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Terrestrial evapotranspiration (ET) is a key component of the 
global hydrological cycle and also represents a central link-age 
with the surface energy balance and carbon cycle1–3. Two 
separate processes together constitute this flux, namely physical 
evaporation (that is, soil and inland water evaporation and canopy 
interception loss) and biological transpiration (T)3. Both processes 
respond differently to changes in surface meteorological conditions, 
soil moisture status and vegetation abundance4. To quantify the 
ratio of transpiration to ET (that is, T/ET) is accordingly necessary 
to estimate accurately the land water fluxes across spatial scales, and 
eventually provides insights into global interactions between terres-
trial ecosystems and the atmosphere5,6. As the biological processes 
that influence T also control land–atmosphere carbon dioxide 
exchanges, more accurate T/ET estimates aid global carbon cycle 
projections. Over the past decade, considerable efforts have been 
made to improve our knowledge of T/ET, but its value is still sub-
ject to debate1,7–16. For instance, one extrapolation of isotope-based 
catchment-scale estimates to a global scale1 suggested that global 
T/ET was as high as 0.80–0.90, although this may be an overesti-
mate14–16. A smaller T/ET estimate of 0.64 ±  0.13 (mean ±  s.d.) was 
reported more recently8, based on the global water-isotope budget. 
The difference between the two water-isotope-based global ET par-
titioning studies1,8 derives mostly from their inclusion of different 
canopy interception values10; both imply transpiration fluxes that 
exceed soil and lake evaporation fluxes10.

Site measurements provide accurate local information on the  
T/ET ratio, but are limited by their relative scarcity and inconsistent 
measurement periods (from only a few days or months up to years, 
depending on the location). This precludes large-scale upscaling, for 
example, using empirical statistical models based on environmental  

variables such as the leaf area index (LAI)-based regression10. 
Alternatively, Earth system models (ESMs) offer an effective way 
to derive T/ET estimates across temporal and spatial scales. The 
approach taken is that ESMs are first proved to perform well in 
reproducing T/ET at single points with the available measurements. 
Then, an assumption is made that they capture accurately the spa-
tial variations in the present or future surface climate conditions 
that force T/ET, which enables aggregation up to the global scale. 
ESMs are routinely used to assess evaporation and water resource 
changes in response to rising atmospheric greenhouse gas concen-
trations17–19, as well as feedbacks of an adjusted hydrological cycle 
to the climate system6. However, different ESMs inevitably produce 
divergent T/ET estimates because they contain diverse param-
eterizations of surface energy and water processes from alterna-
tive strands of development in the past few decades. Here we use 
historical outputs from 19 ESMs (Methods and Supplementary 
Table 1) under the Climate Model Intercomparison Project Phase  
5 (CMIP5)20 for the period 1980–2005 (Fig. 1a), together with 33 
site observations of the annual average T/ET compiled from field-
based studies that cover at least a full year (Fig. 1a,c) to derive a 
reassessment of the global T/ET magnitude.

Evaluating model performance
We first compared T/ET in CMIP5 models against five existing 
global-scale estimates1,4,7–10 and against 33 direct site observations, 
which are a mixture of isotopic and non-isotopic measurements 
(Methods and Supplementary Table 2). The T/ET of most ESMs 
exhibits a consistent tendency towards maximizing in the tropics 
and decreasing poleward, although at all latitudes the magnitude 
of present-day T/ET varies considerably across ESMs (Fig. 1b).  
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Averaged globally, intermodel discrepancies span a factor of 
about three (from 0.20 in CanESM2 to 0.57 in CESM1-CAM5). 
Critically, the multiyear average of the CMIP5 model ensemble 
mean (0.41 ±  0.11) is considerably lower than all the observation-
based estimates derived from lake isotopes1,7 (0.57–0.90), from 
global water isotope budgets8 (0.64 ±  0.13), from the Penman–
Monteith–Leuning (PML) model4 (0.65 ±  0.19), from the Global 
Land Evaporation Amsterdam Model9 (GLEAM, 0.74) and from 
LAI-based upscaling10 (0.57 ±  0.07) (Fig. 1d). To further verify that 
CMIP5 models underestimate T/ET, we also compared model sim-
ulations with local field observations, after sampling the models at 
grid cells that contain each site. As discovered at the global scale, 
modelled T/ET is substantially lower (six out of seven sites) than 
isotopic measurements by an average of 46%, and lower (24 out 
of 26 sites) than non-isotopic measurements by an average of 36%  
(Fig. 1c). Among the three sites with lower field observations of  
T/ET than model estimates, they are only on average 5% less than 
the CMIP5-mean ensemble for those locations.

New global T/ET estimate constrained by observations
To build the usefulness of ESM-based global estimates of T/ET, we 
made use of these field T/ET measurements through an emergent 
constraint approach (Methods). This approach can lever additional 
information from a multimodel ensemble to reduce the uncertainty 
in characterizing Earth system features (for example, Cox et al.21, 
Mystakidis et al.22 and Wenzel at al.23). The concept relies on the 
fact that, although ESMs may have many large intermodel structural 
and parameter differences, there may exist a tight regression across 
them between (1) a quantity of interest that is difficult to measure 
and (2) a second variable for which measurement data are readily 
available. Applying this approach here, a tight linear relationship 
across ESMs (R2 =  0.93, P < 0.001 (Fig. 2a)) was found between the 
modelled global T/ET values (areal-averaged global T divided by 
areal-averaged global ET) and the modelled site-averaged T/ET  
(T/ET averaged over the grid cells that correspond to the obser-
vational site locations) for the contemporary period (1980–2005). 
This strong linear relationship between individual model simula-
tions of site-average T/ET for the contemporary period and their 

estimates of global T/ET provides an emergent constraint on the 
actual global T/ET value—that is, by using the regression to map 
from site-average T/ET measurements (Fig. 2a). Our summary 
result shows that the constrained global T/ET ratio of 0.62 ±  0.06 
is 34% higher than that of the original CMIP5 ensemble mean (that 
is, 0.41 ±  0.11), with a reduction in the uncertainty range by nearly 
half (Fig. 2b). Additional statistical and sensitivity analyses were 
performed that confirm the robustness of this higher global T/ET 
value than the original model output (Methods and Supplementary 
Figs. 1–3). As isotopic approaches often diagnose higher T/ET val-
ues than other approaches7,11, the global re-estimate of T/ET con-
strained by isotopic observations only (0.71 ±  0.07) is larger than 
that constrained by non-isotopic observations only (0.60 ±  0.06) 
(Supplementary Fig. 4).

