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Partitioning global land evapotranspiration using CMIP5 models constrained by observations

The ratio of plant transpiration to total terrestrial evapotranspiration (T/ET) captures the role of vegetation in surface-atmo-sphere interactions. However, its magnitude remains highly uncertain at the global scale. Here we apply an emergent constraint approach that integrates CMIP5 Earth system models (ESMs) with 33 field T/ET measurements to re-estimate the global T/ET value. Our observational constraint strongly increases the original ESM estimates (0.41 ± 0.11) and greatly alleviates intermodel discrepancy, which leads to a new global T/ET estimate of 0.62 ± 0.06. For all the ESMs, the leaf area index is iden-tified as the primary driver of spatial variations of T/ET, but to correct its bias generates a larger T/ET underestimation than the original ESM output. We present evidence that the ESM underestimation of T/ET is, instead, attributable to inaccurate representation of canopy light use, interception loss and root water uptake processes in the ESMs. These processes should be prioritized to reduce model uncertainties in the global hydrological cycle.

Terrestrial evapotranspiration (ET) is a key component of the global hydrological cycle and also represents a central link-age with the surface energy balance and carbon cycle [START_REF] Jasechko | Terrestrial water fluxes dominated by transpiration[END_REF][START_REF] Jung | Recent decline in the global land evapotranspiration trend due to limited moisture supply[END_REF][START_REF] Wang | A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[END_REF] . Two separate processes together constitute this flux, namely physical evaporation (that is, soil and inland water evaporation and canopy interception loss) and biological transpiration (T) [START_REF] Wang | A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[END_REF] . Both processes respond differently to changes in surface meteorological conditions, soil moisture status and vegetation abundance [START_REF] Zhang | Multi-decadal trends in global terrestrial evapotranspiration and its components[END_REF] . To quantify the ratio of transpiration to ET (that is, T/ET) is accordingly necessary to estimate accurately the land water fluxes across spatial scales, and eventually provides insights into global interactions between terrestrial ecosystems and the atmosphere [START_REF] Alkama | Biophysical climate impacts of recent changes in global forest cover[END_REF][START_REF] Zeng | Climate mitigation from vegetation biophysical feedbacks during the past three decades[END_REF] . As the biological processes that influence T also control land-atmosphere carbon dioxide exchanges, more accurate T/ET estimates aid global carbon cycle projections. Over the past decade, considerable efforts have been made to improve our knowledge of T/ET, but its value is still subject to debate [START_REF] Jasechko | Terrestrial water fluxes dominated by transpiration[END_REF][START_REF] Schlesinger | Transpiration in the global water cycle[END_REF][START_REF] Good | Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[END_REF][START_REF] Martens | GLEAM v3: satellite-based land evaporation and root-zone soil moisture[END_REF][START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF][START_REF] Sutanto | HESS opinions: a perspective on different approaches to determine the contribution of transpiration to the surface moisture fluxes[END_REF][START_REF] Kool | A review of approaches for evapotranspiration partitioning[END_REF][START_REF] Coenders-Gerrits | Uncertainties in transpiration estimates[END_REF][START_REF] Schlaepfer | Terrestrial water fluxes dominated by transpiration: comment[END_REF][START_REF] Maxwell | Connections between groundwater flow and transpiration partitioning[END_REF][START_REF] Evaristo | Global separation of plant transpiration from groundwater and streamflow[END_REF] . For instance, one extrapolation of isotope-based catchment-scale estimates to a global scale [START_REF] Jasechko | Terrestrial water fluxes dominated by transpiration[END_REF] suggested that global T/ET was as high as 0.80-0.90, although this may be an overestimate [START_REF] Schlaepfer | Terrestrial water fluxes dominated by transpiration: comment[END_REF][START_REF] Maxwell | Connections between groundwater flow and transpiration partitioning[END_REF][START_REF] Evaristo | Global separation of plant transpiration from groundwater and streamflow[END_REF] . A smaller T/ET estimate of 0.64 ± 0.13 (mean ± s.d.) was reported more recently [START_REF] Good | Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[END_REF] , based on the global water-isotope budget. The difference between the two water-isotope-based global ET partitioning studies [START_REF] Jasechko | Terrestrial water fluxes dominated by transpiration[END_REF][START_REF] Good | Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[END_REF] derives mostly from their inclusion of different canopy interception values [START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF] ; both imply transpiration fluxes that exceed soil and lake evaporation fluxes [START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF] .

Site measurements provide accurate local information on the T/ET ratio, but are limited by their relative scarcity and inconsistent measurement periods (from only a few days or months up to years, depending on the location). This precludes large-scale upscaling, for example, using empirical statistical models based on environmental variables such as the leaf area index (LAI)-based regression [START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF] . Alternatively, Earth system models (ESMs) offer an effective way to derive T/ET estimates across temporal and spatial scales. The approach taken is that ESMs are first proved to perform well in reproducing T/ET at single points with the available measurements. Then, an assumption is made that they capture accurately the spatial variations in the present or future surface climate conditions that force T/ET, which enables aggregation up to the global scale. ESMs are routinely used to assess evaporation and water resource changes in response to rising atmospheric greenhouse gas concentrations [START_REF] Milly | Global pattern of trends in streamflow and water availability in a changing climate[END_REF][START_REF] Seager | Projections of declining surface-water availability for the southwestern United States[END_REF][START_REF] Taylor | Ground water and climate change[END_REF] , as well as feedbacks of an adjusted hydrological cycle to the climate system [START_REF] Zeng | Climate mitigation from vegetation biophysical feedbacks during the past three decades[END_REF] . However, different ESMs inevitably produce divergent T/ET estimates because they contain diverse parameterizations of surface energy and water processes from alternative strands of development in the past few decades. Here we use historical outputs from 19 ESMs (Methods and Supplementary Table 1) under the Climate Model Intercomparison Project Phase 5 (CMIP5) [START_REF] Taylor | An overview of CMIP5 and the experiment design[END_REF] for the period 1980-2005 (Fig. 1a), together with 33 site observations of the annual average T/ET compiled from fieldbased studies that cover at least a full year (Fig. 1a,c) to derive a reassessment of the global T/ET magnitude.

Evaluating model performance

We first compared T/ET in CMIP5 models against five existing global-scale estimates [START_REF] Jasechko | Terrestrial water fluxes dominated by transpiration[END_REF][START_REF] Zhang | Multi-decadal trends in global terrestrial evapotranspiration and its components[END_REF][START_REF] Schlesinger | Transpiration in the global water cycle[END_REF][START_REF] Good | Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[END_REF][START_REF] Martens | GLEAM v3: satellite-based land evaporation and root-zone soil moisture[END_REF][START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF] and against 33 direct site observations, which are a mixture of isotopic and non-isotopic measurements (Methods and Supplementary Table 2). The T/ET of most ESMs exhibits a consistent tendency towards maximizing in the tropics and decreasing poleward, although at all latitudes the magnitude of present-day T/ET varies considerably across ESMs (Fig. 1b).

