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Challenging Mix Models on
Transients to Self-Similarity of
Unstably Stratified
Homogeneous Turbulence
The present work aims at expanding the set of buoyancy-driven unstable reference
flows—a critical ingredient in the development of turbulence models—by considering the
recently introduced “Unstably Stratified Homogeneous Turbulence” (USHT) in both its
self-similar and transient regimes. The previously established accuracy of an anisotropic
Eddy-Damped Quasi-Normal Markovian Model (EDQNM) on the USHT has allowed us
to: (i) build a data set of well defined transient flows from Homogeneous Isotropic Turbu-
lence (HIT) to late-time self-similar USHT and (ii) on this basis, calibrate, validate, and
compare three common Reynolds-Averaged Navier–Stokes (RANS) mixing models (two-
equation, Reynolds stress, and two-fluid). The model calibrations were performed on the
self-similar flows constrained by predefined long range correlations (Saffman or Batche-
lor type). Then, with fixed constants, validations were carried out over the various transi-
ents defined by the initial Froude number and mixing intensity. Significant differences
between the models are observed, but none of them can accurately capture all of the tran-
sient regimes at once. Closer inspection of the various model responses hints at possible
routes for their improvement. [DOI: 10.1115/1.4032533]

1 Introduction

The dynamics of buoyancy-driven turbulent flows is difficult to
predict since it ensues from complex wave/instability phenomena.
Such flows are characterized by a mean gradient of density q and
an acceleration gdi3 due to the gravity or the displacement of the
system along a vertical direction x3. If the problem is restricted to
incompressible fluids within the Boussinesq limit, it may be
viewed as a two-way coupling between the turbulent velocity u
and the buoyancy parameter # ¼ gq0=ðqNÞ; here, q0 denotes the

density fluctuations and N ¼ kg@3q=qk1=2
the characteristic buoy-

ancy frequency usually referred as Brunt-V€ais€al€a frequency for
stable configuration (g@3q < 0). In order to disentangle the differ-
ent mechanisms at work, the buoyancy frequency N is considered
to be independent of the spatial location x and time t. This is an
idealized approach since for realistic flows the gradient of density
is not uniform and may evolve in time due to the vertical turbulent
mass flux. However, it becomes relevant for turbulent structures
small enough compared to the mean stratification scale and for
sufficiently small times. An advantage of this idealized case is
that statistical homogeneity can be assumed for the fluctuating
quantities rendering spectral methods very efficient. It leads to dif-
ferent canonical configurations referred as stably stratified homo-
geneous turbulence/USHT (SSHT/USHT) [1,2] extending
previous homogeneous approaches of Refs. [3–5] in the sense that
the density fluctuations are maintained by the presence of the
mean density gradient.

Buoyancy-driven turbulence is encountered in many applica-
tions related to engineering or geophysics. In particular, SSHT
has been the subject of active research for many years since it
idealizes many of the situations found in ocean or atmosphere. In
contrast, unstably stratified flows akin to the USHT are observed
more scarcely due to their transient nature. For this reason, the
USHT has attracted less attention despite being a central

ingredient to explain important phenomena such as mixing gener-
ated by convective down-welling sites in seas [6].

An appealing method in order to explore the properties of
buoyancy-driven turbulence consists of looking for self-similar
solutions of the flow. The discovery of self-similar solutions in the
USHT describing the late time dynamics is quite recent [7,8] and
these regimes have not been reached in the experiments of Ref.
[9]. However, analogous self-similar solutions have been known
for a long time for other homogeneous turbulent flows such as
decaying isotropic turbulence [10] or buoyancy induced turbu-
lence without the presence of mean stratification [3]. It is impor-
tant to stress that all these turbulent flows share an evolution
which depends on the initial distribution of energy at large scales.
This point is directly related to the question of permanence of big
eddies in the HIT. In practice, many theories express this feature
by an explicit dependence of the decay or the growth rate on the
slope of infrared spectra [11,12].

These aspects go beyond the theoretical questions on idealized
problems. The effects of initial conditions on the late-time self-
similar regime are a well-known problem in more complex flows
such as Rayleigh–Taylor mixing zones (see, for instance, Refs.
[13–16]). However, accurate understanding to predict this phe-
nomenon is still missing, despite the many works based on the
heuristic approaches such as buoyancy-drag models [17]. Since
the USHT shares the same mechanism of baroclinic production of
vorticity, it can bring insight to Rayleigh–Taylor turbulence.
More precisely, the USHT should properly describe the dynamics
structures up to the size of the integral scale at the center of well-
developed mixing zones (see Ref. [2]). Also similarly, the USHT
can provide a new playground for turbulent mix models dedicated
to predict the Rayleigh–Taylor dynamics. It is in fact tempting to
test and challenge these models on simple USHT configurations;
since simulating these flows is easier, it allows extensive paramet-
ric studies and a better understanding of the phenomena.

The objective of this work is thus twofold. In the first step, we
explore the different dynamics leading to the self-similar regime
in the USHT. Transient patterns and durations display a wide
range of behaviors depending on the strength of the mean acceler-
ation applied to the system and the initial state of turbulence.
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These phases are important because in real systems, such as
Rayleigh–Taylor, self-similarity is not necessarily reached for
instance due to nonconstant acceleration [18,19]. For the present
study, we rely on a spectral model recently developed for USHT
and based on an anisotropic EDQNM. The results obtained by this
approach are very close to direct numerical simulations (DNS) as
shown in Ref. [20]. However, direct numerical simulations of
USHT are not possible here as we try to avoid finite Reynolds
number effects. In the second step, we perform comparisons with
different turbulent mix models during transients. This leads us to
discuss the common belief that if a turbulent mix model is able to
mimic the characteristics of the self-similar solution—such as the
growth rate and different anisotropy characteristics—then it can
reproduce correctly the dynamics of the flow. For that purpose,
we consider three mix models of a very different nature but repre-
sentative of existing RANS modeling strategies for buoyancy-
induced turbulence: two-equation [21], Reynolds stress [22], and
two-fluid type [23].

