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ARTICLE

Laboratory evidence of dynamo amplification of
magnetic fields in a turbulent plasma
P. Tzeferacos1,2, A. Rigby 1, A. F. A. Bott1, A.R. Bell1, R. Bingham3,4, A. Casner5, F. Cattaneo2, E.M. Churazov6,7,

J. Emig8, F. Fiuza9, C.B. Forest10, J. Foster11, C. Graziani2, J. Katz12, M. Koenig13, C.-K. Li14, J. Meinecke1,

R. Petrasso14, H.-S. Park8, B.A. Remington8, J.S. Ross8, D. Ryu 15, D. Ryutov8, T.G. White1, B. Reville 16,

F. Miniati17, A.A. Schekochihin1, D.Q. Lamb2, D.H. Froula12 & G. Gregori 1,2

Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically

comparable to the energy density of the fluid motions of the plasma in which they are

embedded, making magnetic fields essential players in the dynamics of the luminous matter.

The standard theoretical model for the origin of these strong magnetic fields is through the

amplification of tiny seed fields via turbulent dynamo to the level consistent with current

observations. However, experimental demonstration of the turbulent dynamo mechanism has

remained elusive, since it requires plasma conditions that are extremely hard to re-create in

terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows,

that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with

the turbulent fluid motions. These results support the notion that turbulent dynamo is a

viable mechanism responsible for the observed present-day magnetization.
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D iffuse radio-synchrotron emission observations and
Faraday rotation measurements1 have revealed magnetic
field strengths ranging from a few nG and tens of μG in

extragalactic disks, halos and clusters, up to hundreds of TG in
magnetars, as inferred from their spin-down2. That turbulence is
of central importance in the generation and evolution of magnetic
fields in the Universe is widely accepted3. Plasma turbulence can
be found in myriads of astrophysical objects, where it is excited by
a range of processes: cluster mergers, supernovae explosions,
stellar outflows, etc.4–7. If a turbulent plasma is threaded by a
weak magnetic field, the stochastic motions of the fluid will
stretch and fold this field, amplifying it until it becomes dyna-
mically significant8,9. According to the current standard picture,
the amplification can be summarized in two basic steps10,11. First,
when the initial field is small the magnetic energy grows expo-
nentially (kinematic phase). This phase terminates when the
magnetic energy reaches approximate equipartition with the
kinetic energy at the dissipation scale. Beyond this point, the
magnetic energy continues to grow linearly in time (nonlinear
phase) until, after roughly one outer-scale eddy-turnover time, it
saturates at a fraction of the total kinetic energy of the fluid
motions10,12. This is what is referred to as the turbulent dynamo
mechanism for magnetic field amplification.

The seed fields that the dynamo amplifies can be produced by a
variety of different physical processes. In many astrophysical
environments where the plasma is initially unmagnetized, and
most certainly at the time when proto-galaxies were forming,
baroclinic generation of magnetic fields due to misaligned density
and temperature gradients—the Biermann battery mechanism—
can provide initial seeds13. The same starting fields also occur in
laser-produced plasmas14,15.