Drivers of spatial variation in modelled T/ET
ET partitioning is highly dependent on land surface properties (for 
example, vegetation density and structure10,24 and soil moisture15) 
and atmospheric conditions (for example, energy availability15 and 
precipitation (PRE) characteristics). To aid our understanding of 
the T/ET model bias, we investigated the dominant drivers of spa-
tial gradients of T/ET in different CMIP5 models. We developed an 
empirical diagnostic model for offline T/ET estimates as a function 
of 14 environmental factors (Supplementary Table 3). This diagnos-
tic model is based on boosted regression trees (BRTs (Methods)), 
a machine-learning technique extended from traditional classi-
fication and regression trees. The BRT model based on these fac-
tors successfully explains 95–99% of the global spatial patterns of  
T/ET in all the 19 ESMs considered. Figure 3 displays the amount 
of spatial variation in T/ET explained by each environmental fac-
tor, and for each ESM. LAI is identified as the primary driver of  
T/ET for all the 19 CMIP5 ESMs—its relative contribution to 
explaining the spatial patterns of T/ET varies from 25 to 86% (Fig. 3)  
and, for all individual models, has the highest percentage compared 
to that of other factors. This verifies the critical role of the terres-
trial vegetation structure in controlling ET partitioning10,24. There 
is no cross-model consensus on the second most important driver 
for spatial gradients in T/ET, being either temperature (maximum 

Fig. 1 Simulated and observation-based estimates of T/ET at the global and stand levels. a, Spatial pattern (map) and corresponding frequency 

distribution (inset) of the CMIP5 ensemble mean T/ET for the period 1980–2005. Stars indicate the locations of sites that provided stand-level observations 

for this study. b, Latitudinal profiles of ESM-modelled T/ET; the grey shading indicates the uncertainty range  (mean ±  s.d.). c, Scatterplot of the site-

observed T/ET versus the mean modelled T/ET extracted for the same locations. Error bars represent the uncertainty range of ESM simulations (vertical) and 

of the field observations (horizontal). d, Global average T/ET estimates from different sources; boxes mark the given uncertainty range1,4,7–10, bold black lines 

mark the mean values and error bars indicate the maximum/minimum values.



air temperature (TMX) or diurnal temperature range (DTR)), 
water availability (PRE or soil water content (SWC)), or radiation  
(net radiation (RN)).

To explore whether any biases in the dominant drivers (those 
that explain over 10% of the total spatial variations in T/ET) cause 
an underestimation in the modelled T/ET, we re-ran the BRT model 
calibrated for each ESM, but with the dominant drivers replaced 

by corresponding global observations instead of ESM outputs 
(Methods). All the ESMs, except MIROC5 and CanESM2, overes-
timate LAI, with the ensemble mean LAI being approximately 1.5 
times that of satellite observations (Fig. 4a). These ESMs thus proj-
ect a too high T/ET because of their too high LAI values, although 
different models show substantially different relationships between 
T/ET and LAI (Fig. 4b). Accordingly, compared to the original ESM 
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estimates, the predicted global T/ET driven by satellite-observed 
LAI actually leads to an even larger underestimation of T/ET in  
17 models (from 0.01 for IPSL-CM5A-MR to 0.07 for MIROC-
ESM-CHEM) (Fig. 4c). These results suggest strongly that the 
underestimation in ESM-simulated global T/ET is attributable 
to inaccurate representations of vegetation-related processes that 
influence ET partitioning, instead of the direct erroneous magni-
tude of vegetation density as represented through LAI in the ESMs. 
We also verify that correcting the bias of each of the dominant driv-
ers beside LAI cannot enhance the modelled global T/ET magni-
tude (Supplementary Text 3 and Supplementary Fig. 5). Overall, 
if all the dominant drivers are replaced by observations instead of 
ESM variables, the global T/ET in most (13 of 19) ESMs would 
actually decrease (except the MIROC5, CanESM2 and the GFDL 
models) from the original values of 0.41 ±  0.11 to a new range of 
0.38 ±  0.10 (Fig. 4d). Hence, the direct inclusion of observed driv-
ing data to recalculate the T/ET value, via the BRT model trained on 
ESM output, causes even larger biases.

Potential causes of the underestimation in modelled T/ET
Confirmation that biases in surface drivers, including LAI, are not 
responsible for the large ESM underestimation of T/ET implies that 
structural deficiencies exist in how ESMs partition land ET into 
its component fluxes. Furthermore, the strong linkage between 
the T/ET value and LAI (Figs. 3 and 4b) indicates that such struc-
tural errors may be dependent on physiological and within-canopy 
processes, whose parameterization relates to LAI. We developed 
an adjusted ‘big-leaf ’ model25,26 to approximate the photosynthesis 

and transpiration processes for each ESM (Supplementary Text 4). 
We diagnosed that the implied big-leaf light extinction coefficients 
(τ) currently in most ESMs (Supplementary Table 4) are generally 
higher than those reported from site observations25. Indeed, nearly 
two-thirds of the ESMs have values higher than the standard value 
of 0.5 often assumed in any big-leaf approach26. Accordingly, lower 
τ values (τ ≤  0.4 based on available observations25) applied to each 
inferred model result in a substantial increase (≥ 25%) in the ensem-
ble mean global T/ET (Supplementary Fig. 6). The overestimated 
τ could be partially attributable to errors in some light-related  
drivers, which include the requirement for a routine inclusion of 
diffuse radiation—an effect shown to be important for the pho-
tosynthetic response to light27,28. For instance, without an explicit 
representation of diffuse-light dependence (except the Community 
Land Model version 4.0), ESMs may underestimate the transpi-
rational ability of shaded canopy leaves under ‘hazy’ radiation 
conditions29,30. Although presently very limited direct in-canopy 
measurements are available to test for this effect, the observed sub-
stantial impact of diffuse radiation on the canopy photosynthesis27–29 
supports this hypothesis because carbon uptake and water loss are  
inherently coupled1,31,32.

In addition to the possibly incorrect τ values, there is emerging 
evidence of an underestimation in the global light-use efficiency 
(LUE), which measures the ability to fix carbon per unit of pho-
tosynthetically active radiation33. In ESMs, LUE has a global and 
model mean of 0.90 ±  0.26 gC m−2 MJ−1 absorbed photosynthetically 
active radiation (APAR) (Supplementary Text 5 and Supplementary 
Table 4), compared to a recent global empirical estimate based on 
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FLUXNET observations (1.23 ±  0.03 gC m−2 MJ−1 APAR)33. This 
negatively biased LUE leads to an underestimation in the ecosys-
tem photosynthetic rate, and consequently in canopy transpiration. 
Accordingly, we obtained a higher ensemble mean global T/ET of 
0.52 ±  0.11 through incorporating the observation-based LUE value 
into the CMIP5 results (Supplementary Text 5).

Alongside potential errors in photosynthetic response, other 
biases in T/ET could also occur through deficiencies in the rooting 
characteristics (depth, thickness and density), vertical soil proper-
ties (soil texture, hydraulic conductivity and moisture gradients), 
stomatal conductance (for example, response to atmospheric mois-
ture demand) and canopy interception processes3,10,34,35. A rooting 
depth of no more than 2–4 m is widely adopted by most land surface 
models36, yet this will underestimate the capacity for deep-rooted 
vegetation over a wide range of biomes37,38 to access water and thus 
transpire. Newly published root water-uptake depth data38 report 
plant roots to be substantially deeper than 4 m over deciduous 
and evergreen broadleaf forests. In addition, shrubs are currently 
ignored by most ESMs in spite of their high ability to transpire more 
water due to their deeper roots39. Furthermore, the contribution of 
the understorey vegetation to transpiration in forests is not taken 
into account in most ESMs, which may also suppress the ESM-
estimated T/ET. Finally, the parameterization of canopy intercep-
tion processes remains simple in the ESMs, which is, in most cases, 
formulated as a function of vegetation density and rainfall volume40. 
However, canopy interception observations reported this compo-
nent of ET to be sensitive also to vegetation type and structure, and 
to rain characteristics, which include intensity and frequency35.