Averaged globally, intermodel discrepancies span a factor of about three (from 0.20 in CanESM2 to 0.57 in CESM1-CAM5). Critically, the multiyear average of the CMIP5 model ensemble mean (0.41 ± 0.11) is considerably lower than all the observationbased estimates derived from lake isotopes [START_REF] Jasechko | Terrestrial water fluxes dominated by transpiration[END_REF][START_REF] Schlesinger | Transpiration in the global water cycle[END_REF] (0.57-0.90), from global water isotope budgets [START_REF] Good | Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[END_REF] (0.64 ± 0.13), from the Penman-Monteith-Leuning (PML) model 4 (0.65 ± 0.19), from the Global Land Evaporation Amsterdam Model 9 (GLEAM, 0.74) and from LAI-based upscaling 10 (0.57 ± 0.07) (Fig. 1d). To further verify that CMIP5 models underestimate T/ET, we also compared model simulations with local field observations, after sampling the models at grid cells that contain each site. As discovered at the global scale, modelled T/ET is substantially lower (six out of seven sites) than isotopic measurements by an average of 46%, and lower (24 out of 26 sites) than non-isotopic measurements by an average of 36% (Fig. 1c). Among the three sites with lower field observations of T/ET than model estimates, they are only on average 5% less than the CMIP5-mean ensemble for those locations.

New global T/ET estimate constrained by observations

To build the usefulness of ESM-based global estimates of T/ET, we made use of these field T/ET measurements through an emergent constraint approach (Methods). This approach can lever additional information from a multimodel ensemble to reduce the uncertainty in characterizing Earth system features (for example, Cox et al. [START_REF] Cox | Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability[END_REF] , Mystakidis et al. [START_REF] Mystakidis | Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates[END_REF] and Wenzel at al. [START_REF] Wenzel | Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO 2[END_REF] ). The concept relies on the fact that, although ESMs may have many large intermodel structural and parameter differences, there may exist a tight regression across them between (1) a quantity of interest that is difficult to measure and (2) a second variable for which measurement data are readily available. Applying this approach here, a tight linear relationship across ESMs (R 2 = 0.93, P < 0.001 (Fig. 2a)) was found between the modelled global T/ET values (areal-averaged global T divided by areal-averaged global ET) and the modelled site-averaged T/ET (T/ET averaged over the grid cells that correspond to the observational site locations) for the contemporary period (1980-2005). This strong linear relationship between individual model simulations of site-average T/ET for the contemporary period and their estimates of global T/ET provides an emergent constraint on the actual global T/ET value-that is, by using the regression to map from site-average T/ET measurements (Fig. 2a). Our summary result shows that the constrained global T/ET ratio of 0.62 ± 0.06 is 34% higher than that of the original CMIP5 ensemble mean (that is, 0.41 ± 0.11), with a reduction in the uncertainty range by nearly half (Fig. 2b). Additional statistical and sensitivity analyses were performed that confirm the robustness of this higher global T/ET value than the original model output (Methods and Supplementary Figs. 123). As isotopic approaches often diagnose higher T/ET values than other approaches [START_REF] Schlesinger | Transpiration in the global water cycle[END_REF][START_REF] Sutanto | HESS opinions: a perspective on different approaches to determine the contribution of transpiration to the surface moisture fluxes[END_REF] , the global re-estimate of T/ET constrained by isotopic observations only (0.71 ± 0.07) is larger than that constrained by non-isotopic observations only (0.60 ± 0.06) (Supplementary Fig. 4).

Drivers of spatial variation in modelled T/ET

ET partitioning is highly dependent on land surface properties (for example, vegetation density and structure [START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF][START_REF] Villegas | Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: insights from experimental dryland tree mosaics[END_REF] and soil moisture [START_REF] Maxwell | Connections between groundwater flow and transpiration partitioning[END_REF] ) and atmospheric conditions (for example, energy availability [START_REF] Maxwell | Connections between groundwater flow and transpiration partitioning[END_REF] and precipitation (PRE) characteristics). To aid our understanding of the T/ET model bias, we investigated the dominant drivers of spatial gradients of T/ET in different CMIP5 models. We developed an empirical diagnostic model for offline T/ET estimates as a function of 14 environmental factors (Supplementary Table 3). This diagnostic model is based on boosted regression trees (BRTs (Methods)), a machine-learning technique extended from traditional classification and regression trees. The BRT model based on these factors successfully explains 95-99% of the global spatial patterns of T/ET in all the 19 ESMs considered. Figure 3 displays the amount of spatial variation in T/ET explained by each environmental factor, and for each ESM. LAI is identified as the primary driver of T/ET for all the 19 CMIP5 ESMs-its relative contribution to explaining the spatial patterns of T/ET varies from 25 to 86% (Fig. 3) and, for all individual models, has the highest percentage compared to that of other factors. This verifies the critical role of the terrestrial vegetation structure in controlling ET partitioning [START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF][START_REF] Villegas | Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: insights from experimental dryland tree mosaics[END_REF] . There is no cross-model consensus on the second most important driver for spatial gradients in T/ET, being either temperature (maximum air temperature (TMX) or diurnal temperature range (DTR)), water availability (PRE or soil water content (SWC)), or radiation (net radiation (RN)).

To explore whether any biases in the dominant drivers (those that explain over 10% of the total spatial variations in T/ET) cause an underestimation in the modelled T/ET, we re-ran the BRT model calibrated for each ESM, but with the dominant drivers replaced by corresponding global observations instead of ESM outputs (Methods). All the ESMs, except MIROC5 and CanESM2, overestimate LAI, with the ensemble mean LAI being approximately 1.5 times that of satellite observations (Fig. 4a). These ESMs thus project a too high T/ET because of their too high LAI values, although different models show substantially different relationships between T/ET and LAI (Fig. 4b). Accordingly, compared to the original ESM 3)) to spatial variations of T/ET across 19 CMIP5 models (x axis (details in Supplementary Table 1)). Grey grids indicate that these drivers have very minor impacts on the T/ET distribution in the corresponding ESM, so they were not included in constructing BRT models (Supplementary Text 2). Altogether, all the remaining drivers in each ESM can explain at least 95% of the global spatial variation of T/ET.
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estimates, the predicted global T/ET driven by satellite-observed LAI actually leads to an even larger underestimation of T/ET in 17 models (from 0.01 for IPSL-CM5A-MR to 0.07 for MIROC-ESM-CHEM) (Fig. 4c). These results suggest strongly that the underestimation in ESM-simulated global T/ET is attributable to inaccurate representations of vegetation-related processes that influence ET partitioning, instead of the direct erroneous magnitude of vegetation density as represented through LAI in the ESMs. We also verify that correcting the bias of each of the dominant drivers beside LAI cannot enhance the modelled global T/ET magnitude (Supplementary Text 3 and Supplementary Fig. 5). Overall, if all the dominant drivers are replaced by observations instead of ESM variables, the global T/ET in most (13 of 19) ESMs would actually decrease (except the MIROC5, CanESM2 and the GFDL models) from the original values of 0.41 ± 0.11 to a new range of 0.38 ± 0.10 (Fig. 4d). Hence, the direct inclusion of observed driving data to recalculate the T/ET value, via the BRT model trained on ESM output, causes even larger biases.