Theoretical expectations that turbulent dynamo must operate
go back more than half a century8,9,16 and the first direct
numerical confirmation of this effect was achieved 35 years ago17.
A significant body of theoretical work has developed over the
years18–20 that has greatly expanded our understanding of the
mechanism—for recent reviews of the current state of affairs see
refs. 21 and 22. Despite these advancements, demonstrating tur-
bulent dynamo amplification in the laboratory has remained
elusive. This is primarily because of the difficulty of achieving
experimentally magnetic Reynolds numbers (Rm = uLL/μ, where
uL is the flow velocity at the outer scale L, and μ is the magnetic
diffusivity) above the critical threshold of a few hundred required
for dynamo23. Such a demonstration would not only establish
experimentally the soundness of the existing theoretical and
numerical expectations for one of the most fundamental physical
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Fig. 1 Experimental configuration. The main target (see photo in a) consists of two CH foils doped with 6% chlorine in atomic number (b) that are
separated by 8mm. Each foil is illuminated by ten 500 J, 1 ns pulse length, frequency tripled (351 nm wavelength) laser beams with 800 μm spot diameter.
The beams are stacked in time to achieve the two pulse profiles shown in c. An additional set of 17 beams, all fired simultaneously, are used to implode a
420 μm diameter capsule consisting of a 2-μm-thick SiO2 shell filled with D2 gas at 6 atm and 3He at 12 atm. The implosion produces mono-energetic
protons at 3.3 and 15MeV with ~40 μm diameter source size, which traverse the plasma and are then collected by a CR-39 nuclear track detector with a
total magnification factor of 28. The plasma expansion towards the center of the target is perturbed by the presence of two grids, placed 4mm apart, with a
300 μm hole width and 300 μm hole spacing. Grid A has the central hole aligned on the center axis connecting the two foils, while grid B has the hole
pattern shifted so that the central axis crosses the middle point between two holes. Thomson scattering uses a 30 J, 1 ns, frequency doubled (wavelength λ
= 526.5 nm) laser beam to probe the plasma on the axis of the flow, 400 μm from the center and in a 50 μm focal spot, towards grid B. The scattered light
is collected with 63° scattering angle and the geometry is such that the scattering wavenumber k= kscatter−kprobe, where kscatterj j � kprobe
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� ¼ 2π=λ, is

parallel to the axis of the flow
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processes in astrophysics24, but also provide a platform25 to
investigate other fundamental processes that require a turbulent
magnetized plasma, such as particle acceleration and
reconnection.

To date, experimental investigation of magnetic field amplifi-
cation has primarily been carried out in liquid-metal experiments,
such as the von Kármán swirling flow of ref. 26 and the Riga
dynamo experiment27,28 inspired by the Ponomarenko
dynamo29. The driven dynamos achieved in these experiments
depended on a particular fluid flow rather than a purely turbulent
effect leading to a stochastic field. More recent work has focused
on laser-driven plasmas25,30,31, but studying a regime that is a
precursor to dynamo, because of the modest magnetic Reynolds
numbers that could be achieved.

In the following, we describe experiments in which we reach
magnetic Reynolds numbers above the expected dynamo
threshold. We detail the experimental configuration and present
diagnostic measurements that fully characterize the plasma state
of the magnetized turbulence. By utilizing two independent
magnetic field diagnostics we are able to demonstrate the tur-
bulent dynamo amplification of seed magnetic fields to dynamical
equipartition with the kinetic energy of the turbulent motions.

Results
Experimental platform. The experiments were performed at the
Omega laser facility at the Laboratory for Laser Energetics of the
University of Rochester32 using a combined platform that builds

on our previous work on smaller laser facilities15,30,31. Laser
ablation of a chlorine-doped plastic foil launches a plasma flow
from its rear surface. The plasma then passes through a solid grid
and collides with an opposite moving flow, produced in the same
manner. In order to increase the destabilization of the motions as
the flows collide, the two grids have hole patterns that are shifted
with respect to each other. Further details on the experimental
setup are given in Fig. 1. A set of diagnostics has been fielded to
measure the properties of the flow, its turbulence and the mag-
netic field generated by it (see Figs. 2 and 3).

Extensive two-dimensional and three-dimensional simulations
done prior to the experiments using the radiation-
magnetohydrodynamics (MHD) code FLASH informed their
design (see Fig. 2b and Supplementary Methods), including the
details of the targets and the grids, and the timing of the
diagnostics33,34.

Characterization of the turbulent plasma. X-ray emission can be
used to characterize the interaction of the colliding flows and
assess properties of the resulting plasma inhomogeneities. The
presence of a small amount of chlorine in the plasma enhances
the emission in the soft wavelength region (<2 keV). Soft X-ray
images taken at t = 35 ns from the start of the laser drive, which is
after the flows collide, indicate a broad non-uniform spatial dis-
tribution of the emission over a region more than 1 mm across.