To test whether the simulation of interception loss affects the 
global T/ET ratio, we plot this ratio against corresponding global 
interception loss estimates across all the ESMs (Supplementary  
Fig. 7a). We find that the modelled interception loss explains 22% 
of the cross-model variance of global T/ET. Models with higher 
global T/ET ratios simulate less interception loss, and hence leave 
more water available for transpiration. Compared with satellite-
based global interception estimates41, the modelled global inter-
ception loss is subject to a strong positive bias (141 ±  43 mm yr–1 of 
the model ensemble mean versus 62 ±  12 mm yr–1 (Supplementary  
Fig. 7)). We verify that this overestimate is not due to PRE inputs in the 
ESMs being too high by showing a similar result with the modelled 
interception loss normalized by the PRE amount (Supplementary  
Fig. 7b). Hence, we provide direct evidence that the simplistic  

treatment of canopy interception loss and re-evaporation processes 
results in an excess ET partitioning into interception in CMIP5 
models. This error partially contributes to our identified too low  
T/ET values in the ESMs. This highlights the necessity for more 
accurate representations of canopy interception processes in the 
ESMs, which include the impact of rainfall intensity and subgrid 
rainfall variability on interception loss42.

Implications of improved T/ET modelling
Plant transpiration depends on vegetation physiological character-
istics43 and is expected to evolve in response to rising atmospheric 
CO2 and climate change. Hence, the strong underestimation in the 
T/ET ratio of some models brings uncertainty to the simulated 
future terrestrial water cycle and surface energy balances. For exam-
ple, Zeng et al.6 demonstrated that extremely low T/ET levels in two 
climate models led to an underestimated sensitivity of the modelled 
ET to the known increases of LAI (‘greening’). This causes an under-
estimated cooling in the surface temperature contributed by the 
Earth’s greening. Analogously, the general underestimation of T/ET 
in the ESMs, as examined here, implies an overall underestimation 
in the strength of vegetation biophysical cooling effects5,6, for both 
the present and future climatic states. Higher T/ET levels have the 
potential to attenuate surface warming, and therefore dampen the 
magnitude and frequency of droughts and heatwaves under climate 
change. This is relevant because the likelihood of weather extremes 
increases as temperature goes up44, so more accurate projections of 
T/ET will help characterize this natural mitigation.

T/ET levels also modulate the extent to which terrestrial run-
off is affected by rising atmospheric CO2 through stomata closure 
and leaf area changes. Using the CMIP5 1pctCO2 simulation with 
an idealized 1% yr−1 increase in atmospheric CO2 concentration 
up to quadrupling the preindustrial CO2 concentration, we inves-
tigate geographical differences in runoff changes compared to their 
simulated T/ET levels, and the cross-model relationship between 
the magnitude of global-mean runoff changes and T/ET levels. 
Specifically, we record the modelled runoff changes through the 
transpiration process response, Δ Rt(Δ CO2, T/ET), as a function of 
CO2 and the local T/ET value, after subtracting the effects of CO2-
induced changes in precipitation, Δ PRE (that is, Δ Rt =  Δ Runoff – Δ 
PRE). Mean and median values of ∂ Rt/∂ CO2 are presented in  
Fig. 5a, based on binned T/ET values from the geographical varia-
tion of the ESM ensemble mean result. We find that regions with 
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higher T/ET values have a larger and positive Rt increase as CO2 
increases (P <  0.05). Of particular interest is that for low T/ET 
values (T/ET <  0.2, generally over regions with limited vegeta-
tion cover, and thus a weak stomatal response) a negative runoff 
response to rising CO2 is detected (Fig. 5a). This is caused by leaf 
area increases (greening raising T) dominating stomata closure 
(lowering T), thus creating a net transpiration increase. This effect 
of CO2-induced changes of T/ET on runoff is also corroborated by 
looking at the ESMs individually. We find that ESMs with broadly 
higher global-mean T/ET ratios (rather than considering gridbox 
binned values) also simulate higher Rt increase responding to rising 
atmospheric CO2 (Fig. 5b). Hence, where terrestrial water is more 
intensely recycled by transpiration, there is also a stronger suppres-
sion of transpiration as CO2 increases and thus more rainfall enters 
the streams and rivers.

As a biological pump of water from the land surface to the atmo-
sphere, vegetation plays an important role in regulating water and 
energy exchange between the land surface and the atmosphere1,5,6. 
To understand this role of vegetation is vital for climate mitiga-
tion and water resource management in future climate conditions, 
especially as physiological processes are responsive to changed 
local meteorological conditions under global warming and ris-
ing atmospheric CO2 concentration43,45. Changing transpiration 
levels will impact freshwater availability, knowledge of which is 
a key prerequisite for policy development in an evolving climate. 
Furthermore, different land–atmosphere exchanges of water could 
influence future atmospheric humidity levels, and as water is itself 
a greenhouse gas, this could modulate warming rates46. Even for 
present-day climatic conditions, measurements show unequivo-
cally that transpiration comprises the largest fraction of global 
land ET. However, this fundamental role of terrestrial vegetation 
is currently poorly modelled; our emergent constraint approach 
demonstrates that CMIP5 ESMs broadly underestimate T/ET. 
The additional novel evaluation framework applied here confirms 
that leaf area is the dominant driver of modelled T/ET variabil-
ity, as reported by observation-based studies10,24. Yet we find it is 
not inaccurate leaf cover values that directly cause the T/ET val-
ues to be too low, but instead the parameterization of how veg-
etation functions for different LAI values. Hence, further efforts 
are required to address the currently underrepresented processes 
in the ESMs, for instance, by routinely incorporating a radiative 
transfer scheme that accounts for the effect of diffuse sunlight, 
reassessing the precise ecosystem photosynthetic rate that relates 
to transpiration, modelling deeper rooting systems as guided by 
the available plant rooting-depth data38 and providing more real-
istic parameterization of canopy hydrological processes, which 
include interception loss.
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Methods
CMIP5 outputs. The historical (analysed years 1980–2005) and Representative 
Concentration Pathway 8.5 (ref. 20) scenario (analysed years 2080–2100) 
simulations of monthly ET, transpiration and relevant driving environmental 
factors (Supplementary Table 3) were obtained from the CMIP5 archive20  
(http://cmip-pcmdi.llnl.gov/cmip5/). A total of 19 ESMs were available for the 
study period 1980–2005, which provide all the diagnostic variables that are 
required for this study. Of these ESMs, 16 also had available required outputs for 
the corresponding future projections during 2080–2100 (Supplementary Table 1). 
All the CMIP5 outputs were linearly interpolated from their native resolution to 
a common 1° ×  1° global grid. If any model had more than one ensemble member 
(that is, starting with different initial conditions), then an average was taken over 
all the monthly realizations. The monthly vapour pressure deficit was calculated 
as the difference between the modelled saturation and the actual vapour pressure 
using monthly temperature, surface pressure and relative humidity47. The 10 m 
wind speed (WS) from most climate models was calculated using 10 m north- 
and eastward wind speed, except the five models without direct outputs of 10 m 
wind fields (that is, CCSM4, CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM 
and CESM1-WACCM). For these five models, WS was extrapolated from the 
wind speed at the closest pressure level based on a power-law velocity profile 
equation48,49. Our study region is restricted to the global vegetation covered land 
surface, defined as where multiyear average satellite observed LAI >  0.1.

Observational data. Field observations of T/ET across 35 sites (listed in 
Supplementary Table 2) were compiled from 33 individual publications  
(by January 2017) that experimentally measured at least three out of the four 
relevant variables, that is, ET, soil evaporation, transpiration and interception 
loss. We only retained site observations that were complete for at least an annual 
period and at least at a monthly time step. These site observations were measured 
via a range of approaches, including stable isotopes, microlysimeters, chamber 
experiments or a combination of sap flow and eddy covariance (Supplementary 
Table 2). Two observational sites were located on small islands (Vanuatu 
and Hawaii) that were not represented in the ESMs due to spatial resolution 
limitations, so they were excluded in this analysis. Uncertainty bounds of the T/ET 
observations at nine sites were not available (Supplementary Table 2), so their s.d. 
value was assumed to be the average of the s.d. values available at other sites (that 
is, 7.4%). The site-average T/ET value across the 33 sites and its uncertainty bound 
provide the single value with a range, which was used in the emergent constraint 
on the global magnitude of T/ET (horizontal axis in Fig. 2a).

