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Unveiling the bosonic nature of an ultrashort
few-electron pulse
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Xavier Waintal5, Tristan Meunier1 & Christopher Bäuerle 1

Quantum dynamics is very sensitive to dimensionality. While two-dimensional electronic

systems form Fermi liquids, one-dimensional systems—Tomonaga–Luttinger liquids—are

described by purely bosonic excitations, even though they are initially made of fermions. With

the advent of coherent single-electron sources, the quantum dynamics of such a liquid is now

accessible at the single-electron level. Here, we report on time-of-flight measurements

of ultrashort few-electron charge pulses injected into a quasi one-dimensional quantum

conductor. By changing the confinement potential we can tune the system from the one-

dimensional Tomonaga–Luttinger liquid limit to the multi-channel Fermi liquid and show

that the plasmon velocity can be varied over almost an order of magnitude. These results are

in quantitative agreement with a parameter-free theory and demonstrate a powerful probe for

directly investigating real-time dynamics of fractionalisation phenomena in low-dimensional

conductors.
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A fundamental difference between bosons and fermions is
that the former can be described at the classical macro-
scopic level while the latter cannot. In particular, in an

ultrafast quantum nanoelectronics setup, the experimentalist
controls the—bosonic—electromagnetic degrees of the system
and aims at injecting a single—fermionic—coherent electron in
the system. This interplay between bosonic and fermionic sta-
tistics is a central feature in one-dimensional quantum systems as
it provides a unique playground for the study of interaction
effects1,2.

The reduced dimensionality influences the interaction between
particles and can lead to fascinating phenomena such as
spin–charge separation3, charge fractionalisation4 or Wigner
crystallisation5. The low-energy collective bosonic excitations
consist of charge and spin density waves that propagate at two
different velocities. While the spin density is unaffected by the
Coulomb interaction and propagates at Fermi velocity vF, the
charge density is strongly renormalised by the interactions and
propagates with the plasmon velocity vP, which is usually much
faster than the Fermi velocity. Spin–charge separation has been
experimentally probed in momentum resolved tunnelling
experiments between two quantum wires3 as well as tunnelling
from a quantum wire into a two-dimensional electron gas6. In
addition to spin–charge separation, charge fractionalisation
occurs in one-dimensional systems7–10. Injecting an electron into
a one-dimensional system with momentum conservation, the
charge decomposes into right and left moving charge excitations,
as demonstrated in ref. 4. Charge fractionalisation also occurs
in a system of two coupled Tomonaga–Luttinger liquids. There,
an electronic excitation present in one of the two channels
fractionalises into a fast charge mode and a slow neutral mode,
which are the eigenmodes of the coupled system11. This charge
fractionalisation has been recently observed in a chiral two-
channel Tomonaga–Luttinger liquid in the integer quantum
Hall regime12–16.

Here, we study the most general case where the system can be
tuned continuously from a clean one-channel Tomonaga–
Luttinger liquid to a multi-channel Fermi liquid in a non-chiral
system. We use time-resolved measurement techniques17,18 to
determine the time of flight19–21 of a single-electron voltage pulse
and extract the collective charge excitation velocity. Our detailed
modelling of the electrostatics of the sample allows us to con-
struct and understand the excitations of the system in a
parameter-free theory. We show that our self-consistent calcu-
lations capture well the results of the measurements, validating
the construction of the bosonic collective modes from the fer-
mionic degrees of freedom.

Results
Measurement principle. We tailor a 70 μm long quasi one-
dimensional wire into a two-dimensional electron gas using
metallic surface gates as shown in Fig. 1a. A pump-probe tech-
nique has been implemented to measure in a time-resolved
manner the shape as well as the propagation speed of the electron
pulse. We apply an ultrashort voltage pulse (≈70 ps) to the left
ohmic contact to generate the few-electron pulse. The pulse
injection is repeated at a frequency of 600MHz and the resulting
DC current is measured at the right ohmic contact. Three
quantum point contacts (QPCs) are placed along the quantum
wire to measure the arrival time of the charge pulse at different
positions. Simultaneously, another ultrashort voltage pulse is
sent to one of the three QPCs which allows opening and closing
the QPC on a timescale much faster than the width of the few-
electron pulse (see Methods section). By changing the time delay
between launching the electron pulse and the on–off switching of

the QPC, we can reconstruct the actual shape of the few-electron
pulse19,20.