In order to characterize the state of the turbulent plasma
produced by the collision of two laser-produced jets (as shown in
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Fig. 2 Characterization of the plasma turbulence. a X-ray pinhole image of the colliding flows at t= 35 ns after the laser drive, using the 5 ns pulse profile.
The image was recorded onto a framing camera with ~1 ns gate width and filtered with 0.5 μm C2H4 and 0.15 μm Al. The pinhole diameter is 50 μm. b
Rendering of the electron density from three-dimensional FLASH simulations at t= 35 ns. c The open blue circles give the power spectrum of the X-ray
emission from the collision region, defined by the rectangular region shown in panel a. The power spectrum has been filtered to remove edge effects and
image defects. Details of this procedure are given in Supplementary Methods. The shaded region at high wavenumbers is dominated by noise. The
spectrum of the density fluctuations, as obtained from FLASH simulations in the turbulent region, is shown with red squares. d Blue diamonds: power
spectrum of the kinetic energy from FLASH simulations. Red squares: power spectrum of magnetic energy from FLASH simulations. The simulated
magnetic energy spectrum is considerably shallower than the Kolmogorov-like kinetic energy spectrum, as predicted by ref. 23 and other studies in the Pm
< 1 regime (see text)
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Fig. 1), power spectra of the X-ray intensity fluctuations were
extracted from the experimental data using a two-dimensional
fast Fourier transform (see Fig. 2a, c). Under the assumption of
isotropic statistics, fluctuations in the detected X-ray intensity are
directly related to density fluctuations (see discussion in Supple-
mentary Methods). The power spectrum of the density fluctua-
tions extracted from the X-ray data is consistent with a
Kolmogorov power law (k−5/3 scaling). Experimental data from
other diagnostics indicate that the plasma motions are mainly
subsonic (Mach number ≲1 at the outer scale); as a result, density
fluctuations injected at large scales behave as a passive scalar and
the spectra of the density and velocity fluctuations should be the
same35,36. We conclude that the X-ray emission supports the
notion that turbulent motions are present in the interaction
region. This is also confirmed by FLASH simulations34, which
predict subsonic motions of the plasma following the flow
collision. Furthermore, the power spectrum of density and
velocity fluctuations can be calculated directly from FLASH,
and the results are consistent the same power law scaling for both
(Fig. 2c, d).

The Thomson scattering diagnostic (see Fig. 1 and Supple-
mentary Methods) allows us to measure simultaneously three
different velocities associated with the flow37. First, the bulk
plasma flow velocity—composed of a mean flow velocity U and

outer-scale turbulent velocity uL—is obtained from the measure-
ments of blueshifts (in frequency) of the scattered light resulting
from the bulk plasma moving towards grid B. Second, the
separation of the ion-acoustic waves is an accurate measure of the
sound speed and thus of the electron temperature, Te. Third, the
FLASH prediction of equal ion and electron temperatures allows
us to infer from the broadening of the ion-acoustic features the
turbulent velocity u‘ on the scale ‘ � 50 μm (the Thomson
scattering focal spot)31,38.

Based on these measurements, we find the following. Before the
collision, the two plasma flows move towards each other with
axial mean velocity U≲200 km s�1 in the laboratory rest frame,
and have an electron temperature Te ≈ 220 eV (see Supplemen-
tary Figure 1). After the collision, the axial flow slows down to
20–40 km s−1, with motions being converted into transverse
components. The electron temperature increases considerably,
reaching Te ≈ 450 eV (Fig. 3). The measured time-averaged
(RMS) turbulent velocity at scale ‘ is u‘ � 55 km s�1. If u‘ has
Kolmogorov scaling, the turbulent velocity at the outer scale must
therefore be uL � u‘ðL=‘Þ1=3 � 100 km s�1. Electron density
estimates can be obtained from the measured total intensity of
the Thomson scattered radiation, to give a value ne ≈ 1020 cm−3,
which is also consistent with values predicted by FLASH
simulations34. As shown in Supplementary Methods, plasmas
with these parameters can be well described as being collisional,
and in the resistive MHD regime.