Potential causes of the underestimation in modelled T/ET

Confirmation that biases in surface drivers, including LAI, are not responsible for the large ESM underestimation of T/ET implies that structural deficiencies exist in how ESMs partition land ET into its component fluxes. Furthermore, the strong linkage between the T/ET value and LAI (Figs. 3 and4b) indicates that such structural errors may be dependent on physiological and within-canopy processes, whose parameterization relates to LAI. We developed an adjusted 'big-leaf ' model [START_REF] Lloyd | Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees[END_REF][START_REF] Clark | The Joint UK Land Environment Simulator (JULES), model description-Part 2: carbon fluxes and vegetation dynamics[END_REF] to approximate the photosynthesis and transpiration processes for each ESM (Supplementary Text 4). We diagnosed that the implied big-leaf light extinction coefficients (τ) currently in most ESMs (Supplementary Table 4) are generally higher than those reported from site observations [START_REF] Lloyd | Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees[END_REF] . Indeed, nearly two-thirds of the ESMs have values higher than the standard value of 0.5 often assumed in any big-leaf approach [START_REF] Clark | The Joint UK Land Environment Simulator (JULES), model description-Part 2: carbon fluxes and vegetation dynamics[END_REF] . Accordingly, lower τ values (τ ≤ 0.4 based on available observations [START_REF] Lloyd | Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees[END_REF] ) applied to each inferred model result in a substantial increase (≥ 25%) in the ensemble mean global T/ET (Supplementary Fig. 6). The overestimated τ could be partially attributable to errors in some light-related drivers, which include the requirement for a routine inclusion of diffuse radiation-an effect shown to be important for the photosynthetic response to light [START_REF] Gu | Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis[END_REF][START_REF] Mercado | Impacts of changes in diffuse radiation on the global land carbon sink[END_REF] . For instance, without an explicit representation of diffuse-light dependence (except the Community Land Model version 4.0), ESMs may underestimate the transpirational ability of shaded canopy leaves under 'hazy' radiation conditions [START_REF] Knohl | Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem[END_REF][START_REF] Oliveira | Vegetationmediated impacts of trends in global radiation on land hydrology: a global sensitivity study[END_REF] . Although presently very limited direct in-canopy measurements are available to test for this effect, the observed substantial impact of diffuse radiation on the canopy photosynthesis [START_REF] Gu | Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis[END_REF][START_REF] Mercado | Impacts of changes in diffuse radiation on the global land carbon sink[END_REF][START_REF] Knohl | Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem[END_REF] supports this hypothesis because carbon uptake and water loss are inherently coupled [START_REF] Jasechko | Terrestrial water fluxes dominated by transpiration[END_REF][START_REF] Berry | Stomata: key players in the earth system, past and present[END_REF][START_REF] Keenan | Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[END_REF] .

In addition to the possibly incorrect τ values, there is emerging evidence of an underestimation in the global light-use efficiency (LUE), which measures the ability to fix carbon per unit of photosynthetically active radiation [START_REF] Wei | A global study of GPP focusing on light-use efficiency in a random forest regression model[END_REF] . In ESMs, LUE has a global and model mean of 0.90 ± 0.26 gC m -2 MJ -1 absorbed photosynthetically active radiation (APAR) (Supplementary Text 5 and Supplementary Table 4), compared to a recent global empirical estimate based on FLUXNET observations (1.23 ± 0.03 gC m -2 MJ -1 APAR) [START_REF] Wei | A global study of GPP focusing on light-use efficiency in a random forest regression model[END_REF] . This negatively biased LUE leads to an underestimation in the ecosystem photosynthetic rate, and consequently in canopy transpiration. Accordingly, we obtained a higher ensemble mean global T/ET of 0.52 ± 0.11 through incorporating the observation-based LUE value into the CMIP5 results (Supplementary Text 5). Alongside potential errors in photosynthetic response, other biases in T/ET could also occur through deficiencies in the rooting characteristics (depth, thickness and density), vertical soil properties (soil texture, hydraulic conductivity and moisture gradients), stomatal conductance (for example, response to atmospheric moisture demand) and canopy interception processes [START_REF] Wang | A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[END_REF][START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF][START_REF] Lawrence | The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction[END_REF][START_REF] Llorens | Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe[END_REF] . A rooting depth of no more than 2-4 m is widely adopted by most land surface models [START_REF] Heitman | Sensible heat observations reveal soil-water evaporation dynamics[END_REF] , yet this will underestimate the capacity for deep-rooted vegetation over a wide range of biomes [START_REF] Yang | Global estimation of effective plant rooting depth: implications for hydrological modeling[END_REF][START_REF] Fan | Hydrologic regulation of plant rooting depth[END_REF] to access water and thus transpire. Newly published root water-uptake depth data [START_REF] Fan | Hydrologic regulation of plant rooting depth[END_REF] report plant roots to be substantially deeper than 4 m over deciduous and evergreen broadleaf forests. In addition, shrubs are currently ignored by most ESMs in spite of their high ability to transpire more water due to their deeper roots [START_REF] Parolari | Ecohydrological controls on grass and shrub above-ground net primary productivity in a seasonally dry climate[END_REF] . Furthermore, the contribution of the understorey vegetation to transpiration in forests is not taken into account in most ESMs, which may also suppress the ESMestimated T/ET. Finally, the parameterization of canopy interception processes remains simple in the ESMs, which is, in most cases, formulated as a function of vegetation density and rainfall volume [START_REF] Oleson | Technical description of version 4.0 of the Community Land Model (CLM)[END_REF] . However, canopy interception observations reported this component of ET to be sensitive also to vegetation type and structure, and to rain characteristics, which include intensity and frequency [START_REF] Llorens | Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe[END_REF] .
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To test whether the simulation of interception loss affects the global T/ET ratio, we plot this ratio against corresponding global interception loss estimates across all the ESMs (Supplementary Fig. 7a). We find that the modelled interception loss explains 22% of the cross-model variance of global T/ET. Models with higher global T/ET ratios simulate less interception loss, and hence leave more water available for transpiration. Compared with satellitebased global interception estimates [START_REF] Miralles | Global canopy interception from satellite observations[END_REF] , the modelled global interception loss is subject to a strong positive bias (141 ± 43 mm yr -1 of the model ensemble mean versus 62 ± 12 mm yr -1 (Supplementary Fig. 7)). We verify that this overestimate is not due to PRE inputs in the ESMs being too high by showing a similar result with the modelled interception loss normalized by the PRE amount (Supplementary Fig. 7b). Hence, we provide direct evidence that the simplistic treatment of canopy interception loss and re-evaporation processes results in an excess ET partitioning into interception in CMIP5 models. This error partially contributes to our identified too low T/ET values in the ESMs. This highlights the necessity for more accurate representations of canopy interception processes in the ESMs, which include the impact of rainfall intensity and subgrid rainfall variability on interception loss [START_REF] Wang | Impact of sub-grid variability of precipitation and canopy water storage on hydrological processes in a coupled land-atmosphere model[END_REF] .