This paper is organized as follows: In Sec. 2, the basic charac-
teristics of USHT and the results from the EDQNM model are
exposed with a focus on the transients to self-similarity. Section 3
is dedicated to comparisons with the different mix model as well
as the interpretation of the results. Section 4 concludes the paper.

2 The Convergence Toward the Self-Similar Regime

in USHT

In this section, the equations and phenomenology of USHT are
recalled. We describe the procedure to explore the transients with
the EDQNM model, the results are presented afterward.

2.1 Basic Equations of USHT. The equations for USHT can
be derived from the incompressible Navier–Stokes equations
assuming Boussinesq approximation and a uniform constant mean
density gradient along the x3-vertical component. These equations
give the dynamics of the turbulent fluctuations for the velocity
uðx; tÞ, for the reduced pressure pðx; tÞ, and for the buoyancy pa-
rameter #ðx; tÞ as follows:

@iui ¼ 0 (1a)

@tui þ uj@jui ¼ �@ipþ �@jjui þ N#di3 (1b)

@t#þ uj@j# ¼ D@jj#þ Nu3 (1c)

Equation (1a) stands for the incompressibility condition, Eqs. (1b)
and (1c) determine the evolution of the velocity and buoyancy pa-
rameter, respectively. For convenience, the buoyancy parameter #
is rescaled as a velocity by the mean of the buoyancy
frequency N, here supposed constant. Also, it can be seen that the
frequency N controls the coupling between u3 and # as already
mentioned in Sec. 1. A simple linear analysis reveals the unstable
nature of the system. We restrict this study to unit Schmidt num-
ber, � ¼ D.

Introducing the ensemble average h i, the turbulent quantities
correspond to fluctuations with zero mean and we can write
huii; hpi; h#i ¼ 0. The turbulent flow is assumed homogeneous
and axisymmetric in the statistical sense. In this USHT problem,
anisotropy is fed by the linear buoyancy terms proportional to N.

Equations (1a)–(1c) can be solved numerically in a cubic box
with periodic boundary conditions using classical pseudospectral
methods as illustrated in Fig. 1.

These simulations are very convenient tools to study the devel-
opment of the instability. In particular, one-point quantities such
as kinetic energy K ¼ huiuii=2, variance of buoyancy h##i and
vertical buoyancy flux hu3#i particularly useful for the RANS
models can be directly extracted and analyzed. In this study, the
initial states of USHT are chosen isotropic, obtained from the
decayed HIT simulations. Anisotropic structures for the velocity

and the buoyancy parameter appears and grows constantly. This
comes along with an increase in the characteristic lengths for
energy containing eddies. Therefore, the large scales in USHT
become confined while the small ones become under-resolved
limiting the possibility of reaching the late time regimes and
obtaining very high Reynolds numbers.

In USHT, the late time regime becomes self-similar with an ex-
ponential growth of turbulent quantities, as �ebNt. This question
has been addressed in detail, see, for instance, Refs. [7,20], and
[24]. The value of the growth parameter b was shown to depend
on s the spectrum slope at large (infrared) scales as b ¼ 4=ðsþ 3Þ
(for s � 4). Accordingly, the growth rate and the anisotropy are
larger when for given total energy its distribution is skewed to-
ward larger scales.

2.2 Methodology. In order to investigate the transients and
provide reference data for the RANS models, simulations have to:

(1) Start from initial conditions corresponding to a well devel-
oped turbulence in order to facilitate the identification of
turbulent quantities with the RANS models,

(2) reach the late self-similar regime implying to achieve high
Reynolds numbers, and

(3) be fast enough to permit a parametric study on initial
conditions.

For this problem, DNS have prohibitive computational cost,
and we consider the EDQNM spectral turbulence model described
in Ref. [20] to perform the study. One may think to use large eddy
simulations (LES) instead to explore transients. LES allows to
access the phenomenology of high Reynolds number turbulence
[25] under the strong assumption that no bias is introduced by the
subgrid model. Still, USHT LES should take into account the
growth of the integral scale, typically multiplied by a factor 100
in the cases presented below. It is instructive to evaluate roughly
the ratio between the size of the domain and the size of the mesh
for the LES of USHT transients. Let us say a ratio of ten is
requested between the integral scale and the mesh size for the
LES in order to be sufficiently accurate. At the end of the simula-
tion, we need a ratio between the size of the domain and the inte-
gral scale of ten to avoid confinement effects which spoil the
growth of turbulent quantities. Taking into account the shift of the

Fig. 1 Visualization of the buoyancy parameter # in a vertical
plane of an USHT DNS. The acceleration points to the bottom in
the figure. White zones, corresponding to lighter fluid, move
upward while heavier darker parcels of fluid move downward.
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integral scale, this leads to a ratio of 104 between the size of the
domain and the mesh size, therefore necessitating 1012 grid
points! Needless to say, such LES are very demanding especially
for a parametric study.