For an MHD-type plasma, we can estimate the characteristic
fluid and magnetic Reynolds numbers attained in our experiment.
We find Re = uLL/ν ~ 1200 (ν is the viscosity), and Rm~600, using
L ~ 600 μm, the characteristic driving scale determined by the
average separation between grid openings. We have thus achieved
conditions where Rm is comfortably larger than the expected
critical magnetic Reynolds number required for turbulent
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Fig. 3 Thomson scattering measurements. Electron temperatures and flow
velocities are obtained by fitting the experimental data with the frequency-
dependent Thomson scattering cross-section37. In the fitting procedure we
assumed an electron density of ≲1020 cm−3 (as predicted by FLASH
simulations). At these electron densities, the frequency distribution of the
scattered light does not depend on the electron density, which only
provides an overall normalization factor. a Thomson scattering data (red
solid line) at t= 32.9 ns obtained from a target driven with the 5 ns pulse
profile. The blue dashed line corresponds to plasma in thermodynamic
equilibrium (assuming equal electron and ion temperatures). The central
peak is due to stray light at the probe laser wavelength (and it is used to
determine the instrumental resolution of the spectrometer). The blue solid
line corresponds to the case in which additional broadening due to
turbulence is included in the fitting procedure. The inset in the top panel
shows the time-streaked image of the Thomson scattered light. The
resolution of the streak camera is ~50 ps and the Thomson scattering signal
is fitted every 100 ps. b Flow velocity towards grid B (full blue circles),
turbulent velocity (full green squares), and electron temperature (full red
diamonds) as measured by Thomson scattering for the case of a target
driven with the 5 ns laser profile. FLASH simulation results for the electron
temperature and flow velocity in the probe volume are also reported in
dashed lines. The error bars are estimated from the χ2 fit of the data. c
Estimated Faraday rotation data from the Thomson scattering data. This
was done by separating the scattered light into two orthogonal
polarizations (see Supplementary Methods). The blue line corresponds to
the same conditions as b, above. The green line was obtained from an
experiment involving a single-flow, single-grid experiment only, when the
magnetic field is expected to be significantly smaller (see Supplementary
Figure 8 for the proton radiography results arising for a single-flow, single-
grid experiment). The errors are determined by the standard deviation of
the data within the shot
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dynamo23. The experiment also lies in the regime where the
magnetic Prandtl number is Pm ≡ Rm/Re< 1.

Magnetic field measurements. Magnetic fields were inferred
using both Faraday rotation (Fig. 3) and proton radiography
(Fig. 4). The rotation of the polarization angle of Thomson
scattered light provides a measure of the variation of the

longitudinal component of the magnetic field integrated along the
beam path, weighted by the electron density. Assuming a random
field with correlation length ‘B, we estimate B||,rms ≈ 120(Δθ/3°)
(ne/1020 cm−3)−1ð‘n‘B=0:2mm2Þ�1=2 kG, where B||,rms is the root
mean square (RMS) value of the magnetic field component par-
allel to the probe beam, Δθ is the rotation angle, and ‘n � L �
0:6mm is the scale length of the electron density along the line of
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sight. Estimating ‘B is more challenging, but as a reasonable
estimate we can take the size of the grid aperture (‘B � 300 μm).
The choice of ‘n‘B was corroborated by the FLASH simulations
via synthetic Faraday rotation measurements (see Supplementary
Figure 11 and the discussion in Supplementary Methods).

The appearance of strong, sharp features in proton radiographs
provides independent evidence for large magnetic fields39,40. Such
structures are the result of initially divergent proton rays
produced by an imploding D3He capsule being focused by
magnetic forces as they traverse the plasma. This leads, at the
detector plane, to localized regions where the proton counts
greatly exceed their average value and other regions where they
are strongly depleted. The detailed spatial structure of the path-
integrated magnetic field can be reconstructed from the
experimental images assuming that the protons undergo small
deflections as they pass through the plasma, and that the paths of
neighboring protons do not cross before reaching the screen.
Assuming isotropic statistics, this is sufficient information to
calculate the power spectrum of the magnetic energy EB(k), and
then the RMS magnetic field strength Brms of fluctuating fields via
B2
rms ¼ 8π

R
dk EB kð Þ (see refs. 41,42 and Supplementary Methods).