Implications of improved T/ET modelling

Plant transpiration depends on vegetation physiological characteristics [START_REF] Field | Stomatal responses to increased CO 2 : implications from the plant to the global scale[END_REF] and is expected to evolve in response to rising atmospheric CO 2 and climate change. Hence, the strong underestimation in the T/ET ratio of some models brings uncertainty to the simulated future terrestrial water cycle and surface energy balances. For example, Zeng et al. [START_REF] Zeng | Climate mitigation from vegetation biophysical feedbacks during the past three decades[END_REF] demonstrated that extremely low T/ET levels in two climate models led to an underestimated sensitivity of the modelled ET to the known increases of LAI ('greening'). This causes an underestimated cooling in the surface temperature contributed by the Earth's greening. Analogously, the general underestimation of T/ET in the ESMs, as examined here, implies an overall underestimation in the strength of vegetation biophysical cooling effects [START_REF] Alkama | Biophysical climate impacts of recent changes in global forest cover[END_REF][START_REF] Zeng | Climate mitigation from vegetation biophysical feedbacks during the past three decades[END_REF] , for both the present and future climatic states. Higher T/ET levels have the potential to attenuate surface warming, and therefore dampen the magnitude and frequency of droughts and heatwaves under climate change. This is relevant because the likelihood of weather extremes increases as temperature goes up [START_REF] Fischer | Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes[END_REF] , so more accurate projections of T/ET will help characterize this natural mitigation.

T/ET levels also modulate the extent to which terrestrial runoff is affected by rising atmospheric CO 2 through stomata closure and leaf area changes. Using the CMIP5 1pctCO2 simulation with an idealized 1% yr -1 increase in atmospheric CO 2 concentration up to quadrupling the preindustrial CO 2 concentration, we investigate geographical differences in runoff changes compared to their simulated T/ET levels, and the cross-model relationship between the magnitude of global-mean runoff changes and T/ET levels. Specifically, we record the modelled runoff changes through the transpiration process response, Δ Rt(Δ CO 2 , T/ET), as a function of CO 2 and the local T/ET value, after subtracting the effects of CO 2induced changes in precipitation, Δ PRE (that is, Δ Rt = Δ Runoff -Δ PRE). Mean and median values of ∂ Rt/∂ CO 2 are presented in Fig. 5a, based on binned T/ET values from the geographical variation of the ESM ensemble mean result. We find that regions with higher T/ET values have a larger and positive Rt increase as CO 2 increases (P < 0.05). Of particular interest is that for low T/ET values (T/ET < 0.2, generally over regions with limited vegetation cover, and thus a weak stomatal response) a negative runoff response to rising CO 2 is detected (Fig. 5a). This is caused by leaf area increases (greening raising T) dominating stomata closure (lowering T), thus creating a net transpiration increase. This effect of CO 2 -induced changes of T/ET on runoff is also corroborated by looking at the ESMs individually. We find that ESMs with broadly higher global-mean T/ET ratios (rather than considering gridbox binned values) also simulate higher Rt increase responding to rising atmospheric CO 2 (Fig. 5b). Hence, where terrestrial water is more intensely recycled by transpiration, there is also a stronger suppression of transpiration as CO 2 increases and thus more rainfall enters the streams and rivers.

As a biological pump of water from the land surface to the atmosphere, vegetation plays an important role in regulating water and energy exchange between the land surface and the atmosphere [START_REF] Jasechko | Terrestrial water fluxes dominated by transpiration[END_REF][START_REF] Alkama | Biophysical climate impacts of recent changes in global forest cover[END_REF][START_REF] Zeng | Climate mitigation from vegetation biophysical feedbacks during the past three decades[END_REF] . To understand this role of vegetation is vital for climate mitigation and water resource management in future climate conditions, especially as physiological processes are responsive to changed local meteorological conditions under global warming and rising atmospheric CO 2 concentration [START_REF] Field | Stomatal responses to increased CO 2 : implications from the plant to the global scale[END_REF][START_REF] Swann | Plant responses to increasing CO 2 reduce estimates of climate impacts on drought severity[END_REF] . Changing transpiration levels will impact freshwater availability, knowledge of which is a key prerequisite for policy development in an evolving climate. Furthermore, different land-atmosphere exchanges of water could influence future atmospheric humidity levels, and as water is itself a greenhouse gas, this could modulate warming rates [START_REF] Solomon | Contributions of stratospheric water vapor to decadal changes in the rate of global warming[END_REF] . Even for present-day climatic conditions, measurements show unequivocally that transpiration comprises the largest fraction of global land ET. However, this fundamental role of terrestrial vegetation is currently poorly modelled; our emergent constraint approach demonstrates that CMIP5 ESMs broadly underestimate T/ET. The additional novel evaluation framework applied here confirms that leaf area is the dominant driver of modelled T/ET variability, as reported by observation-based studies [START_REF] Wei | Revisiting the contribution of transpiration to global terrestrial evapotranspiration[END_REF][START_REF] Villegas | Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: insights from experimental dryland tree mosaics[END_REF] . Yet we find it is not inaccurate leaf cover values that directly cause the T/ET values to be too low, but instead the parameterization of how vegetation functions for different LAI values. Hence, further efforts are required to address the currently underrepresented processes in the ESMs, for instance, by routinely incorporating a radiative transfer scheme that accounts for the effect of diffuse sunlight, reassessing the precise ecosystem photosynthetic rate that relates to transpiration, modelling deeper rooting systems as guided by the available plant rooting-depth data [START_REF] Fan | Hydrologic regulation of plant rooting depth[END_REF] and providing more realistic parameterization of canopy hydrological processes, which include interception loss.

Methods

CMIP5 outputs. The historical (analysed years 1980-2005) and Representative Concentration Pathway 8.5 (ref. [START_REF] Taylor | An overview of CMIP5 and the experiment design[END_REF] ) scenario (analysed years 2080-2100) simulations of monthly ET, transpiration and relevant driving environmental factors (Supplementary Table 3) were obtained from the CMIP5 archive [START_REF] Taylor | An overview of CMIP5 and the experiment design[END_REF] (http://cmip-pcmdi.llnl.gov/cmip5/). A total of 19 ESMs were available for the study period 1980-2005, which provide all the diagnostic variables that are required for this study. Of these ESMs, 16 also had available required outputs for the corresponding future projections during 2080-2100 (Supplementary Table 1). All the CMIP5 outputs were linearly interpolated from their native resolution to a common 1° × 1° global grid. If any model had more than one ensemble member (that is, starting with different initial conditions), then an average was taken over all the monthly realizations. The monthly vapour pressure deficit was calculated as the difference between the modelled saturation and the actual vapour pressure using monthly temperature, surface pressure and relative humidity [START_REF] Zhao | Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[END_REF] . The 10 m wind speed (WS) from most climate models was calculated using 10 m northand eastward wind speed, except the five models without direct outputs of 10 m wind fields (that is, CCSM4, CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM). For these five models, WS was extrapolated from the wind speed at the closest pressure level based on a power-law velocity profile equation [START_REF] Archer | Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements[END_REF][START_REF] Devis | A height dependent evaluation of wind and temperature over Europe in the CMIP5 Earth System Models[END_REF] . Our study region is restricted to the global vegetation covered land surface, defined as where multiyear average satellite observed LAI > 0.1. 2) were compiled from 33 individual publications (by January 2017) that experimentally measured at least three out of the four relevant variables, that is, ET, soil evaporation, transpiration and interception loss. We only retained site observations that were complete for at least an annual period and at least at a monthly time step. These site observations were measured via a range of approaches, including stable isotopes, microlysimeters, chamber experiments or a combination of sap flow and eddy covariance (Supplementary Table 2). Two observational sites were located on small islands (Vanuatu and Hawaii) that were not represented in the ESMs due to spatial resolution limitations, so they were excluded in this analysis. Uncertainty bounds of the T/ET observations at nine sites were not available (Supplementary Table 2), so their s.d. value was assumed to be the average of the s.d. values available at other sites (that is, 7.4%). The site-average T/ET value across the 33 sites and its uncertainty bound provide the single value with a range, which was used in the emergent constraint on the global magnitude of T/ET (horizontal axis in Fig. 2a).

