydrodynamic equa-
tions complemented by stochastic terms remains, as of now, essentially virgin ter-
ritory. Studies of the 3D Vicsek model and others in the same class have revealed
the emergence of the dense traveling sheets mentioned above, but no work has
studied in depth the microphase vs macrophase separation scenario found, in 2D,
to distinguish the active Ising and the Vicsek models [41]. Similarly, the standing
of the Toner-Tu theoretical predictions in 3D is unknown. For nematic alignment,
it is fair to say that almost everything remains to be done. An interesting study of
a microscopic model of self propelled rods in 3D has shown the existence and sta-
bility of cholesteric solutions that coexist with the homogeneous ordered nematic
phase, but it remains rather partial [51].

Our ongoing work is devoted to the above endeavours: careful study of 3D
Vicsek-style models, search for inhomogeneous solutions to the hydrodynamic
equations derived here, and the eventual complete understanding of 3D dry align-
ing active matter at the fluctuating hydrodynamic level.
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