Figure 4a shows that the magnetic field during the early phases of
the collision is small, as no strong flux features appear in the
radiographic image. The corresponding reconstructed RMS
magnetic field strength Brms obtained from Fig. 4d gives
Brms≲4 kG.

Discussion
Magnetic fields before the collision, and in the absence of any
strong turbulence, are presumably Biermann battery fields pro-
duced at the laser spots and then advected by the flow, as indeed
is confirmed by FLASH simulations. In contrast, Fig. 4b, c—
corresponding to a later stage of the turbulent plasma’s lifetime
for the 10 and 5 ns pulse shapes, respectively—do indeed show
strong features, indicative of increased fields strengths and altered
morphology. These strong features are absent in single-flow
experiments (see Supplementary Figure 8 in Supplementary
Methods), suggesting that the interaction of the counter-
propagating flows and subsequent development of turbulence is
essential for magnetic field amplification. The reconstruction
algorithm can also be applied to the images in Fig. 4b, c (see
Fig. 4e, f); in the latter case, we obtain Brms ≈ 100 kG (see Sup-
plementary Methods). This is consistent with our previous esti-
mates based on Faraday rotation. We claim that this increase of
the magnetic field during the collision cannot be simply explained
by the compression of the field lines due to the formation of
shocks (this would only account for a factor of two increase at
most), nor by further generation by Biermann battery as the
temperature gradients are not strong enough. This view is sup-
ported by FLASH simulations (see Supplementary Methods).
Collisionless (magnetic field-generating) plasma processes such as
the Weibel or filamentation instabilities cannot be responsible for
the amplification of the magnetic field either, on account of the
plasma’s high collisionality (see Supplementary Methods).

In Fig. 4g we show the spectrum of the magnetic energy, EB(k),
calculated from the reconstructed path-integrated magnetic field.
This is the spectrum on which the estimate of Brms is based. The
peak of this spectrum occurs at a wavenumber consistent with the
claim that energetically dominant magnetic structures have a size
‘B � 300 μm. The steeper slope of the spectrum at small wave-
lengths (≲100 μm) is not a property of the true spectrum, but is
due to diffusion of the imaging beam caused by small-scale
magnetic fields, and the underestimation of the magnetic energy
by the reconstruction algorithm in the presence of small-scale
caustics (see Supplementary Methods for a discussion of these
effects). In the FLASH simulations the magnetic field spectrum
appears to be consistent with a ~ k−1 power-law dependence, as
shown in Fig. 2d, in agreement with the spectra of tangled fields
near and above the dynamo threshold found in ref. 23 and by
other investigators43–45, in the Pm< 1 regime.

Our experiment thus indicates that, as the two plasma flows
collide, a strongly turbulent plasma, with magnetic Reynolds
number above the threshold for dynamo action, is generated. The
magnetic field grows from an initial value Brms≲4 to ~100–120
kG. We assume this to be near the saturated value because the
Faraday rotation measurement begins over 2 ns (comparable to
dynamical times) before the proton imaging diagnostic, and we
infer similar magnetic field strengths from both. Note that the
expected timescale for saturation to be reached is of the order of
an outer-scale eddy-turnover time, L/uL ~ 6 ns, a period that is
comparable to the time that has elapsed between the initial flow
collision and the magnetic field measurements. That the mag-
netized plasma is in a saturated state is corroborated by the
FLASH simulation results (see Supplementary Figure 11 in Sup-
plementary Methods).