The presently adapted EDQNM model exploits the spectral rep-
resentation of turbulence and further aims at including the specific
aspects of USHT. The different spectra defined as Fourier trans-
forms of the two-point correlations are written within an axisym-
metric formalism. They depend explicitly on the angle between
the wave vector and the vertical direction, thus capturing direc-
tional anisotropy. The eddy-damping term controlling the dynam-
ics of triple correlations in the model has been enhanced through a
dependence on the frequency N to reduce the energy transfer [20].
This aspect may be interpreted as the consequence of sweeping
effects between the structures of different buoyancies [26]. The
presence of buoyancy production helps closing the eddy-damping
term, a delicate and specific problem to USHT. The tractability of
the equations results from different simplifications. In addition,
the model has a few well-known limitations identified on the iso-
tropic EDQNM models; for instance, a slight underestimation of
backscatter effects at large wavenumbers [27] or an underestima-
tion of spectra at small scales attributed to a lack of intermittency
phenomenology [28]. Despite these aspects, the model has been
able to reproduce accurately one-point statistics from various
DNS at moderate Reynolds numbers [20]. At high Reynolds num-
bers, simulations and experiments are not available and our analy-
sis relies on the solutions of the EDQNM model only. These
EDQNM simulations are thus used as our references to evaluate
the predictions of classical one-point turbulence models. Clearly,
this is a sensitive aspect in our methodology but it has to be kept
in mind that EDQNM does take into account the anisotropy and
distant interaction effects on the transfer term compared to other,
however, very good but more restrictive models, such as in Ref.
[29]. At this point, a validation of EDQNM with LES representing
high Reynolds number turbulence would be fruitful.

Now, we describe briefly how initial conditions are obtained.
At t¼ 0 corresponding to the time when buoyancy effects are ini-
tiated, the state of turbulence for the simulations is isotropic and
homogeneous. It results from a freely decaying turbulence simula-
tion with a passive scalar started at t< 0. So in practice N¼ 0 for
t< 0, and afterward the buoyancy frequency is set at a constant
value for t � 0. The velocity and the buoyancy parameter are
decorrelated at t¼ 0, i.e., hui#i ¼ 0. Initial conditions with non-
zero anisotropy and vertical buoyancy flux are not considered
here because it increases drastically the number of parameters in
the system.

It is convenient to characterize the flow with different nondi-
mensional numbers. First, we introduce the turbulent Reynolds
number defined from the kinetic energy K, its dissipation E, and
the viscosity � as Re ¼ K2=E�. In all the EDQNM simulations
proposed, the initial Reynolds number at t¼ 0 is Re¼ 1000. In
order to fulfill this condition, the Reynolds number is set at higher
values at the beginning of the decay phase (for t< 0). For
Re¼ 1000, an inertial range of about one decade can be observed
on spectra and viscosity–diffusivity effects at large scales are neg-
ligible. This point indicates that, when studying the convergence
toward self-similar regime, the results are free from additional
effects due to the transition to turbulence [30]. In the simulations

presented, the Reynolds numbers increase drastically due to the
buoyancy instability up to value of Re � 106.

The second important parameter is the Froude number, Fr,
defined as the ratio between the turbulent and the buoyancy fre-
quency as Fr ¼ E=KN. The Froude number compares the buoy-
ancy force to the inertia of turbulent eddies. Depending on its
initial value, two different regimes can be identified; on the one
hand, when the Froude number is high, buoyancy effects are neg-
ligible and the turbulent flow is controlled by the initial freely
decaying dynamics of HIT. On the other hand for small initial
Froude number, the production of energy due to buoyancy domi-
nates and the flow enters a rapidly accelerated regime [31,32].
Both regimes correspond to a different path toward the final self-
similar state and are important to study. In the simulations, we
present Froude numbers ranging values from Fr 2 ½0:07; 7:�.

Finally, we also introduce the mixing parameter K, expressing
the ratio between fluctuations of buoyancy # and velocity ui as
K ¼ h##i=K. The parameter K can take arbitrary values but the
presence of buoyancy tends to balance kinetic energy and var-
iance of buoyancy within K 2 ½1:5; 2� in the self-similar regime.
Therefore, different initial mixing parameters imply different tran-
sients. In our study, we consider initial K 2 ½0:15; 20�. Note that
the knowledge of both the initial Froude number Fr and the mix-
ing parameter K is enough to characterize the dynamics of the
USHT transients and determine initial conditions for the RANS
models as the initial vertical buoyancy flux is zero.

As already explained, the initial distribution of energy at large
scales is important in USHT as it determines the growth rate of
the final self-similar regime. To take this aspect into account, dif-
ferent initial velocity E(k) and buoyancy B(k) spectra depending
on the wavenumber k are considered. More precisely, we choose

EðkÞ; BðkÞ � ks exp ½�sðk=kpeakÞ2=2� at the beginning of the
freely decaying phase (t< 0). The vertical velocity buoyancy
spectrum F(k) remains null during this phase. Integrating spectra
over wave number k provides one-point statistics with, in

particular, K ¼
Ðþ1

0
EðkÞdk; h##i ¼

Ðþ1
0

BðkÞdk and hu3#i
¼
Ðþ1

0
FðkÞdk. The infrared slope s is taken as 2 (Saffman type)

and 4 (Batchelor type) leading to self-similar growth rates b,
respectively, of 4/5 and 4/7. The wavenumber value correspond-
ing to the initial maximum of spectra, kpeak, is set at 40. During
the simulations, wavenumbers corresponding to maxima for the
velocity and buoyancy spectra remain nearly the same although
slight differences due to nonidentical decay rates of the velocity
and the scalar during transients. Also, the value for the viscosity
and the diffusion coefficient imposed in all the simulations is

� ¼ D ¼ 5� 10�5.
Around 40 EDQNM simulations are conducted in order to explore

the transients to self-similarity. Each simulation has a cost of 104 cen-
tral processing unit hours, reaching Reynolds numbers up to Re � 106

far beyond the reach of DNS. The different values expressing the ini-
tial characteristics of the simulations are shown in Table 1.