Time-of-flight measurements. A typical time-resolved mea-
surement is shown in Fig. 1b. We observe a few-electron pulse of
Gaussian shape with a full width at half maximum (FWHM) of
≈70 ps. Measurements of the time of flight τF at different posi-
tions (Fig. 1b) allows us to determine its propagation speed,
which we find to be independent of the number of electrons
contained in the electron pulse (Fig. 1d). By changing the voltage
on the side gates VSG it is possible to modify the propagation
speed by almost an order of magnitude. As the confinement is
made stronger, the arrival time of the electron pulse at the
detection QPC is shifted to longer times, as seen in Fig. 2a. This,
as it will be demonstrated further on, is an indication of a slower
propagation speed and it is in stark contrast to standard DC
measurements. Indeed, in DC the Coulomb interaction is
screened by the Fermi sea and the electrons travel at the Fermi
velocity, as shown by magnetic focussing experiments22. The
situation is very different when creating a local perturbation of
the charge density. Applying a very short charge pulse results in
an excess charge density created locally. Due to the generated
electric field, the excess charge is displaced very rapidly at the
surface of the Fermi sea giving rise to a collective excitation, a
plasmon23.

Effect of Coulomb interaction on the propagation velocity. In
one dimension, an interacting wire is described by Tomonaga–
Luttinger plasmons of bosonic character1. The problem of
generalising the bosonization construction to a system containing
an arbitrary number of conduction channels, N, in the presence
of Coulomb interactions has been treated theoretically by
Matveev and Glazman24. The effect of the Coulomb potential
is to couple the individual channels of the quantum wire,
thus resulting in a collective behaviour that in turn affects
strongly the propagation velocity of the excitations. For a
quantum wire containing N conduction channels, Coulomb
interaction leads to charge fractionalisation into N charge
modes with renormalised propagation velocity and N spin
modes (c.f. Supplementary Note 4). To distinguish between
single-particle states and collective modes, we will use
throughout this study the term channel whenever referring to
single-particle states and mode when referring to collective
modes. As the spin modes do not carry any charge, their speed
is not affected by the Coulomb interaction. For our experiment
we can neglect them since voltage pulses do not excite spin modes
in the quantum conductor. The N charge modes, on the other
hand, are affected by the Coulomb interaction in the following
way: N− 1 charge modes—the slow modes—are weakly affected
and propagate with a speed close to vF, while one mode—the
fast mode—usually referred to as the plasmon mode is renor-
malised via all the other modes and propagates with a velocity
much faster than vF.

Here, we have derived the theory24 from first principles in
order to obtain a quantitative—parameter-free—comparison
with the measurements. Our calculations proceed in three steps.
First, we solve the self-consistent electrostatics-quantum
mechanics problem to obtain the effective potential seen by
the electrons as shown in Fig. 1c. Second, we compute the
effective propagating channels and their interaction matrix.
Third, we compute the mode velocities as arising from
bosonisation theory (c.f. Supplementary Note 4). The obtained
theoretical data for the fast mode—the plasmon mode—(without
any adjustable parameters) are displayed by the blue curve
in Fig. 2b.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05203-7

2 NATURE COMMUNICATIONS |  (2018) 9:2811 | DOI: 10.1038/s41467-018-05203-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Channel selection. By gradually reducing the number of channels
of the quantum wire to one, we enter the Tomonaga–Luttinger
liquid regime1. However, due to the strong confinement potential
and its long length, the quantum wire is not very homogeneous
and the pulse becomes distorted. It is therefore not possible to
realise a clean one-channel Tomonaga–Luttinger liquid25 in the
present configuration. To circumvent this limitation we have
placed another quantum point contact QPC0 at the entrance of
the quantum wire in order to select specific channels as sche-
matised in Fig. 3c. We set the confinement potential of the
quantum wire to a situation where the wire width is relatively
large (VSG = −1.0 V; N ≈ 28) and set the quantum point con-
ductance to a value of GQPC0

¼ 2e2
h .

An electron pulse is launched from the left ohmic contact into
the quantum wire containing initially N= 28 channels. Upon
propagation, this charge pulse decomposes onto the N= 28
eigenmodes (plasmon modes) due to Coulomb interaction. When
this pulse passes through the QPC0, only one channel is
transmitted, as shown in Fig. 3c. After the passage, the electron
pulse continues its propagation along the quantum wire contain-
ing again the same number N of available channels as before the
passage through the selection QPC0. Assuming a non-adiabatic

passage, the charge pulse should instantaneously fractionalise into
a fast plasmon mode and N− 1 slow modes. Very surprisingly,
this is not the case. Time-resolved measurements of the charge
pulse propagation through QPC1, QPC2 and QPC3 allow us to
determine the average speed of the charge pulse after passing
through the selection QPC0. We observe that the charge pulse is
strongly slowed down after passing the channel selection QPC0,
as shown in Fig. 3b, d. These measurements are repeated for
different confinement potentials to corroborate our findings (see
red data points in Fig. 2b).