To investigate whether the underestimated T/ET values in the ESMs are 
derived from the modelled biases of dominant driving variables, including LAI, 
temperature (TMX or DTR), water availability (SWC or PRE) and RN, we obtained 
measurements of these variables independently from satellite and/or ground-based 
observations and reanalysis data sets. We employed LAI observations from the 
Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g data set, which 
is produced from the third-generation AVHRR GIMMS NDVI data set using an 
artificial neural network model50. The LAI observation has gone through strict 
quality validation through comparisons with field measurements and satellite-
observed products. It covers the period from July 1981 to December 2014 and is 
available at 1/12° spatial resolution and 15 day temporal resolution. Remote sensing 
radiative flux data, which include shortwave and longwave solar radiation (both 
up- and downwelling fluxes that were combined to give RN), were derived from 
the NASA World Climate Research Programme/Global Energy and Water-Cycle 
Experiment Surface Radiation Budget (SRB Release 3.0) (http://gewex-srb.larc.
nasa.gov/). These radiation observations were provided at a spatial resolution 
of 1° ×  1° and a monthly temporal resolution that spanned from July 1983 to 
December 2007. Other meteorological variables (that is, the maximum/minimum 
near surface 2 m air temperature and PRE) came from Climate Research Unit 
TS3.22 (http://www.cru.uea.ac.uk/data/)51 that covers the full 1980–2005 period. 
The total soil moisture content from the ERA-Interim reanalysis output was used 
in this study as a surrogate for soil moisture observations due to the lack of direct 
global-coverage soil moisture maps. All these environmental variables were first 
linearly re-gridded to the common 1° ×  1° global grid and then averaged over the 
study period 1980–2005.

Emergent constraint method. ESMs often exhibit significant differences between 
them, and for a variety of aspects of the climate system. This can make it difficult to 
understand fully the contemporary climate or to estimate future changes. However, 
recently the method of ‘emergent constraints’ was developed and utilised to reduce 
the uncertainty that surrounded multiple features of the Earth system. The basic 
concept is that, although ESMs do differ, there are across them various robust 
one-to-one relationships (emergent constraints) that emerge when the multimodel 
outputs are analysed. These relationships often link pairs of model-derived 
quantities of interest. The first one is usually a quantity of key importance that 
describes how the Earth system operates, but for which the true value is unknown, 
whereas the second diagnostic might be a quantity for which measurements are 
available. From this, it is possible to use measurements of the second variable, 
via the emergent constraint, to constrain the first quantity. For example, based 
on a model-derived relationship between the long-term sensitivity of carbon to 

warming and the short-term responses of atmospheric CO2 to warming,  
Cox et al.21 utilised contemporary observations to constrain the sensitivity of 
tropical carbon storage to climate change.

The rationale for our emergent constraint on global T/ET comes from the 
strong heuristic linear relationship between global-averaged T/ET and site-
averaged T/ET across the CMIP5 ESMs (Fig. 2a). Similar to the constraining 
approach performed by Cox et al.21, we utilised this model-based relationship with 
33 field measurements of T/ET, which, via this emergent constraint, imposed much 
smaller uncertainty bounds on the global T/ET estimates compared to the spread 
of ESM-based global T/ET values. The conditional probability density function 
(PDF) for the constrained global T/ET (green dashed line in Fig. 2b) was derived21 
from the prior PDF of site observations, together with the model-based linear 
relationship (Fig. 2a).

To test the robustness of our constrained result of the global T/ET, a number  
of additional sensitivity analyses were performed. Although the observational 
periods (lasting at least 1 yr) of the available sites differ between locations, and are 
much shorter than the averaging periods of the model results (1980–2005),  
this causes negligible impact on our global constrained value. This is due to the 
weak interannual variability of ESM-modelled T/ET values for all site locations 
(s.d. of T/ET values ≤ 0.02). In addition, the constrained result is not sensitive  
to the number of sites included, as verified by randomly and repeatedly selecting  
a subset of site measurements to derive global T/ET estimates (Supplementary  
Text 1). Almost all combinations of over ten sites could lead to an estimate close  
to that obtained from all 33 sites, with a stochastic error of < 0.05 in global  
T/ET (Supplementary Fig. 1). We also derived a very similar result (0.64 ±  0.05 
(Supplementary Fig. 3)) if we excluded those sites where the known local 
vegetation type is not representative of the dominant vegetation type of the 
corresponding ESM grid cells (Supplementary Text 1 and Supplementary  
Table 2). In a final test, we confirmed that the use of coarse ESM pixels to represent 
the site-level signal had a weak impact on the constrained value (0.67 ±  0.07 
(Supplementary Fig. 2)). We achieved this by performing the same analysis, but 
using modelled ‘climate analogue’ ESM grid cells in which the climatic conditions 
are nearest to the site-level climatology (Supplementary Text 1). All of these 
additional tests confirm a systematic underestimation in the ESM-modelled  
T/ET values, based on our emergent constraint approach that entrains site-level 
local measurements of T/ET.

BRTs. BRT is a powerful machine-learning approach based on traditional 
regression tree methods52,53. It was employed here to investigate the environmental 
drivers that determine the spatial variations of T/ET in each ESM. This BRT 
analysis was performed using the ‘dismo’ and ‘gbm’ packages in the R statistical 
software, and details of the procedures used to establish the BRT models are 
described in Supplementary Text 2. Using BRTs built with CMIP5 outputs,  
the relative importance of environmental variables, as well as the partial 
dependency of T/ET on each variable, were quantified. For each of the 19 ESMs, 
the dominant drivers were defined as those that explained over 10% of the spatial 
variations in T/ET, being either LAI, temperature (TMX or DTR), water availability 
(SWC or PRE) or RN. The 19 CMIP5 models could be categorized into five 
groups with different combinations of dominant drivers: (1) dominated by only 
LAI (CCSM4, CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM, CanESM2, 
MIROC-ESM, MIROC-ESM-CHEM, MIROC4h, MIROC5, NorESM1-M and 
inmcm4), (2) dominated by LAI and temperature (GFDL-ESM2G and GFDL-
ESM2M), (3) dominated by LAI and water availability (IPSL-CM5A-LR, IPSL-
CM5A-MR and bcc-csm1-1-m), (4) dominated by LAI, temperature and water 
availability (MRI-ESM1 and bcc-csm1-1) and (5) dominated by LAI, temperature 
and radiation (CESM1-WACCM).

The BRT algorithm allows the replacement of the dominant CMIP5-based 
drivers that govern the spatial variations of T/ET with corresponding observations, 
and thus creates new global estimates of T/ET. This enables the uncoupling of 
potential errors in the T/ET projections due to incorrect surface projections of 
the drivers from any deficiencies in the land surface components of the ESMs. 
Using the BRT method as a tool to partition the role of the dominant drivers, 
five sequential sets of new simulations were performed with observation-based 
gridded fields replacing model-based fields, as follows: (1) LAI only, (2) LAI and 
temperature (DTR and TMX), (3) LAI and water availability (SWC and PRE), 
(4) LAI and RN, and (5) all variables (LAI, DTR, TMX, SWC, PRE and RN). 
To eliminate the influence from potential interactions between LAI and other 
environmental factors, the biases in global T/ET that stemmed from temperature, 
water availability and radiation were calculated as the difference between 
simulation (1) and simulations (2), (3) and (4), respectively.