2.3 EDQNM Simulated Results. In this section, the charac-
teristics of the transients obtained from the different EDQNM
simulations are detailed. In Fig. 2, the time evolution of the Reyn-
olds number, the Froude number, and the mixing intensity

Table 1 Characteristics of the EDQNM simulations at Nt 5 0. (Left) With k2 initial Saffman spectra corresponding to cases S*.
(Right) With k4 initial Batchelor spectra corresponding to cases B*.

K\Fr 0.078 0.155 0.31 0.62 3.1 K\Fr 0.168 0.337 0.670 1.28 6.61

0.184 S1 S6 S11 S16 S21 0.181 B1 B4 B7 B10 B13
0.92 S2 S7 S12 S17 S22 1.81 B2 B5 B8 B11 B14
1.84 S3 S8 S13 S18 S23 18.1 B3 B6 B9 B12 B15
9.2 S4 S9 S14 S19 S24

18.4 S5 S10 S15 S20 S25
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parameter is shown starting from t¼ 0 when acceleration is
switched on. Initial conditions, as already discussed, derive from
different freely decaying states corresponding to t � 0.

The simulations converge to the self-similar regimes but at a
different pace determined by initial conditions. In self-similar
regimes, the Reynolds number grows exponentially as ebNt, while
the Froude number and the mixing parameter are constant. As
expected from the theory [8,20], the growth rates are different for
k2 or k4 infrared spectra. In addition, the asymptotic values for the
Froude number are slightly different, with Fr � 0:35 and 0.45 for,
respectively, Saffman k2 and Batchelor k4 spectra. For similar ini-
tial distribution of energy at large scales, the curves for Fr and K
converge toward the same values. The various features of the tran-
sient can be observed more directly on second-order correlations
such as the kinetic energy K, the buoyancy variance h##i, and the
vertical buoyancy flux hu3#i shown in Fig. 3(a). The case pre-
sented corresponds to S15, and has a small initial Froude number
and high initial mixing parameter. The evolutions of the turbulent
quantities during the transient (I) contrast with their dynamics dur-
ing the self-similar regime (II). Also, each quantity does not
evolve the same manner despite having the same self-similar
behavior. Case S15 is characterized by a strong initial variance of
buoyancy compared to kinetic energy so the transient is partly
determined by a rebalance of K compared to h##i in this example.

The initial Froude number being relatively small, buoyancy
effects develop quickly and the dynamics of turbulent quantities
can be explained from the effect of the linear buoyancy term
neglecting all dissipation processes. The rapid acceleration theory
(Refs. [31] and [32]) shows that the growth is exponential as
�e2Nt, which is faster than during the late self-similar regime.
Regarding spectra, Fig. 3(b) illustrates the evolution to self-
similar regime accompanied by a growth of the integral scale and
diminution of the Kolmogorov scale. An inertial range develops
with a classical Kolmogorov–Obhukov k�5=3 scaling on E(k) and
B(k) and for the vertical buoyancy flux F(k) a trend to k�7=3 (see
Ref. [8]).

Depending on the initial Froude number, Fr, and the initial
mixing parameter K, the transients can take different routes.
We introduce two characteristic times in order to describe more

Fig. 2 Evolution of nondimensional numbers as a function of
time for the different EDQNM simulations corresponding to
Table 1; (top) Reynolds number, (middle) Froude number, (bot-
tom) mixing parameter. (Left) Saffman k2 spectra with symbols
corresponding to initial Froude number; (circle) Fr 5 3.1, (cross)
Fr 5 0.62, (square) Fr 5 31, (diamond) Fr 5 0.155, and (star)
Fr 5 0.078. Lines correspond to the initial mixing parameter;
(plain) K 5 0:184, (dashed) K 5 0:92, (dashed–dotted) K 5 1:84,
(dotted) K 5 9:2, and (none) K 5 18:4. (right) Batchelor k4 spec-
tra with symbols corresponding to initial Froude number;
(circle) Fr 5 6.61, (cross) Fr 5 1.28, (square) Fr 5 0.67, (diamond)
Fr 5 0.337, and (star) Fr 5 0.168. Lines correspond to initial mix-
ing parameter; (plain) K 5 18:1, (dashed) K 5 1:81, (dashed–dot-
ted) K 5 0:184, and (dotted) K 5 9:2.