Observational data. Field observations of T/ET across 35 sites (listed in Supplementary Table

To investigate whether the underestimated T/ET values in the ESMs are derived from the modelled biases of dominant driving variables, including LAI, temperature (TMX or DTR), water availability (SWC or PRE) and RN, we obtained measurements of these variables independently from satellite and/or ground-based observations and reanalysis data sets. We employed LAI observations from the Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g data set, which is produced from the third-generation AVHRR GIMMS NDVI data set using an artificial neural network model [START_REF] Zhu | Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011[END_REF] . The LAI observation has gone through strict quality validation through comparisons with field measurements and satelliteobserved products. It covers the period from July 1981 to December 2014 and is available at 1/12° spatial resolution and 15 day temporal resolution. Remote sensing radiative flux data, which include shortwave and longwave solar radiation (both up-and downwelling fluxes that were combined to give RN), were derived from the NASA World Climate Research Programme/Global Energy and Water-Cycle Experiment Surface Radiation Budget (SRB Release 3.0) (http://gewex-srb.larc. nasa.gov/). These radiation observations were provided at a spatial resolution of 1° × 1° and a monthly temporal resolution that spanned from July 1983 to December 2007. Other meteorological variables (that is, the maximum/minimum near surface 2 m air temperature and PRE) came from Climate Research Unit TS3.22 (http://www.cru.uea.ac.uk/data/) [START_REF] Harris | Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset[END_REF] that covers the full 1980-2005 period. The total soil moisture content from the ERA-Interim reanalysis output was used in this study as a surrogate for soil moisture observations due to the lack of direct global-coverage soil moisture maps. All these environmental variables were first linearly re-gridded to the common 1° × 1° global grid and then averaged over the study period 1980-2005.

Emergent constraint method.

ESMs often exhibit significant differences between them, and for a variety of aspects of the climate system. This can make it difficult to understand fully the contemporary climate or to estimate future changes. However, recently the method of 'emergent constraints' was developed and utilised to reduce the uncertainty that surrounded multiple features of the Earth system. The basic concept is that, although ESMs do differ, there are across them various robust one-to-one relationships (emergent constraints) that emerge when the multimodel outputs are analysed. These relationships often link pairs of model-derived quantities of interest. The first one is usually a quantity of key importance that describes how the Earth system operates, but for which the true value is unknown, whereas the second diagnostic might be a quantity for which measurements are available. From this, it is possible to use measurements of the second variable, via the emergent constraint, to constrain the first quantity. For example, based on a model-derived relationship between the long-term sensitivity of carbon to warming and the short-term responses of atmospheric CO 2 to warming, Cox et al. [START_REF] Cox | Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability[END_REF] utilised contemporary observations to constrain the sensitivity of tropical carbon storage to climate change.

The rationale for our emergent constraint on global T/ET comes from the strong heuristic linear relationship between global-averaged T/ET and siteaveraged T/ET across the CMIP5 ESMs (Fig. 2a). Similar to the constraining approach performed by Cox et al. [START_REF] Cox | Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability[END_REF] , we utilised this model-based relationship with 33 field measurements of T/ET, which, via this emergent constraint, imposed much smaller uncertainty bounds on the global T/ET estimates compared to the spread of ESM-based global T/ET values. The conditional probability density function (PDF) for the constrained global T/ET (green dashed line in Fig. 2b) was derived [START_REF] Cox | Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability[END_REF] from the prior PDF of site observations, together with the model-based linear relationship (Fig. 2a).

To test the robustness of our constrained result of the global T/ET, a number of additional sensitivity analyses were performed. Although the observational periods (lasting at least 1 yr) of the available sites differ between locations, and are much shorter than the averaging periods of the model results (1980-2005), this causes negligible impact on our global constrained value. This is due to the weak interannual variability of ESM-modelled T/ET values for all site locations (s.d. of T/ET values ≤ 0.02). In addition, the constrained result is not sensitive to the number of sites included, as verified by randomly and repeatedly selecting a subset of site measurements to derive global T/ET estimates (Supplementary Text 1). Almost all combinations of over ten sites could lead to an estimate close to that obtained from all 33 sites, with a stochastic error of < 0.05 in global T/ET (Supplementary Fig. 1). We also derived a very similar result (0.64 ± 0.05 (Supplementary Fig. 3)) if we excluded those sites where the known local vegetation type is not representative of the dominant vegetation type of the corresponding ESM grid cells (Supplementary Text 1 and Supplementary Table 2). In a final test, we confirmed that the use of coarse ESM pixels to represent the site-level signal had a weak impact on the constrained value (0.67 ± 0.07 (Supplementary Fig. 2)). We achieved this by performing the same analysis, but using modelled 'climate analogue' ESM grid cells in which the climatic conditions are nearest to the site-level climatology (Supplementary Text 1). All of these additional tests confirm a systematic underestimation in the ESM-modelled T/ET values, based on our emergent constraint approach that entrains site-level local measurements of T/ET. B RTs . BRT is a powerful machine-learning approach based on traditional regression tree methods [START_REF] De'ath | Boosted trees for ecological modeling and prediction[END_REF][START_REF] Elith | A working guide to boosted regression trees[END_REF] . It was employed here to investigate the environmental drivers that determine the spatial variations of T/ET in each ESM. This BRT analysis was performed using the 'dismo' and 'gbm' packages in the R statistical software, and details of the procedures used to establish the BRT models are described in Supplementary Text 2. Using BRTs built with CMIP5 outputs, the relative importance of environmental variables, as well as the partial dependency of T/ET on each variable, were quantified. For each of the 19 ESMs, the dominant drivers were defined as those that explained over 10% of the spatial variations in T/ET, being either LAI, temperature (TMX or DTR), water availability (SWC or PRE) or RN. The 19 CMIP5 models could be categorized into five groups with different combinations of dominant drivers: (1) dominated by only LAI (CCSM4, CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM, CanESM2, MIROC-ESM, MIROC-ESM-CHEM, MIROC4h, MIROC5, NorESM1-M and inmcm4), (2) dominated by LAI and temperature (GFDL-ESM2G and GFDL-ESM2M), (3) dominated by LAI and water availability (IPSL-CM5A-LR, IPSL-CM5A-MR and bcc-csm1-1-m), (4) dominated by LAI, temperature and water availability (MRI-ESM1 and bcc-csm1-1) and ( 5) dominated by LAI, temperature and radiation (CESM1-WACCM).

The BRT algorithm allows the replacement of the dominant CMIP5-based drivers that govern the spatial variations of T/ET with corresponding observations, and thus creates new global estimates of T/ET. This enables the uncoupling of potential errors in the T/ET projections due to incorrect surface projections of the drivers from any deficiencies in the land surface components of the ESMs. Using the BRT method as a tool to partition the role of the dominant drivers, five sequential sets of new simulations were performed with observation-based gridded fields replacing model-based fields, as follows: (1) LAI only, (2) LAI and temperature (DTR and TMX), (3) LAI and water availability (SWC and PRE), (4) LAI and RN, and (5) all variables (LAI, DTR, TMX, SWC, PRE and RN).