Data availability. Supplementary Information lists the site-based T/ET 
measurements analysed in this study. The CMIP5 model outputs are available from 
the CMIP5 archive (http://cmip-pcmdi.llnl.gov/cmip5/).
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Supplementary Information 

 

Text S1. Test on the robustness of the “emergent constraint” approach 

To verify the robustness of our emergent constraint results, several additional checks were 

performed. First, we investigated the sensitivity of the calculated constrained global T/ET to 

the number of site measurements used. We derived an ensemble of global T/ET estimates 

using a subset (ranging from 1 to the full amount of available sites, i.e., 33) of site 

observations. Specifically, for each number k  (1≤k ≤ 33), we re-calculated the global T/ET 

using k  sites randomly selected from the full set of available sites, and repeated this 

procedure 100 times to examine uncertainties from this stochastic site selection. Second, we 

recognized that in situ measurements may not be representative of ESM-modelled T/ET and 

meteorological drivers within a related 1°´1° grid cell area. As a result, we also performed 

the same “emergent constraint” but to climatically analogue model grid-cells, rather than to 

the exact location-specified model grid-cells. Specifically, ‘climate analogue’ grid-cells refer 

to where the local climatic model conditions are similar to that measured at each experimental 

site, i.e., areas with temperature, precipitation and radiation within ± 15% of the magnitude 

of site-level climatology (Supplementary Table 2). Where values of these quantities are not 

available at the sites, we took these directly from the WorldClim
54

 climatic dataset at 1-km 

resolution and based on meteorological station data during 1970-2000. Two observational 

sites were excluded from this analysis since there is no ‘climate analogue’ pixels available for 

all ESMs. In addition, similar analysis was performed excluding measurement sites where 

observed vegetation type does not represent the dominant vegetation type of the 

corresponding grid-cells (Supplementary Fig. 3). Different land cover maps are adopted in 



	

ESMs to describe plant functional type (PFT) fractions across the ESMs, and in some 

instances, there is a lack of detailed information on vegetation distribution in ESMs, hence we 

instead used the Moderate-resolution Imaging Spectroradiometer (MODIS) land cover maps 

(MCD12C1) with a 1-km resolution for the period 2001-2005. MODIS land cover maps were 

first aggregated into a 1°´1° global grid to calculate the fraction of each land cover type in 

grid cells of that size. From this, we defined the dominant vegetation type of the 

corresponding pixels at each observational sites. 

 

Text S2. Boosted regression trees (BRT) 

All land surface models in ESMs solve numerically sets of differential equations, which are 

available for analysis from each modelling centre. However, across a very large number of 

climate models such as in the CMIP5 ensemble, it is more practical to reconstruct ecosystem 

model response via statistical techniques. BRT, as used in this study, is an advanced 

regression (machine learning) technique to link driving forcings to a target variable requiring 

prediction. It is a stochastic extension of traditional regression trees, but “boosted” by 

integrating additional, sequential “trees” that model the residuals in randomized subsets of the 

data
52,53

. Due to its strong predictive capability, easy interpretability
55

 and capacity to deal 

with complex nonlinearities, this method has been increasingly advocated for ecological 

analyses
52

, and is thus a suitable tool for our analysis. Each climate model provides a large 

number of diagnostics in space and time, hence the BRT approach is very accurate in 

reconstructing dominant responses. Here we apply the BRTs to ESM outputs, to examine 

which and how environmental drivers govern the global variation of T/ET in each ESM.  

 



	

As with most machine learning techniques, it was first necessary to train with available data, 

and here as the spatial variations of T/ET (i.e., response variable) and the 14 key 

environmental factors (i.e., predictor variables, listed in Supplementary Table 3) averaged 

over the 1982–2005 period. This was done using global set of land grid cells in each ESM. 

All BRT runs shared a common suite of metaparameters, including gaussian error distribution, 

a learning rate of 0.01, an interaction depth of 5, and a bag fraction of 0.5 (full details of these 

method parameters and implications in ref. 52). This approach then identifies the optimal 

number of “trees” for each ESM via a stepwise procedure that incorporated a fixed number of 

trees into the tree ensemble until realizing a minimum predictive error
53

. The goodness-of-fit 

of each run was determined by evaluating the fitted model against a group of independent 

data (20% of the total grid samples) using ten-fold cross-validation approach
52,53

. The final 

step of establishing BRT framework is to determine any “nuisance parameters”. Our BRT 

models with all predictors was pruned through progressively eliminating the least-informative 

variable until average reduction in predictive deviance exceeds its original standard error
53

. 

After refitting with these statistically important variables retained in the last procedure, BRTs 

were used to determine first the relative contributions of environmental variables to the 

spatial variation of T/ET, and second the partial dependency (defined as the marginal effect of 

a variable on the response when all other variables are held at their average) of T/ET on these 

driving quantities. 

 

Text S3. Implications for modeled T/ET by correcting the dominant drivers 



	

Beside LAI, we also test whether any bias in each of the other dominant drivers (i.e., drivers 

related to temperature, water availability and solar radiation) results in the underestimation in 

global T/ET. For temperature-related variables (daily maximum temperature, TMX; and 

diurnal temperature range, DTR), the two IPSL models (i.e., IPSL-CM5A-M and 

IPSL-CM5A-LR) produce a considerable positive bias in temperature (DTR > 8K and 

TMX > 3K) compared with observation (Supplementary Fig. 5a); global T/ET in IPSL 

models further decreases by 27% with this temperature-related bias corrected (Supplementary 

Fig. 5b). Variables related to water availability (soil water content, SWC; and precipitation, 

PRE) simulated by CMIP5 models also show strong biases against ERA-Interim reanalysis 

data set (as an alternative to soil moisture observations, which are generally unavailable) and 

precipitation from Climate Research Unit (CRU) data set (Supplementary Fig. 5a). Twelve 

ESMs largely overestimated the total SWC (> 50%) compared to reanalysis output, and the 

majority (17 in 19) of ESMs slightly overestimated PRE (6 – 24%) compared to CRU data. 

When observed SWC and PRE are accounted for, via the BRT algorithm, this once again 

causes a general decrease in global T/ET, in particular for the IPSL and GFDL models 

(Supplementary Fig. 5c). Since net radiation (RN) produced by the CMIP5 models is 

generally consistent with satellite observation, replacing RN does not change global T/ET 

significantly (paired-samples t test, P = 0.16) (Supplementary Fig. 5a, d). 

 

Text S4. An adjusted big-leaf model for T/ET 

The land surface component of most ESMs does not calculate explicit variation of in-canopy 

light levels. Instead, they utilize a light extinction coefficient (t ) to estimate surface energy 



	

exchanges, which in turn influences terrestrial carbon assimilation fluxes. To assess the effect 

of any bias in global T/ET associated through inaccurate representation of t  (for discussion 

of errors in standard values of t , see ref. 25), an adjusted big-leaf model is developed to 

approximate the carbon sequestration and transpiration processes for each ESM. This 

approximation is based on the partial dependence of ESM-modeled T/ET against LAI (Fig. 

4b) and an exponential extinction of light in the canopy relating to LAI. Only ESMs 

providing direct gross primary production (GPP) outputs are taken into consideration in this 

analysis, as simultaneous use of both carbon and water fluxes are needed as follows to 

identify t . 