Fig. 3 (Top) Time-evolution of the kinetic energy K (plain
curve), the variance of buoyancy h##i (dashed curve) and the
vertical buoyancy flux hu3#i (dotted curve) corresponding to
run S15. (Bottom): Energy spectrum E(k) (plain curve),
buoyancy spectrum B(k) (dashed curve), and vertical velocity-
buoyancy spectrum F(k) (dotted curved) as a function of wave-
number k for run S15. Different times are shown corresponding
to the initialization at Nt < 0, when stratification effects are
applied Nt 5 0 and during self-similar regime Nt 5 5. F(k) is non-
zero only for t > 0.
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precisely these dynamics. First, the transition delay TI corresponds
to the instance such that the growth rate of the kinetic energy, K,
remains close to 10% of its theoretical asymptotic value b. This
can be expressed as

TI ¼ min
t
8t0 � t; we have

����b� 1

K
dK
dNt

t0ð Þ
����

b
� 0:1

8><
>:

9>=
>; (2)

In addition, we define the time Ts corresponding to the temporal
gap between the self-similar solution and a virtual self-similar so-
lution passing through the initial value of kinetic energy Kðt ¼ 0Þ
(see Fig. 3). This is obtained by

Ts ¼
log K t ¼ TIð Þð Þ � log K t ¼ 0ð Þð Þ

bN
� TI (3)

Therefore, the sign of Ts indicates if during the transients the
growth rate is stronger (>0) or smaller (<0) in average than dur-
ing the self-similar phase. The couple TI and Ts provides a simpli-
fied but fair description of the transients to the self-similar regime.
Now, it is possible to represent these times as a function of initial
Froude and mixing parameter as in Figs. 4 and 5. These figures
show that the transient is very sensitive to the initial Froude num-
ber, and to a lesser degree to the mixing parameter. For Fr	 1,
the turbulence decays freely until buoyant effects are strong
enough to rule the dynamics of the flow. On the contrary, for
Fr
 1, the turbulence is driven by rapid acceleration theory char-
acterized by an important growth rate b¼ 2. For these two oppo-
site regimes, the duration of the transition delay TI is increased
but depending on the time shift is decreased (Fr	 1) or increased
(Fr
 1). The effects of the mixing parameter seem second-order
compared to the influence of the Froude number. In fact, K con-
verges very rapidly to its asymptotic value while Fr controls the
final evolution to self-similarity as indicated in Fig. 2.

3 Modeling the Transients

In this section, we study how the different one-point turbulence
models are able to reproduce the behavior of the transients
described in Sec. 2. We start by introducing the models, we
explain how the model coefficients are adjusted to the self-similar
regime, and how the models are initialized. Then, we compare the
models with the EDQNM simulations and discuss the implications
for the different closures.

3.1 Presentation of the One-Point Turbulence Models for
Buoyancy Induced Mixing

3.1.1 K� E Mix Model. One of the simpler and older RANS
models which can account for buoyancy effects is the
two-equation K� E model described in Ref. [21]. Its dynamics is

given by the following system of equations for kinetic energy and
its dissipation here adapted to the USHT configuration

d

dt
K ¼ aN2K2

E � E (4a)

d

dt
E ¼ aN2Ce0K� Ce2

E2

K (4b)

In the equations for K and E, Eqs. (4a) and (4b), the first terms on
the right-hand side which are proportional to N2 correspond to the
production of energy due to buoyancy effects, and the last ones
refer to the dissipation process. The K� E model cannot describe
the effects of the mixing parameter as it does not contain the var-
iance of buoyancy. Also, since the model relies on first gradient
closures, the vertical mass flux is implicitly supposed to be pro-
portional to K2=E.

The model contains three coefficients a, Ce0; Ce2 which need
to be adjusted. Two sets of coefficients specifically adapted to
the different kinds of EDQNM simulations (Saffman and
Batchelor) are proposed. We start by determining Ce2 in order
to have the correct self-similar decay rate of HIT. In this re-
gime, the kinetic energy evolves as K � t�n with n¼ 6/5 for a
Saffman energy spectrum and n¼ 10/7 for Batchelor spectrum.
Then, the remaining coefficients a, Ce0 are provided by the
self-similar growth rate and Froude number in USHT, with
b ¼ 4=5 and Fr � 0:35 for Saffman spectra and with b ¼
4=7; Fr � 0:45 for Batchelor spectra. The different values of
the coefficients used for the comparisons with EDQNM are
presented in Table 2. Here, the coefficients proposed are
purely designed for the USHT test cases and differ sensitively
from classical values. For instance, Ce2 usually takes higher
values adjusted on the experimental measurement of grid tur-
bulence decay. Also, lower values are often considered for Ce0
and að¼ Cl=rqÞ (see Ref. [33]). Nevertheless, the values of
the Ce0 � 0:8 and a � 0:5 measured in Rayleigh–Taylor DNS
(Refs. [34–36]) are not compatible with the asymptotic growth
rate of the mixing zone. This suggests that the model performs
very poorly on USHT as will be seen below.

For the initialization procedure, it is enough to use
directly the values of Fr obtained from the EDQNM simula-
tions at t¼ 0. Note the model cannot represent the mixing pa-
rameter K.

Fig. 4 Nondimensional transition delay NTI as a function of
initial Froude and mixing parameter and obtained from Eq. (2)
for the k2 Saffman spectra. The square symbols correspond to
the simulations points of Table 1.

Fig. 5 Nondimensional time shift NTs as a function of initial
Froude and mixing parameter and obtained from Eq. (2) for the
k4 Batchelor spectra. The square symbols correspond to the
simulations points of Table 1.