If saturation is reached, the magnetic field energy should
become comparable to the turbulent kinetic energy at the outer
scale. We find B2

rms=μ0ρu
2
L � 0:04 (where ρ is the plasma mass

density and we have taken Brms ≈ 120 kG). Because the field dis-
tribution is expected to be quite intermittent and because Rm in
our experiment is unlikely to be asymptotically large compared to
the dynamo threshold value, it is reasonable that the mean
magnetic energy density is quantitatively smaller than the kinetic
energy density10,11,17. However, a good indication that the mag-
netic field has reached a dynamically saturated state is that it is
dynamically strong in the most intense structures, which are not
necessarily volume filling. To find an upper experimental bound
on the maximum field, Bmax, we assume that the deflections
acquired by the imaging protons across the plasma come from an
interaction with a single structure. The strongest individual
structure in the reconstructed path-integrated image has scale
‘B � 140 μm with a path-integrated field of 6 kG cm. This gives
Bmax≲430 kG, which leads to B2

max=ðμ0ρu2LÞ≲0:5, consistent with
dynamical strength.

Our results appear to provide a consistent picture of magnetic
field amplification by turbulent motions, in agreement with the
longstanding theoretical expectation that turbulent dynamo is the
dominant process in achieving dynamical equipartition between

Fig. 4 Proton radiography. a Normalized number of 15MeV protons detected on a CR-39 plate. The normalization is such that unity corresponds to the mean
number of protons per pixel on the detector. The D3He capsule was imploded at t= 29 ns. Fusion reactions occur 0.6 ns after the start of the implosion and
the protons are emitted isotropically within a short burst, of ~150 ps duration39. The flight time of the protons to the plasma is 0.1 ns. The chlorinated plastic
foils were driven with a 10 ns long pulse shape (see Fig. 1). X-ray data and FLASH simulations indicate that the plasma flows are close to collision by 29 ns
(see also Supplementary Figure 9 in Supplementary Methods). Thus, this proton image can provide an estimate of the initial seed fields. b Same as a, but
with the deuterium–tritium capsule imploded at t= 34 ns. The development of structures shows the development of fields in the interaction region. c Same
as b, but with the chlorinated plastic foils driven with the 5 ns long pulse, which gives higher flow velocities, and hence higher magnetic Reynolds numbers. d
Reconstruction of magnetic fields for case a. e Reconstruction of magnetic fields for case b. f Reconstruction of magnetic fields for case c. g Power spectrum
of the magnetic energy from the reconstructed magnetic field from experimental data (the region bound by a dashed line in panel f)
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kinetic and magnetic energies in high magnetic Reynolds number
plasmas found in many astrophysical environments.

Methods
Experimental facility and diagnostics. The laser-driven experiments presented in
this work were carried out at the Omega laser facility at the Laboratory for Laser
Energetics of the University of Rochester32, under the auspices of the National
Laser User Facilities (NLUF) program of the U.S. Department of Energy (DOE)
National Nuclear Security Administration (NNSA). In order to fully characterize
the plasma state and measure the magnetic field amplification we fielded a number
of experimental diagnostics, including Thomson scattering, X-ray imaging, Faraday
rotation, and proton radiography. Detailed discussions on each diagnostic, along
with full descriptions on how the experimental measurements were analyzed, are
given in Supplementary Methods of the Supplementary Information.

MHD and numerical simulations. The experimental platform was designed using
radiation-MHD simulations with the publicly available, multi-physics code
FLASH46,47. The numerical modeling of the platform employed the entire suite of
High Energy Density Physics capabilities33,34 of the FLASH code. We performed
an extensive series of moderate-fidelity 2D cylindrical FLASH radiation-MHD
simulations on the Beagle 2 cluster at the University of Chicago followed by a
smaller set of high-fidelity 3D FLASH radiation-MHD simulations on the Mira
supercomputer at the Argonne National Laboratory. The simulation campaign is
described in detail in a companion paper34 and presented in Supplementary
Methods. The applicability of the MHD approximation and considerations
regarding the collisionality of the turbulent plasma are discussed in Supplementary
Methods of the Supplementary Information.

Data availability. All data that support the findings of this study are available from
the authors upon request.

Received: 23 June 2017 Accepted: 9 January 2018
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