Discussion
As discussed above, the propagation speed of the charge pulse is
strongly enhanced by the Coulomb interaction. Applying our
parameter-free model we are able to determine the propagation
velocity for any gate configuration. This is done for the fast
charge mode in Fig. 2b (see blue continuous curve). The agree-
ment with the experiments over the entire gate voltage region is
quite remarkable. We attribute the observed discrepancy in the
limit of large number of channels N ~ 20–40 to interchannel
forward scattering which is not taken into account in ref.24.
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Fig. 1 Device and time-of-flight measurements. a Schematic of the quantum device. A few-electron pulse is launched at the left ohmic contact (black
crossed box) by applying a very short (≈70 ps) voltage pulse. Three QPCs, denoted as QPC1, QPC2 and QPC3, are placed along the quantum device at a
distance of 15, 30 and 70 μm from the left ohmic contact. Each of these three QPCs is connected to a large bandwidth (40 GHz) bias tee and operated as
an ultrafast switch. Time-resolved detection of current is done at the right ohmic contact. QPC0, placed a distance of 6 μm from the left ohmic contact, is
used as a channel selection. b Time-resolved measurements of an electron pulse at the three different QPC positions. c Illustration of the sample geometry
used for the self-consistent calculations. The quasi one-dimensional quantum wire is defined by the two long electrostatic gates at potential VSG. The
coloured images, one at the beginning of the wire and another one at the end, are cross-sections of the electron density profile along the y-axis as a
function of the gate voltage. d Time-resolved measurements of an electron pulse at QPC3 for different excitation amplitudes. The amount of electrons
contained in the electron pulse is varied between 0.6 e and 6.1 e
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Our theoretical model also allows us to calculate the speed of
the charge pulse assuming that only one single mode is occupied
after passing the channel selection QPC0 (solid red curve in
Fig. 2b) and compare it to our experimental data. This mode
corresponds to a single-channel Tomonaga–Luttinger plasmon
(c.f. Supplementary Note 4) which is very different from the
plasmon hosted by the full 28 channels. The agreement between
theory and experiment is again remarkable. These observations
strongly suggest that the charge pulse which is transmitted

through the lowest channel of the selection QPC0 is adiabatically
transferred onto the fast plasmon mode corresponding to a
single-channel Tomonaga–Luttinger liquid and which we named
the funneling scenario (c.f. Supplementary Note 4). We have
repeated these experiments for the second quantised plateau
(green data points) and find similar agreement. Hence, our data
indicate that it is possible to form a very clean single channel
(two-channel) Tomonaga–Luttinger liquid even though the wire
contains many more active channels. We observe that the

1.0

0.9N
or

m
. a

m
pl

itu
de

Time (ps)

EF

E

x
y

�

x

–1.4 –1.2 0
0

2

60

10

8

6

4

2

V
el

oc
ity

 (
10

5  m
 s

–1
)

VSG = –1.0 V

–1.0 –0.4 –0.2–0.8 –0.6

VQPC0
 (V)

20 6040

G
 (

2e
2  h

–1
)

VQPC0
 (V)

VSG = 0.0 V

VQPC0

a b d

c
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distance of 25 μm. d Propagation velocity of the electron pulse as a function of the channel selection QPC0 voltage at a fixed confinement potential VSG=
−1.0 V. The grey circles correspond to the experimentally measured velocity at QPC1, while the blue squares is the outcome of a parameter-free calculation
(c.f. Supplementary Note 4). The coloured circles correspond to the velocity measured for different conductance values of QPC0, i.e. G= 2e2/h (red circle),
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Fig. 2 Tuning the propagation velocity. a Time-resolved measurements of the electron pulse for different confinement potentials at QPC3 position. The
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electron pulse conserves its propagation speed for at least a dis-
tance of 25 μm (position of QPC2). This is in stark contrast
to experiments in the quantum Hall regime, where the wave
packet fractionalises instantaneously15. In these experiments
the electron wave packet is already fully fractionalised after a
propagation distance of about 3 μm15 with a time separation of
≈70 ps between the fast and the slow modes. In our experiment,
we observe fractionalisation only at a distance well above 20 μm.
At a distance of about 70 μm (QPC3), we observe that the
velocity is again approaching the one corresponding to the fast
mode where all the channels of the quantum wire are populated.
This opens the possibility to realise quantum interference
experiments with single-electron pulses by only populating a
single-channel plasmon mode, which has never been observed
with DC measurements.