Table 2 Coefficients used in the K2E model for Batchelor and
Saffman initial spectra cases

Case Ce0 Ce2 a

Batchelor 1.308 1.7 0.459
Saffman 1.252 1.83 0.4025
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3.1.2 Reynolds Stress Model GSGþ. The Reynolds stress
model GSGþ (see Refs. [22] and [37]) describes the dynamics of
second-order correlations and the dissipation. In its Boussinesq
formulation, GSGþ is also very similar to BHR3 [38]. We study
here its dynamics in the USHT configuration. The different equa-
tions standing for, respectively, the correlations of the vertical and
horizontal velocities, the velocity/buoyancy cross correlation, the
variance of buoyancy, and the dissipation of kinetic energy can be
written as

d

dt
hu3u3i ¼ 2 1� 2

3
c

� �
Nhu3#i

�C1

E
K hu3u3i �

2

3
K

� �
� 2

3
E (5a)

d

dt
huhuhi ¼

2

3
cNhu3#i � C1

E
K huhuhi �

2

3
K

� �
� 2

3
E (5b)

d

dt
hu3#i ¼ Nhu3u3i þ 1� cð ÞNh##i � Cu2

E
K hu3#i (5c)

d

dt
h##i ¼ 2Nhu3#i � Cq2

E
K h##i (5d)

d

dt
E ¼ Ce0

E
KNhu3#i � Ce2

E2

K (5e)

At the right-hand sides of Eqs. (5a)–(5e) appear the production
due to buoyancy proportional to N, the term of return to isotropy
proportional to the constant C1, and the different dissipations. The
kinetic energy is divided between the vertical and the horizontal
components as K ¼ hu3u3i=2þ huhuhi (we use subscript h¼ 1, 2
for convenience). The redistribution of energy due to the rapid
pressure effects are closed through the terms proportional to c.

The coefficients used for the comparisons with the EDQNM
simulations are presented in Table 3, with also two sets corre-
sponding to Saffman and Batchelor long-range initial correlations.
As for the two-equation K� E model, these coefficients ensure
that the self-similar decay rate n and growth rate b correspond to
the theoretical values predicted for Saffman and Batchelor spec-
tra. The coefficient c takes the value one-third in order to capture
the correct initial evolution of turbulent quantities during a rapid
acceleration phase starting from an isotropic state. Other con-
straints come from the self-similar regime of USHT in order to
get the asymptotic Froude number, the anisotropy of the Reynolds
stress and mixing parameter obtained by EDQNM simulations.

All the turbulent quantities described by the Reynolds stress
model can be initialized directly at t¼ 0 from the different
EDQNM spectra.

3.1.3 Two-Structure Two-Fluid Model 2SFK. We consider
the two-structure two-fluid model 2SFK which is described in
Ref. [23]. In the 2SFK model, the dynamics of buoyancy-induced
turbulence comes from the interaction between rising and de-
scending structures of different densities. For the USHT flow, the
model leads to a system of equations for the contrast of buoyancy
d# and vertical velocity difference du between structures, the tur-
bulent kinetic energy inside the structures K�, and the total dissi-
pation of turbulent kinetic energy E, which reads

d

dt
d# ¼ Ndu� Cec

4

E
K� d# (6a)

d

dt
du ¼ 1

1þ Cað ÞNd#� 1

4

Cd

1þ Cað Þ
E
K� du (6b)

d

dt
K� ¼ 1

16
Cd
E
K� du2 � E (6c)

d

dt
E ¼ Ce1

1

16
Cd

E
K�
� �2

du2 � Ce2
E
K� E (6d)

Table 3 Coefficients used in the GSG1 model for Batchelor
and Saffman initial spectra cases

Case Ce0 Ce2 Cu2 Cq2 c C1

Batchelor 1.31 1.7 3.4 2.11 0.33 1.8
Saffman 1.28 1.83 2.96 1.65 0.33 1.79

Table 4 Coefficients used in the 2SFK model for Batchelor and
Saffman initial spectra cases

Case Ca Cec Ce1 Ce2 Cd

Batchelor 0.5 2 1.5 1.7 1.33
Saffman 0.5 2 1.5 1.83 1.6

Fig. 6 Transition delays T KE
I and time shifts T KE

s as a function of the initial mixing parameter
K (abscissa) and the Froude number Fr (ordinate) obtained from Eqs. (2) and (3) for the K2E
model. Also, the differences between EDQNM and the K2E model on transition delays

DT KE
I 5 TI 2T KE

I and on time shifts DT KE
s 5 Ts2T KE

s are represented. Cases for Saffman (top)
and Batchelor (bottom) initial spectra are represented.
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In the 2SFK model, the buoyancy production terms proportional
to N increase the contrasts of buoyancy and velocity between
structures. This effect is counterbalanced by the terms of buoy-
ancy exchange and drag force, respectively, proportional to Cec

and Cd, which transfer interstructure density contrast and
directed–added mass energy to intrastructure fluctuations and tur-
bulence. The coefficient Ca is associated with added mass effects,
accounting for the pressure effects. The energy inside the struc-
tures is dissipated at small scales by E. Note that in this model, the
different exchange terms are determined by the turbulent fre-
quency of the large in-structure eddies, E=K� accounting for
smaller turbulent eddies. The total turbulent kinetic energy of the

system is related to the drift velocity du and K� by
K ¼ K� þ ð1þ CaÞdu2=8. In addition, the vertical component of
the Reynolds stress tensor is provided by hu3u3i ¼ 2K�=3þ ð1þ
Ca=3Þdu2=4 in 2SFK. This comes from the fact that the kinetic
energy inside the structures K� and the energy accounted for by
the added mass Ca are assumed isotropic while the directed energy
du2=8 is purely oriented along the vertical direction.

The adjusted coefficients for the 2SFK model are shown in
Table 4.