 

The big-leaf assumption
26,56

 is that leaf photosynthesis rate is assumed to decay exponentially 

with the vertical gradient of cumulative leaf area. Accordingly, canopy-level photosynthesis 

rate (
c
A , 2 1

  mol m sµ
- - ) is the accumulated leaf-level photosynthesis rate across the entire 

canopy leaf area, and is given as:  

( )
0 0

0

1
LAILAI

L

c

e
A A e dL A

t

t

t

-

-
-

= =ò                       (1) 

Here t  is the light extinction coefficient, A0 is the leaf photosynthesis rate at the top of 

canopy ( 2 1
  mol m sµ

- - ), and L  is the cumulative leaf area index measured downwards from 

the canopy top ( L = 0 for the uppermost leaves of the canopy and L= LAI for the total 

canopy leaf area index). Although A0 in models may vary spatially and temporally, its exact 

value cannot be reproduced outside the model simulations. This is because A0 depends on 

multiple drivers absent in ESM outputs, such as the type of photosynthetic pathway (C3 or 

C4), leaf nitrogen concentration and the incident photosynthetically active radiation
26

. 



	

Therefore, in the derivation of t , we assumed this variable to be an ESM-specific constant, 

representing the spatial and time average of carbon sequestration capacity A0, thus giving a 

general mean value across all driving forcings and limitations (e.g., nutrient availability and 

drought).  

 

By linking water loss to carbon assimilation through stomata behaviors, transpiration flux 

was then scaled up to be canopy level using the following formula: 

( )
0

1
LAI

c
eA AT

ET WUE ET WUE ET

t

t

-
-

= = ×
× ×

                  (2) 

Here WUE is the plant water use efficiency defined as the ratio of CO2 assimilated to 

transpired H2O during the photosynthesis, and is a direct diagnostic from ESMs of GPP/T. A 

nonlinear curve-fitting algorithm (using the “lsqcurvefit” function in MATLAB; 

http://www.mathworks.co.uk/products/matlab/) was adopted for each ESM to optimize the 

implicit extinction coefficient t  and maximum top-canopy carbon assimilation rate A0, by 

minimizing the least squares error for the modeled local T/ET values. This approximation is 

based on the partial dependence of T/ET against LAI shown in Fig. 3b, and also partial 

dependences of WUE and ET on LAI derived from the BRT simulations (not shown). 

 

The big-leaf based modelling structure then enables our final step to be made of explaining 

how overestimation of t could cause major underestimation of T/ET. Specifically, we take 

our big-leaf model and best-fit solvers for A0 and t (Supplementary Table 4), but then 

instead consider lower t  values (0.2 £ t £ the fitting value, based on available field 

observations of t  provided by ref. 25), whilst keeping LAI values held at the 



	

ESM-simulated global average, and adopting WUE and ET values corresponding to the LAI 

constants based on ESM-derived partial dependency. New values of T/ET are then derived 

from Equation S2.  

 

Text S5. Evaluation on modeled light-use efficiency 

In addition to the characterization of t , global rate of photosynthesis (and thus 

transpirational rate) is also largely determined by the maximum carbon assimilation rate A0. 

As a good indicator for the photosynthetic capacity A0, light use efficiency (LUE) from ESMs 

is here evaluated against a data-driven LUE product
33

. For each ESM, we first converted 

incoming shortwave solar radiation into photosynthetically active radiation (PAR), using a 

constant ratio of 0.48 MJ (PAR) MJ
-1

 (radiation)
57

. Since ESMs do not explicitly calculate the 

total fraction of incident PAR absorbed by plant canopies (FPAR), we indirectly derived it 

from modeled LAI via the Beer-Lambert approximation: 

( )( )0.95 1 expFPAR LAIt= - - ×                      (3) 

where t  is the light extinction coefficient calculated by the adjusted “big-leaf” model (see 

Supplementary Text 4). Then ESM-simulated LUE was indirectly obtained as 

GPP GPP
LUE

APAR FPAR PAR
= =

×

                       (4) 

A newly published paper
33

 released a data-driven LUE product, which is obtained by 

upscaling FLUXNET LUE estimates using a random forest regression approach. Ecosystem 

types, as widely suggested to be important in determining LUE (e.g., ref. 58), was 

incorporated to represent climate/meteorological information in the machine-learning 

modeling. The quality of this dataset was not directly assessed due to the lack of large-scale 



	

LUE observations, but good performance could be expected from the validation of the 

LUE-derived GPP estimates (GPP=PAR´FPAR´LUE) against FLUXNET-based diagnostic 

GPP data
33

. At the global scale, average LUE was reported to be 1.23 ± 0.03 

2 1
 C  g m MJ APAR

- -  during 2001-2005, which is here considered as a benchmark for ESM 

results. Finally, we re-calculated the modeled transpiration rate (and thus global T/ET), by 

combining ESM results with this observation-based LUE value (LUEobs): 

obsGPP PAR FPAR LUE
T

WUE WUE

´ ´
= =                      (4) 
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Table S1. CMIP5 ESM details. Information about 19 CMIP5 ESMs used in this study and their associated land surface models.  

Institute Nation Modeling Center Reference 

 Model Information  

Model Name Resolution Coupled Land 

Surface Model 

RCP8.5 

Availability 

BCC China Beijing Climate Center, 

China Meteorological 

Administration 

59 bcc-csm1-1 2.8125°´2.8125° BCC AVIM1.0 yes 

     bcc-csm1-1-m 1.125°´1.125° BCC AVIM1.0 yes 

CCCma Canada Canadian Centre for 

Climate Modeling and 

Analysis 

60, 61 CanESM2 2.8125°´2.8125° CLASS2.7 & CTEM1 yes 

NCAR USA National Center for 

Atmospheric Research 

62 CCSM4 0.9°´1.25° CLM4 yes 

NSF-DO

E-NCAR 

USA Community Earth System 

Model Contributors 

63 

64 

CESM1-BGC 0.9°´1.25° CLM4 yes 

    CESM1-CAM5 0.9°´1.25° CLM4 yes 

    CESM1-FASTC 0.9°´1.25° CLM4 no 



	

HEM 

    CESM1-WACC

M 

 CLM4 yes 

GFDL USA NOAA Geophysical Fluid 

Dynamics Laboratory 

65, 66 GFDL-ESM2M 2°´2.5° LM3 yes 

    GFDL-ESM2G 2°´2.5° LM3 yes 

INM Russia Institute for Numerical 

Mathematics 

67 inmcm4 1.5°´ 2° Simple model 

 

yes 

IPSL France Institute Pierre-Simon 

Laplace 

68 IPSL-CM5A-LR 1.89°´3.75° ORCHIDEE yes 

    IPSL-CM5A-MR 1.89°´3.75° ORCHIDEE yes 

MIROC Japan National Institute for 

Environmental Studies, 

The University of Tokyo 

69 MIROC-ESM 2.8125°´2.8125° MATSIRO yes 

    MIROC-ESM-C

HEM 

2.8125°´2.8125° MATSIRO yes 

    MIROC4h 0.5625°´0.5625° MATSIRO no 



	

    MIROC5 1.40625°´1.40625° MATSIRO no 

MRI Japan Meteorological Research 

Institute 

70 MRI-ESM1 1.125°´1.125° HAL yes 

NCC Norway Norwegian Climate 

Centre 

71, 72 NorESM1-M 1.875°´3 2.5° CLM4 yes 



	

Table S2. Available field observations. Characteristics, locations and temporal 

availability of in situ observations of T/ET compiled from stand-based studies 

available in the literature. Asterisks indicate those sites located on small islands 

which cannot be represented in GCMs due to computational limitations.  