To eliminate the influence from potential interactions between LAI and other environmental factors, the biases in global T/ET that stemmed from temperature, water availability and radiation were calculated as the difference between simulation (1) and simulations (2), ( 3) and (4), respectively. mol m s µ --) is the accumulated leaf-level photosynthesis rate across the entire canopy leaf area, and is given as:
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Here t is the light extinction coefficient, A 0 is the leaf photosynthesis rate at the top of canopy ( 21mol m s µ --), and L is the cumulative leaf area index measured downwards from the canopy top ( L = 0 for the uppermost leaves of the canopy and L = LAI for the total canopy leaf area index). Although A 0 in models may vary spatially and temporally, its exact value cannot be reproduced outside the model simulations. This is because A 0 depends on multiple drivers absent in ESM outputs, such as the type of photosynthetic pathway (C 3 or C 4 ), leaf nitrogen concentration and the incident photosynthetically active radiation [START_REF] Clark | The Joint UK Land Environment Simulator (JULES), model description-Part 2: carbon fluxes and vegetation dynamics[END_REF] .

Therefore, in the derivation of t , we assumed this variable to be an ESM-specific constant, representing the spatial and time average of carbon sequestration capacity A 0 , thus giving a general mean value across all driving forcings and limitations (e.g., nutrient availability and drought).

By linking water loss to carbon assimilation through stomata behaviors, transpiration flux was then scaled up to be canopy level using the following formula:
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Here WUE is the plant water use efficiency defined as the ratio of CO 2 assimilated to transpired H 2 O during the photosynthesis, and is a direct diagnostic from ESMs of GPP/T. A nonlinear curve-fitting algorithm (using the "lsqcurvefit" function in MATLAB; http://www.mathworks.co.uk/products/matlab/) was adopted for each ESM to optimize the implicit extinction coefficient t and maximum top-canopy carbon assimilation rate A 0 , by minimizing the least squares error for the modeled local T/ET values. This approximation is based on the partial dependence of T/ET against LAI shown in Fig. 3b, and also partial dependences of WUE and ET on LAI derived from the BRT simulations (not shown).

The big-leaf based modelling structure then enables our final step to be made of explaining how overestimation of t could cause major underestimation of T/ET. Specifically, we take our big-leaf model and best-fit solvers for A 0 and t (Supplementary 

where t is the light extinction coefficient calculated by the adjusted "big-leaf" model (see Supplementary Text 4). Then ESM-simulated LUE was indirectly obtained as

GPP GPP LUE APAR FPAR PAR == × (4) 
A newly published paper [START_REF] Wei | A global study of GPP focusing on light-use efficiency in a random forest regression model[END_REF] values of t and A 0 based on an adjusted big-leaf model, with optimum parameters minimize differences between predicted T/ET values from the big-leaf model and CMIP5-derived T/ET values across the LAI gradients (Fig. 3b). Inferred LUE values using the optimized t and model outputs of LAI and GPP are also listed. 
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Fig. 1

 1 Fig. 1 Simulated and observation-based estimates of T/ET at the global and stand levels. a, Spatial pattern (map) and corresponding frequency distribution (inset) of the CMIP5 ensemble mean T/ET for the period 1980-2005. Stars indicate the locations of sites that provided stand-level observations for this study. b, Latitudinal profiles of ESM-modelled T/ET; the grey shading indicates the uncertainty range (mean ± s.d.). c, Scatterplot of the siteobserved T/ET versus the mean modelled T/ET extracted for the same locations. Error bars represent the uncertainty range of ESM simulations (vertical) and of the field observations (horizontal). d, Global average T/ET estimates from different sources; boxes mark the given uncertainty range 1,4,7-10 , bold black lines mark the mean values and error bars indicate the maximum/minimum values.

Fig. 2

 2 Fig. 2 Emergent constraint on the model-simulated global T/ET. a, Global average T/ET versus the simulated cross-site average T/ET based on observational site locations for the 19 CMIP5 ESMs. The grey line indicates the best-fit regression line across the models. The green dashed line (stand-level average T/ET) and shaded areas (uncertainty range) represent the observation-based constraint on the simulated global average T/ET value. Orange lines show the constrained global T/ET (solid) and its uncertainty range (dashed). b, PDF for the original ESM global average T/ET (green line), and the estimated global average T/ET by applying observational constraint onto the intermodel relationship shown in a.

Fig. 3

 3 Fig. 3 Contribution of environmental drivers to spatial variations of T/ET in ESMs. Shown are the relative contributions, as integer percentages (%), of 14 environmental drivers (y axis (details in Supplementary Table3)) to spatial variations of T/ET across 19 CMIP5 models (x axis (details in Supplementary Table1)). Grey grids indicate that these drivers have very minor impacts on the T/ET distribution in the corresponding ESM, so they were not included in constructing BRT models (Supplementary Text 2). Altogether, all the remaining drivers in each ESM can explain at least 95% of the global spatial variation of T/ET.
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 124 Fig. 4 | Implications for the model-derived T/ET of replacing dominant drivers with observations. a, Comparison between global-mean model-derived LAI (1980-2005) and remotely sensed LAI (1981-2005). b, Partial dependency plot for LAI from the BRT model built with land pixels of each CMIP5 ESM. c, Scatterplot of CMIP5-modelled T/ET versus BRT-modelled T/ET, but with LAI replaced by satellite observations. d, Scatterplot of CMIP5-modelled T/ET versus BRT-modelled T/ET with LAI, DTR, TMX, SWC, PRE and RN replaced by the corresponding observations or climate reanalysis. ESM colours are common to panels b-d. Different shapes of symbols indicate the five categories of ESM-specific dominant drivers that govern global land ET partitioning (Methods).

Fig. 5

 5 Fig. 5 Impact of modelled T/ET on the runoff responses to rising atmospheric CO 2 . a, The average and median of the sensitivity of runoff (Rt), via transpiration process response, to atmospheric CO 2 concentration as a function of T/ET levels binned into 0.1 intervals. Rt represents the difference between runoff and rainfall to exclude the effects of CO 2 -induced rainfall changes. Both Rt and T/ET values are from different geographical points of the CMIP5 ensemble mean results (from the 1pctCO2 simulation). b, Scatterplot of the modelled sensitivity of the global average Rt to atmospheric CO 2 concentration versus the modelled global average T/ET ratios.

  

  

  

  

  

  

Table 4

 4 global average, and adopting WUE and ET values corresponding to the LAI constants based on ESM-derived partial dependency. New values of T/ET are then derived from Equation S2.In addition to the characterization of t , global rate of photosynthesis (and thus transpirational rate) is also largely determined by the maximum carbon assimilation rate A 0 . As a good indicator for the photosynthetic capacity A 0 , light use efficiency (LUE) from ESMs is here evaluated against a data-driven LUE product[START_REF] Wei | A global study of GPP focusing on light-use efficiency in a random forest regression model[END_REF] . For each ESM, we first converted incoming shortwave solar radiation into photosynthetically active radiation (PAR), using a constant ratio of 0.48 MJ (PAR) MJ -1 (radiation)[START_REF] Ruimy | Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light use efficiency[END_REF] . Since ESMs do not explicitly calculate the

	Text S5. Evaluation on modeled light-use efficiency

), but then instead consider lower t values (0.2 £ t £ the fitting value, based on available field observations of t provided by ref.