As for the other models, these coefficients ensure the correct
self-similar rates of both HIT decay and USHT growth rates, for
Saffman and Batchelor spectra. The added mass coefficient is

Fig. 7 Transition delays T GSG1
I and time shifts T GSG1

s as a function of the initial mixing parameter K (abscissa) and the Froude
number Fr (ordinate) obtained from Eqs. (2) and (3) for the RSM GSG1 model. Also, the differences between EDQNM and the

GSG1 model on transition delays DT GSG1
I 5 TI 2T GSG1

I and on time shifts DT GSG1
s 5 Ts2T GSG1

s are represented. Cases for Saff-
man (top) and Batchelor (bottom) initial spectra are represented.

Fig. 8 Transition delays T 2SFK
I and time shifts T 2SFK

s as a function of the initial mixing parameter K (abscissa) and the Froude
number Fr (ordinate) obtained from Eqs. (2) and (3) for the 2SFK model. Also, the differences between EDQNM and the 2SFK

model on transition delays DT 2SFK
I 5 TI 2T 2SFK

I and on time shifts DT 2SFK
s 5 Ts2T 2SFK

s are represented. Cases for Saffman (top)
and Batchelor (bottom) initial spectra are represented.

Journal of Fluids Engineering JULY 2016, Vol. 138 / 070904-7

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 05/22/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



chosen to be Ca ¼ 0:5, the typical value for spheres. In USHT,
this coefficient plays the same role as c in the GSGþ model.

In order to initialize the 2SFK model from the isotropic condi-
tions at t¼ 0, we take du ¼ 0 and K� ¼ K. Because d# accounts
for only one part of the density fluctuations—which, without
explicit structure field equations, cannot be obtained in the present
state of the EDQNM simulations—we have assumed an identical
half-to-half ratio of inter- to intra-structure fluctuations as in pre-
viously performed DNS of self-similar Rayleigh–Taylor flow
[39]. The interstructure variance of buoyancy being ðd#=2Þ2, we
thus set d# ¼ ð2h##iÞ1=2

but tests have shown low sensitivity to
this ratio.

3.2 Results and Discussion. In order to study the transients
toward the final regime of USHT for the different RANS models,
we introduce similarly to Sec. 2.3 the transition delays and time
shifts T�I;s, with � standing for KE, GSGþ, or 2SFK, using the

same formulas, Eqs. (2) and (3). For each model, we represent the
different times as a function of the Froude number and the mixing
parameter in Figs. 6–8. The discrepancy with the EDQNM model
can be evaluated by introducing the quantities, DT�I;s ¼ T�I;s � TI;s.

The positive or negative sign of DT�I;s indicates a shorter or longer

model transient, respectively, and a smaller or stronger average
growth rate during transients compared to the EDQNM simula-
tions. Therefore, if DT�I;s � 0 for some initial conditions, the

model is relatively close to the EDQNM solution.
In parallel, we show in Figs. 9–12, the evolution of kinetic

energy and Froude number for the models on the different cases
with initial Saffman or Batchelor spectra. In fact, kinetic energy
and Froude number (which gives the dissipation here) are the only
variables commonly described by the various models.

Despite being adjusted on the self-similar USHT solutions, the
differences with the EDQNM reference can be very important
during the transients. Depending on some initial conditions, we
find regions where jDT�I j; jDT�s j � 2 for the K� E, GSGþ, and
2SFK models.

Clearly, the perfect knowledge of the final characteristics of the
flow and of the initial state of turbulence does not guarantee good
predictions. Also, the complexity of a model does not necessarily
imply more satisfactory results. For instance, the K� E model at
moderate Froude number and at small mixing parameter (case
S11 in Fig. 9 for instance) looks better than GSGþ or 2SFK as it
returns accurate values of TI and Ts. However, in vast regions of
the K –Fr plane, the K� E model performs very poorly compared
to the others.

Furthermore, we review in detail the behaviors of different
models during the transients:

The K� E model cannot account for the variance of buoyancy
and the results in Fig. 6 show no dependence on the K parameter.
However, the global effect of Froude number is qualitatively cor-
rect with a transition delay increasing for Fr	 1 or Fr
 1 corre-
sponding to a decay or an enhanced growth as shown by the time
shift. For a specific value of the initial Froude number, the transi-
tion delay drops to zero as the model is already in its self-similar
regime. This situation is obviously nonphysical as the vertical
buoyancy flux is nonzero in the self-similar regime but not in the
initial isotropic state. Perhaps, one of the most important failures
of the model is when the Froude number is very small, corre-
sponding to a rapid acceleration phase: this phenomenon induces
a great sensitivity to initial conditions but can be reduced by
decreasing the transition delay with Ce0 ¼ 1:5 as previously
suggested [40].

Fig. 9 Evolution of the kinetic energy K as a function of time Nt for different cases S* with
Saffman initial spectra. (Thick red plain line) EDQNM, (thin plain line) 2SFK, (dashed line)
GSG1, and (dotted line) K2E.
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Fig. 10 Evolution of the Froude number Fr 5 E=KN as a function of time Nt for different cases
S* with Saffman initial spectra. (Thick red plain line) EDQNM, (thin plain line) 2SFK, (dashed
line) GSG1, and (dotted line) K2E.