The presented time control of single-electron pulses at the
picosecond level will also be important for the implementation
of wave-guide architectures for flying qubits using single
electrons26. Integrating a leviton source27 into a wave-guide
interferometer would allow to realise single-electron flying qubit
architectures26,28,29 similar to those employed in linear quantum
optics30.

Our findings also give a new insight into the recently dis-
covered levitons27. As the underlying physics is independent of
the actual shape of the single-electron wave packet, levitons
should be regarded as a special kind of plasmon with the
particularity that it does only generate electronic excitations
(no holes), rather than a single-electron excitation propagating
at the surface of the Fermi sea with the Fermi velocity31.

Furthermore, our studies pave the way for studying real-time
dynamics of a quantum nanoelectronic device32 such as the
measurement of the time spreading or the charge fractionalisation
dynamics10 of the electron wave packet during propagation.

Methods
Sample fabrication. The sample is fabricated by depositing electrostatic gates on
top of a GaAs/AlGaAs semiconductor heterostructure. The two-dimensional
electron gas, which is at a depth of 140 μm, has density n= 2.11 × 1011 cm−2 and
mobility μ= 1.89 × 106 cm−2 V−1 s−1, measured at 4 K. The 70 μm long electro-
static gates are defined by Ti/Au, while a Ni/Ge/Au/Ni/Au alloy is used for the
ohmic contacts. A scanning electron microscope image of our sample is shown in
Fig. 4.

Time-resolved measurements of voltage pulse. To generate a single-electron
pulse, a voltage pulse with an amplitude of several tens of μV is applied to the left
ohmic contact of our sample through a high bandwidth coaxial line and a 40 dB
attenuation. The voltage pulses are provided by an arbitrary function generator
(Tektronix AWG7122C) and have a 600MHz repetition frequency. The generated

DC current is measured across a 10 kΩ resistor placed on the sample chip carrier at
a temperature of 20 mK. The pulse train is modulated at a frequency of 12 kHz to
perform lock-in measurements. A second voltage pulse is applied to one of the
QPCs in order to operate it as a fast switch. By changing the time delay between
generating the electron pulse and opening/closing the QPC switch we can recon-
struct in a time-resolved manner the time trace of the electron pulse, following the
protocol developed by Kamata et al.19.

In order to obtain the shortest possible switching times we perform the
following operations, shown in Fig. 5a. First, the QPC is set to the pinch-off regime
(OFF position) by applying an appropriate negative DC voltage (VDC).
Subsequently, we apply a short voltage pulse with a fixed amplitude (VAC) to the
QPC, which allows us to open the QPC switch only for a very short time δτ,
typically below 10 ps33. To achieve these fast switching times we keep the VAC

amplitude constant and we vary VDC. As shown in Fig. 5a, when VDC is very
negative the QPC switch remains closed for all time delays and therefore the
recorded current is zero. By increasing VDC to the appropriate value we can open
the QPC switch for a brief period of time δτ, thus allowing us to reconstruct the
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Fig. 4 Scanning electron microscope image of the nanoelectronic device. The light grey parts correspond to the electrostatic gates. The long quasi one-
dimensional channel has length of 70 μm and width of 1 μm. The two ohmic contacts, one used for the excitation of the electron pulse (left) and the other
one used for current detection (right), are indicated with crossed square boxes. The three QPC switches and their respective distance from the left ohmic
contact are shown with red, violet and black colours, whereas the mode selection QPC0 is highlighted with yellow colour
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electron pulse. As the switching profile of the QPC depends on the combination of
the applied DC and AC voltages as well as the very sharp conductance response we
can achieve time resolutions that are shorter than those provided by our
electronics. By optimising VDC and VAC amplitudes we are able to measure single-
electron pulses down to a FWHM of 68 ps, as shown in Fig. 5b.

Determination of the propagation velocity. To determine the velocity of the
electron wave packet we perfomed time-of-flight measurements for different
confinement potentials (see Figs. 1, 2). For every confinement potential we carry
out three independent measurements, one for each QPC (except QPC which is not
connected to a bias tee). During these measurements we excite the electron wave
packet and measure the time it takes to propagate to the three detection QPCs. By
using the time of flight and the exact distance between the left ohmic contact
(excitation location) and these three QPCs (Fig. 4) we can calculate the velocity
(c.f. Supplementary Note 4).

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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