[START_REF] Lloyd | Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees[END_REF]

, whilst keeping LAI values held at the ESM-simulated

Table S3 .

 S3 released a data-driven LUE product, which is obtained by upscaling FLUXNET LUE estimates using a random forest regression approach. Ecosystem types, as widely suggested to be important in determining LUE (e.g., ref.58), was incorporated to represent climate/meteorological information in the machine-learning modeling. The quality of this dataset was not directly assessed due to the lack of large-scale LUE observations, but good performance could be expected from the validation of the LUE-derived GPP estimates (GPP=PAR´FPAR´LUE) against FLUXNET-based diagnostic GPP data[START_REF] Wei | A global study of GPP focusing on light-use efficiency in a random forest regression model[END_REF] . At the global scale, average LUE was reported to be 1.23 ± 0.03 Environmental drivers. Description and units of environmental variables used in this study. Asterisks denote that the corresponding variables are directly from the model output. In particular, 10-meter wind speed (WS) for CCSM4, CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM is extrapolated from the wind speed at the closest pressure level based on a power-law velocity profile equation.

	21 gmM J A P A R C --results. Finally, we re-calculated the modeled transpiration rate (and thus global T/ET), by during 2001-2005, which is here considered as a benchmark for ESM A ponderosa pine Jul 2010 -Jun 2011 Eddy Covariance Eddy-covariance yes 65 5.82 97 PS Surface Air Pressure ps kPa * Temperature Forest USA 38.9 -120.6 plantation in the Sierra Nevada Mountains 34 Boreal Forests Canada 53.7 -106.2 The Prince Albert National Park 35 Mixed Forest Japan 35.3 Seto National Forest, for T 19 Sep 1999 -Sep 2000 27 yes 71.64 0.647 RH Relative Humidity hurs % * 98 Sap Flow, Eddy Covariance 1900 22 20 Jan 2004 -Dec 2013 Match with 28 no 56.04 2.09 99 LST Land Surface ts K * Temperature Flux-variance Similarity, Eddy --Number T/ET(%) 1 SD (%) Reference 29 yes 68* 4.46 100 CLD Cloud Area Fraction clt % * MODIS 137.1 Aichi Covariance 21 2010 -2011 Eddy Covariance, Sap flow --1 yes 85.50 2.12 73 yes 61.44 0.76 74 30 yes 74.97 -101 31 yes 60.13 -102 GPP Gross Primary Production gpp 21 kg m yr --
	combining ESM results with this observation-based LUE value (LUE obs ): Number Period of Measurement Annual mean Measurements 3 yes 76.54 3.19 32 yes 67.17 8.01 Bowen ratio energy Method PRE (mm) balance and water 4 yes 81.40 5.89 33 yes 58.14 32.93	Annual mean 103 75 TMP ( o C) 76 104
	obs GPP PAR FPAR LUE WUE WUE ´== Feb 1997 -Jul 1999 T Radial flow meter, Water balance 1188 May 2010 -June 2012 balance, Thermal infrared remote 110 5 yes 85 -34 no 70.97 -variables Abbreviation 1 22 Name Relating output Unit	24.9 7.8 Calculation 77 105	(4)
			6 35	no yes	equation sensing 74.07 73.33 (CMIP5 protocol 10.76 -		76 106
	2 3 23 4 5 24 6 25	T ET LAI	Apr 1980 -May 1981 2001 -2006 2003 -2011 for ET, July 2010 to June 2011 for T 7 -8 yes Plant transpiration Diurnal water table changes Sap flow Eddy Covariance, Sap flow Probes 56* name) 60 trans Flux 1993 -1994 Isotope-based Sep 1991 -Sep 1992 Isotope-based 2000/2001 -2009/2010 (July -June) Hydrologic and tracer mass budgets 9 no 72 10 yes 47.22 Evapotranspiration evspsbl Flux 1993 -1994 Isotope-based 2007 -2009 Eddy Covariance, Sap flow Probes 11 yes 76.35 Leaf Area Index lai	3727 669 1678 16.99 9.02 mm yr -1 400 872 420 -1.39 1 mm yr -400 1308 1.79 22 mm -	78 79 80 81 82	* * *	19.7 20.9 15 -10 -3.5 -10 15.5
	7 8 26 TAVG DTR	Dec 1993 -Nov 1994 2000 -2001 Sep 2004 -Aug 2006 12 no Daily Average Temperature 13 no 14 yes Diurnal Temperature micro-lysimeters Isotope-based Isotope-based Water-balance; Weighing lysimeters, 38 tas Eddy 40 69 Range tasmax, tasmin	-320 -K 5.62 -K		-8.1 21.5 tasmax -83 * 84 85 tasmin
	9 27 PRE	Jun 1983 -Jun 1984 2002 -2005 15 no Precipitation	control and bare plots covariance-generate d estimates 45 pr	-1145 7.35 mm yr -1	86	*	-15.5
	10 11 12 13 28 29 VPD 30 RN 31 SWC	Dec 2004 -Jun 2006 2008 -2010 Jan -Dec 2009 Nov 2005 -May 2007 2002 -2005 Oct 2001 -Sep 2004 16 yes 17 no Va p o r Pressure Deficit Jul 2000 -May 2001 18 yes Net Solar Radiation Micro-lysimeters, Isotope-based Sap flow Eddy Covariance Sap flow Eddy Covariance, Sap flow Probes 43.13 48.78 tas, ps, hurs Eddy-covariance, Sap flow 60.20 rsus, rsds, rlds, rlus Isotope-based (stand 19 no 56.75 level) stable isotopes 20 no 82 Soil Water Content mrso	1244 116.8 173 265 1146 2.47 5.90 kPa -5.49 wm -2 225 7.70 564 -mm yr -2	11 7.6 6.5 -13.2 see Methods 87 88 -89 (rsds + rlds) -( rsus + rlus) 8.7 90 8.1 91 *
	14 15 16 32 TMX 33 TMN	Jun 1996 -Dec 1997 1991 -1992 Jan -Dec 1998 Aug 2001 -Jul 2002 21 no Daily Maximum Temperature Jun 2000 -May 2001 22 yes 23 yes Daily Minimum Temperature	Sap flow -Sap Flow, Eddy Covariance Energy balance 58.50 tasmax equation, Sap flow Eddy-covariance, Sap flow 68.50 60.20 tasmin	820 241 1333 1207 3.56 K 1630 23.3 5.2 K		92 93 94	* *	9.2 24.5 14.4 14.1 12.5
	17 18 34 35	WS	Oct 2004 -May 2007 2003 -2011 for ET, Oct 1993 -Sep 1994 Aug 2005 -Aug 2006 24 yes 25 yes 10-m Wind Speed method, lysimeters Chamber, Micro-lysimeters Sap Flow, Eddy correlation Chamber, lysimeters, 64.50 77.03 ua, va uas, vas	285 1678 458 1460 13.44 6.635 ms -	1	17.5 20.9 --22 uas vas 95 96 +