Fig. 11 Evolution of the kinetic energy K as a function of time Nt for different cases B* with
Batchelor initial spectra. (Thick red plain line) EDQNM, (thin plain line) 2SFK, (dashed line)
GSG1, and (dotted line) K2E.
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The Reynolds stress model GSGþ performs very well at short
times (Nt � 1) as it has been adjusted on rapid acceleration regime
starting from isotropic states (see Figs. 9 and 11). However, the
final capture of the transients is a bit disappointing as there is a
clear underestimation of the production of kinetic energy compared
to the EDQNM simulations as shown by the positive values of
DTGSGþ

s in Fig. 7. Note that using a different strategy to calibrate
the coefficients of the model does not seem to improve the predic-
tions. This point can be explained by a distorted evolution for the
turbulent frequency as shown in Figs. 10 and 12. The turbulent fre-
quency controls the dissipation terms in the equations for the differ-
ent correlations and seems to be overestimated by the GSGþ
model. As a result, the vertical buoyancy flux is underestimated as
shown in Fig. 13 (corresponding to case S23) leading to a poor cap-
ture of kinetic energy production and an unbalance in the ratio
between kinetic energy and buoyancy variance (as expressed by K
in Fig. 13). In the USHT transients, turbulence is very unsteady and
there is no equilibrium between the production of energy due to
buoyancy at large scales and the nonlinear transfer of energy to
small scales where dissipation dominates. Therefore, the turbulent
frequency in GSGþ constructed from dissipation, but not the
energy flux at large scales, cannot properly represent the transfer of
energy at large scales. An appealing solution in order to improve
the model consists of considering a two-scale RSM model [41].

The 2SFK model behaves very differently from the RSM
model. It performs very well for moderate or high mixing parame-
ter K. In fact, the initial evolution of the turbulent frequency is
correct as kinetic energy increases due to production but the dissi-
pation needs time to evolve till the energy reaches small scales.
This effect is well reproduced in 2SFK as the energy is not dissi-
pated directly by the drag force between structures but transferred
to the intrastructure kinetic energy K� which corresponds to
smaller eddies. However, 2SFK presents a serious limitation for

small K values as the evolution of kinetic energy at short time is
clearly underestimated. In fact, if initially the difference velocity
du and the contrast of buoyancy d# are simultaneously zero (cor-
responding to small K), the model is unable to evolve even if the
turbulent kinetic energy is important in K�. This effect can be cor-
rected by adding a source term in the equation for d# depending
on K� as turbulent agitation would generate contrast of buoyancy
between the structures.

Where do the qualitative differences between the models come
from? After a close examination, it can be traced back to the spe-
cificities of the dissipation equation. In any case, from an energy
equation dK0=dt ¼ P� E where production P and dissipation E
are balanced, the time derivative of the dissipation E is postulated
from dimensional reasoning by multiplying that of K0 by a turbu-
lent frequency and inserting a free coefficient for each term lead-
ing to the form dE=dt ¼ CPE=K0P� Ce2E=K0E.

Fig. 12 Evolution of the Froude number Fr 5 E=KN as a function of time Nt for different cases
B* with Batchelor initial spectra. (Thick red plain line) EDQNM, (thin plain line) 2SFK, (dashed
line) GSG1, and (dotted line) K2E.

Fig. 13 (Left) Evolution of the vertical buoyancy flux hu3#i,
(right) evolution of the mixing parameter K as a function of time
Nt for the S23 case. (Thick red plain line) EDQNM and (dashed
line) GSG1.
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On the one hand, the K� E and GSGþ mix models start from
the total kinetic energy, which means that they take
K0 ¼ huiuii=2. On the other hand, the choice of 2SFK is to take
only a fraction of the total kinetic energy, which is the energy
inside the structures K0 ¼ K�. The fraction is large at the begin-
ning of the simulations due to the choice of the initial condition
but it becomes smaller in the self-similar regime. Furthermore, the
P term in 2SFK does not directly react to buoyant production like
in GSGþ but appears as a transfer term from the interstructure
energy to the inner structure energy. This delays the effect of
buoyancy production on the dissipation qualitatively in accord-
ance with EDQNM.

On the contrary, with K� E and GSGþ, the buoyant produc-
tion occurring at large scales instantaneously increases the dissi-
pation though the latter is effective at small scales. This limitation
can be alleviated following the ideas of two scale models [41]
where at least an additional variable related to the energy transfer
is added. The production contributing to large-scale energy must
be transferred to the small-scale energy through this variable
before it can influence the dissipation growth.

4 Conclusion

In this work, an exploration of the transients to self-similar
regimes of USHT is presented. To this end, the anisotropic
EDQNM spectral model described in Ref. [20] has been used. The
data obtained are free from transition to turbulence and low Reyn-
olds number effects, reach very high Reynolds number values,
and cover a large panel of initial conditions. Accordingly, they
could not have been obtained by actual DNS. A particular empha-
sis is given to the influence of the initial Froude number and initial
mixing parameter on the flow evolution. The results are used as
references to validate the solutions of the two-equation K� E
model, the Reynolds stress model GSGþ, and the two-structure
two-fluid model 2SFK adjusted to return the final self-similar
states of USHT. The comparisons establish clearly that the knowl-
edge of the self-similar regime and initial state of turbulence is
not sufficient to guarantee good predictions. However, this study
allows to identify different missing elements of physics in one-
point turbulence model and their improvement. In particular, a
model performing well on USHT must:

(1) Capture the linear two-way coupling between velocity and
buoyancy controlling the short time dynamics during rap-
idly accelerated phases.

(2) Take into account some nonequilibrium mechanisms in the
dissipation equation; during transients, the turbulent energy
produced at large scales differs from the transfer to small
scales where energy is destructed.

Beyond these aspects, we contend the idea that validating mix
models on transients can supplement the standard strategies based
on the self-similar regimes or experiments presented in Refs. [38]
and [42].
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