Number Ecoregion Country Latitude Longitude Location 

1 
Tropical 

Rainforest 
D.R. Congo -4.7 12.1 Pointe–Noire 

2 
Tropical 

Rainforest 
Puerto Rico 18.3 -65.7 

Luquillo Experimental 

Forest 

3 

Temperate 

Deciduous 

Forests 

Portugal 38.5 -8.0 Herdade da Alfarrobeira 

4 Boreal Forest Canada 63.4 -114.3 
Northwest Territories and 

Nunavut 

5 Boreal Forest Canada 45.7 -76.9 Ottawa River basin 

6 Tundra Canada 64.5 -112.7 
Northwest Territories and 

Nunavut 

7 
Tropical 

Grassland 
USA 20.1 -155.8 Kohala, Hawaii 

8 
Temperate 

Grassland 
USA 40.7 -104.8 

Colorado: Central Plains 

Experimental Range 

9 Desert USA 32.5 -106.8 
Jornada Experimental 

Range 

10 
Temperate 

Forest 
Korea 37.0 128.0 The Han River Basin 

11 
Shrubland 

Desert 
China 39.4 100.1 Loess Plateau 

12 Desert China 44.3 87.9 

Gubantonggut Desert: 

Fukang Station of Desert 

Ecology 

13 

Temperate 

Deciduous 

Forests 

Australia -32.3 117.9 
Corrigin, Western 

Australia 

14 

Temperate 

Deciduous 

Forests 

France 48.7 7.1 Hesse 

15 Grassland New Mexico 32.3 106.8 
Jornada Experimental 

Range 



	

16 
Deciduous 

Forest 
USA 36.0 -84.3 

Walker Branch 

Watershed 

17 Forest Israel 31.4 35.0 
The edge of the Judean 

Mountain ridge 

18 
Evergreen 

Forest 
China 23.2 112.5 

The Dinghushan 

Biosphere Reserve 

19 
Tropical 

Forest 
China 21.0 109.9 

Hetou and Jijia at 

Leizhou Peninsula 

20 

Temperate 

Deciduous 

Forest 

USA 39.3 -86.4 
Monroe State Forest in 

south-central Indiana 

21 Mixed Forest Belgium 50.3 6.0 
Vielsalm in a Belgian 

Ardennes forest 

22 Shrubland China 38.6 103.5 
Minqin, Shiyang River, 

Gansu Province 

23 

Evergreen 

Broadleaf  

Forests 

China 23.2 112.5 
The Dinghushan 

Biosphere Reserve 

24 Croplands USA 38.6 -121.6 

The Yolo Bypass at the 

Sacramento River 

watershed 

25 Mixed forests USA 35.8 -76.7 North Carolina 

26 Croplands Brazil -23.3 -51.2 

the Instituto Agronômico 

do Paraná (IAPAR), in 

Londrina, Paraná State 

27 

Broadleaf 

Deciduous 

forests 

USA 36.0 -79.1 
the Blackwood Division 

of the Duke Forest 

28 

Broadleaf 

Deciduous 

forests 

USA 37.0 -79.1 
A oak-hickory forest in 

North Carolina 

29 
Tropical 

Cropland 
Vanuatu -15.4 167.2 

the Vanuatu Agricultural 

Research and Technical 

Centre 

30 Shrub-steppe USA 46.9 -127.5 

Ellensburg on the eastern 

side of the Cascade 

Mountains 

31 
Coniferous 

forest 
USA 47.2 -120.9 

Cle Elum on the eastern 

side of the Cascade 

Mountains 

32 

Evergreen 

Broadleaf  

Forests 

Japan 36.1 140.1 
Adjacent to University of 

Tsukuba 



	

33 
Temperature 

Forest 
USA 38.9 -120.6 

A ponderosa pine 

plantation in the Sierra 

Nevada Mountains 

34 
Boreal 

Forests 
Canada 53.7 -106.2 

The Prince Albert 

National Park 

35 Mixed Forest Japan 35.3 137.1 
Seto National Forest, 

Aichi 

 

Number 
Period of 

Measurement 
Method 

Annual mean 

PRE (mm) 

Annual mean 

TMP (
o
C) 

1 Feb 1997 - Jul 1999 

Radial flow meter, 

Water balance 

equation 

1188 24.9 

2 Apr 1980 - May 1981 
Diurnal water table 

changes 
3727 19.7 

3 2001 - 2006 Sap flow 669 15 

4 1993 - 1994 Isotope-based 400 -10 

5 Sep 1991 - Sep 1992 Isotope-based 872 3.5 

6 1993 - 1994 Isotope-based 400 -10 

7 Dec 1993 - Nov 1994 Isotope-based - - 

8 2000 - 2001 Isotope-based 320 8.1 

9 Jun 1983 - Jun 1984 

Water-balance; 

control and bare 

plots 

- - 

10 Dec 2004 - Jun 2006 Isotope-based 1244 11 

11 2008 - 2010 Sap flow 116.8 7.6 

12 Jan - Dec 2009 
Micro-lysimeters, 

Eddy Covariance 
173 6.5 

13 Nov 2005 - May 2007 Sap flow 265 - 

14 Jun 1996 - Dec 1997 Sap flow 820 9.2 

15 1991 - 1992 - 241 24.5 

16 Jan - Dec 1998 
Sap Flow, 

Eddy Covariance 
1333 14.4 

17 Oct 2004 - May 2007 
Chamber, 

Micro-lysimeters 
285 17.5 

18 2003 - 2011 for ET, Sap Flow, 1678 20.9 



	

Jul 2010 - Jun 2011 

for T 

Eddy Covariance 

19 Sep 1999 - Sep 2000 
Sap Flow, 

Eddy Covariance 
1900 22 

20 Jan 2004 - Dec 2013 

Flux-variance 

Similarity, Eddy 

Covariance 

- - 

21 2010 - 2011 

Eddy Covariance, 

Sap flow 

Measurements 

- - 

22 May 2010 - June 2012 

Bowen ratio energy 

balance and water 

balance, Thermal 

infrared remote 

sensing 

110 7.8 

23 

2003 - 2011 for ET, 

July 2010 to June 

2011 for T 

Eddy Covariance, 

Sap flow Probes 
1678 20.9 

24 

2000/2001 - 

2009/2010 (July - 

June) 

Hydrologic and 

tracer mass budgets 
420 - 

25 2007 - 2009 
Eddy Covariance, 

Sap flow Probes 
1308 15.5 

26 Sep 2004 - Aug 2006 

Weighing 

lysimeters, 

micro-lysimeters 

1500 21.5 

27 2002 - 2005 

Eddy 

covariance-generate

d estimates 

1145 15.5 

28 2002 - 2005 
Eddy Covariance, 

Sap flow Probes 
1146 13.2 

29 Oct 2001 - Sep 2004 
Eddy-covariance, 

Sap flow 
- - 

30 Jul 2000 - May 2001 
Isotope-based (stand 

level) 
225 8.7 

31  stable isotopes 564 8.1 

32 Aug 2001 - Jul 2002 
Energy balance 

equation, Sap flow 
1207 14.1 

33 Jun 2000 - May 2001 
Eddy-covariance, 

Sap flow 
1630 12.5 

34 Oct 1993 - Sep 1994 
Eddy correlation 

method, lysimeters 
458 - 

35 Aug 2005 - Aug 2006 
Chamber, 

lysimeters, 
1460 - 



	

Eddy-covariance 

 

Number 
Match with 

MODIS  
T/ET(%) 1 SD (%) Reference 

1 yes 85.50 2.12 73 

 yes 61.44 0.76 74 

3 yes 76.54 3.19 75 

4 yes 81.40 5.89 76 

5 yes 85 - 77 

6 no 74.07 10.76 76 

7 - 56* 16.99 78 

8 yes 60 9.02 79 

9 no 72 - 80 

10 yes 47.22 1.39 81 

11 yes 76.35 1.79 82 

12 no 38 - 83 

13 no 40 5.62 84 

14 yes 69 - 85 

15 no 45 7.35 86 

16 yes 43.13 2.47 87 

17 no 48.78 5.90 88 

18 yes 60.20 5.49 89 

19 no 56.75 7.70 90 

20 no 82 - 91 

21 no 58.50 3.56 92 

22 yes 68.50 23.3 93 

23 yes 60.20 5.2 94 

24 yes 64.50 13.44 95 

25 yes 77.03 6.635 96 



	

26 yes 65 5.82 97 

27 yes 71.64 0.647 98 

28 no 56.04 2.09 99 

29 yes 68* 4.46 100 

30 yes 74.97 - 101 

31 yes 60.13 - 102 

32 yes 67.17 8.01 103 

33 yes 58.14 32.93 104 

34 no 70.97 - 105 

35 yes 73.33 - 106 



	

Table S3. Environmental drivers. Description and units of environmental variables 

used in this study. Asterisks denote that the corresponding variables are directly from 

the model output. In particular, 10-meter wind speed (WS) for CCSM4, 

CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM is 

extrapolated from the wind speed at the closest pressure level based on a power-law 

velocity profile equation. 

Abbreviation Name Relating output 

variables 

(CMIP5 protocol 

name) 

Unit Calculation 

T 
Plant transpiration 

Flux 
trans 

1
 mm yr

-
 * 

ET 
Evapotranspiration 

Flux 
evspsbl 1

 mm yr
-

 * 

LAI Leaf Area Index lai 2 2
 m m

-
 * 

TAVG 
Daily Average 

Temperature 
tas K  * 

DTR 
Diurnal Temperature 

Range 
tasmax, tasmin K  

tasmax - 

tasmin 

PRE Precipitation pr 
1

 mm yr
-

 * 

VPD 
Vapor Pressure 

Deficit 
tas, ps, hurs kPa see Methods 

RN Net Solar Radiation rsus, rsds, rlds, rlus 2
 w m

-  
(rsds + rlds) - 

( rsus + rlus) 

SWC Soil Water Content mrso 
2

 mm yr
-

 * 

TMX 
Daily Maximum 

Temperature 
tasmax K  * 

TMN 
Daily Minimum 

Temperature 
tasmin K  * 

WS 10-m Wind Speed 
uas, vas 

ua, va 

1
 m s

-
	

2 2
uas vas+

 



	

PS Surface Air Pressure ps kPa	 * 

RH Relative Humidity hurs % * 

LST 
Land Surface 

Temperature 
ts K  * 

CLD Cloud Area Fraction clt % * 

GPP 
Gross Primary 

Production 
gpp 

2 1
  kg m yr- -

 

* 

 



	

Table S4. Best-fit values for the “big-leaf” model emulating ESMs. Inferred 

values of t  and A0 based on an adjusted big-leaf model, with optimum parameters 

minimize differences between predicted T/ET values from the big-leaf model and 

CMIP5-derived T/ET values across the LAI gradients (Fig. 3b). Inferred LUE values 

using the optimized t  and model outputs of LAI and GPP are also listed. 

 

Model Name t  A0	

(
2 1

  mol m sµ
- -

) 

RMSE LUE 

(
2 1

 C  g m MJ APAR
- -

) 

CCSM4 0.25  1.21  0.03  1.08 

CESM1-BGC 0.25  1.21  0.03  1.07 

CESM1-CAM5 0.28  1.31  0.02  1.06 

CESM1-FASTCHEM 0.24  1.17  0.03  1.09 

CESM1-WACCM 0.25  1.42  0.02  1.14 

CanESM2 0.75  4.26  0.01  0.79 

GFDL-ESM2G 0.77  5.49  0.05  0.94 

GFDL-ESM2M 0.48  3.49  0.05  1.11 

IPSL-CM5A-LR 0.62  3.91  0.04  0.78 

IPSL-CM5A-MR 0.66  3.93  0.04  0.76 

MIROC-ESM 0.63  2.76  0.06  0.52 

MIROC-ESM-CHEM 0.57  2.60  0.05  0.55 

MRI-ESM1 0.62  6.56  0.03  1.25 

NorESM1-M 0.21  1.16  0.03  1.29 

bcc-csm1-1 0.64  2.91  0.02  0.54 

bcc-csm1-1-m 0.53  1.96  0.02  0.58 

inmcm4 0.76  4.91  0.04  0.65 



	

Figure S1. Sensitivity of constrained global T/ET to the number of used sites. 

Global T/ET values constrained by a subset (ranging from 1 to 33) of randomly 

selected site observations. Error bars indicate the 1-SD of the 100 repeated 

experiments for each site amount.	

 

	



	

Figure S2. Same as Fig. 2, but averaging climatically analogue model grid cells to 

replace the location-specified model grid cell. 

	



	

Figure S3. Same as Fig. 2, but only using 22 sites where their vegetation type can 

represent dominant vegetation type of the corresponding pixels.	

	



	

Figure S4. Same as Fig. 2, but using the isotope-based observations (a, c) and 

non-isotope-based observations (b, d), respectively, to constrain the global T/ET 

value. T/ET values measured by isotopic approaches is considerably higher than that 

measured by other approaches, such as the combination of sap-flow and eddy 

covariance
7,11

. This is because some assumptions underlying this approach (e.g., the 

isotopic steady state of non-fractionating transpiration vs. fractionating evaporation) 

are rarely met perfectly in nature
11

. As a result, the constrained T/ET with isotopic 

observations (0.71± 0.07) is higher than that with the non-isotopic observations 

(0.61± 0.06). Nevertheless, the two constrained T/ET values are both higher than 

ESM simulation results. 

	



	

Figure S5. ESM-based meteorological drivers, and their replacement in BRT 

model with measurements. a, Comparison between model-derived global mean of 

environmental variables (DTR, TMX, SWC, PRE and RN) and corresponding 

observations/climate reanalysis (horizontal bars). b–d, Scatterplots of CMIP5 

modeled T/ET versus BRT-modeled T/ET, but with temperature (DTR and TMX), 

water availability (SWC and PRE), and radiation (RN) replaced by corresponding 

observations/climate reanalysis, respectively. Legend for ESMs common in all 

panels.	

 
	



	

Figure S6. Inferred implications for T/ET through t changes. a, Variations in the 

T/ET ratio in response to variations in light extinction coefficient (0.2£ t £ the 

fitting value) for each ESM. b, The increase in T/ET values when driven by a lower 

t  (0.2, 0.3 and 0.4) compared to the best-fitted t  for each ESM. 

 



	

 

Figure S7. Impact of interception loss on global T/ET ratio. Modelled global 

average T/ET versus simulated a) global average interception loss and b) global 

average interception ratio (defined as the ratio of interception loss to total 

precipitation). This is across 19 CMIP5 ensemble members, as marked. The dark 

gray line indicates the best-fit regression line across the CMIP5 models. The red 

solid line and dashed lines represents respectively the observation-based value
39

 and 

its uncertainty bounds of interception loss (or interception ratio). This global 

interception estimate is derived from the satellite-based assimilating data using the 

Gash’s analytical model
39

. 

	

	