*

Table S4 . Best-fit values for the "big-leaf" model emulating ESMs. Inferred
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Supplementary Information Text S1. Test on the robustness of the "emergent constraint" approach

To verify the robustness of our emergent constraint results, several additional checks were performed. First, we investigated the sensitivity of the calculated constrained global T/ET to the number of site measurements used. We derived an ensemble of global T/ET estimates using a subset (ranging from 1 to the full amount of available sites, i.e., 33) of site observations. Specifically, for each number k (1≤k ≤ 33), we re-calculated the global T/ET using k sites randomly selected from the full set of available sites, and repeated this procedure 100 times to examine uncertainties from this stochastic site selection. Second, we recognized that in situ measurements may not be representative of ESM-modelled T/ET and meteorological drivers within a related 1°´1° grid cell area. As a result, we also performed the same "emergent constraint" but to climatically analogue model grid-cells, rather than to the exact location-specified model grid-cells. Specifically, 'climate analogue' grid-cells refer to where the local climatic model conditions are similar to that measured at each experimental site, i.e., areas with temperature, precipitation and radiation within ± 15% of the magnitude of site-level climatology (Supplementary Table 2). Where values of these quantities are not available at the sites, we took these directly from the WorldClim 54 climatic dataset at 1-km resolution and based on meteorological station data during 1970-2000. Two observational sites were excluded from this analysis since there is no 'climate analogue' pixels available for all ESMs. In addition, similar analysis was performed excluding measurement sites where observed vegetation type does not represent the dominant vegetation type of the corresponding grid-cells (Supplementary Fig. 3). Different land cover maps are adopted in ESMs to describe plant functional type (PFT) fractions across the ESMs, and in some instances, there is a lack of detailed information on vegetation distribution in ESMs, hence we instead used the Moderate-resolution Imaging Spectroradiometer (MODIS) land cover maps (MCD12C1) with a 1-km resolution for the period 2001-2005. MODIS land cover maps were first aggregated into a 1°´1° global grid to calculate the fraction of each land cover type in grid cells of that size. From this, we defined the dominant vegetation type of the corresponding pixels at each observational sites.

Text S2. Boosted regression trees (BRT)

All land surface models in ESMs solve numerically sets of differential equations, which are available for analysis from each modelling centre. However, across a very large number of climate models such as in the CMIP5 ensemble, it is more practical to reconstruct ecosystem model response via statistical techniques. BRT, as used in this study, is an advanced regression (machine learning) technique to link driving forcings to a target variable requiring prediction. It is a stochastic extension of traditional regression trees, but "boosted" by integrating additional, sequential "trees" that model the residuals in randomized subsets of the data [START_REF] De'ath | Boosted trees for ecological modeling and prediction[END_REF][START_REF] Elith | A working guide to boosted regression trees[END_REF] . Due to its strong predictive capability, easy interpretability [START_REF] Prasad | Newer classification and regression tree techniques: bagging and random forests for ecological prediction[END_REF] and capacity to deal with complex nonlinearities, this method has been increasingly advocated for ecological analyses [START_REF] De'ath | Boosted trees for ecological modeling and prediction[END_REF] , and is thus a suitable tool for our analysis. Each climate model provides a large number of diagnostics in space and time, hence the BRT approach is very accurate in reconstructing dominant responses. Here we apply the BRTs to ESM outputs, to examine which and how environmental drivers govern the global variation of T/ET in each ESM.

As with most machine learning techniques, it was first necessary to train with available data, and here as the spatial variations of T/ET (i.e., response variable) and the 14 key environmental factors (i.e., predictor variables, listed in Supplementary Table 3) averaged over the 1982-2005 period. This was done using global set of land grid cells in each ESM.

All BRT runs shared a common suite of metaparameters, including gaussian error distribution, a learning rate of 0.01, an interaction depth of 5, and a bag fraction of 0.5 (full details of these method parameters and implications in ref. 52). This approach then identifies the optimal number of "trees" for each ESM via a stepwise procedure that incorporated a fixed number of trees into the tree ensemble until realizing a minimum predictive error [START_REF] Elith | A working guide to boosted regression trees[END_REF] . The goodness-of-fit of each run was determined by evaluating the fitted model against a group of independent data (20% of the total grid samples) using ten-fold cross-validation approach [START_REF] De'ath | Boosted trees for ecological modeling and prediction[END_REF][START_REF] Elith | A working guide to boosted regression trees[END_REF] . The final step of establishing BRT framework is to determine any "nuisance parameters". Our BRT models with all predictors was pruned through progressively eliminating the least-informative variable until average reduction in predictive deviance exceeds its original standard error [START_REF] Elith | A working guide to boosted regression trees[END_REF] .

After refitting with these statistically important variables retained in the last procedure, BRTs were used to determine first the relative contributions of environmental variables to the spatial variation of T/ET, and second the partial dependency (defined as the marginal effect of a variable on the response when all other variables are held at their average) of T/ET on these driving quantities.

Text S3. Implications for modeled T/ET by correcting the dominant drivers

Beside LAI, we also test whether any bias in each of the other dominant drivers (i.e., drivers related to temperature, water availability and solar radiation) results in the underestimation in global T/ET. For temperature-related variables (daily maximum temperature, TMX; and diurnal temperature range, DTR), the two IPSL models (i.e., IPSL-CM5A-M and IPSL-CM5A-LR) produce a considerable positive bias in temperature (DTR > 8K and TMX > 3K) compared with observation (Supplementary Fig. 5a); global T/ET in IPSL models further decreases by 27% with this temperature-related bias corrected (Supplementary Fig. 5b). Variables related to water availability (soil water content, SWC; and precipitation, PRE) simulated by CMIP5 models also show strong biases against ERA-Interim reanalysis data set (as an alternative to soil moisture observations, which are generally unavailable) and precipitation from Climate Research Unit (CRU) data set (Supplementary Fig. 5a). Twelve ESMs largely overestimated the total SWC (> 50%) compared to reanalysis output, and the majority (17 in 19) of ESMs slightly overestimated PRE (6 -24%) compared to CRU data.

When observed SWC and PRE are accounted for, via the BRT algorithm, this once again causes a general decrease in global T/ET, in particular for the IPSL and GFDL models (Supplementary Fig. 5c). Since net radiation (RN) produced by the CMIP5 models is generally consistent with satellite observation, replacing RN does not change global T/ET significantly (paired-samples t test, P = 0.16) (Supplementary Fig. 5a,d).

Text S4. An adjusted big-leaf model for T/ET

The land surface component of most ESMs does not calculate explicit variation of in-canopy light levels. Instead, they utilize a light extinction coefficient (t ) to estimate surface energy exchanges, which in turn influences terrestrial carbon assimilation fluxes. To assess the effect of any bias in global T/ET associated through inaccurate representation of t (for discussion of errors in standard values of t , see ref. [START_REF] Lloyd | Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees[END_REF]), an adjusted big-leaf model is developed to approximate the carbon sequestration and transpiration processes for each ESM. This approximation is based on the partial dependence of ESM-modeled T/ET against LAI (Fig. 4b) and an exponential extinction of light in the canopy relating to LAI. Only ESMs providing direct gross primary production (GPP) outputs are taken into consideration in this analysis, as simultaneous use of both carbon and water fluxes are needed as follows to identify t .

The big-leaf assumption [START_REF] Clark | The Joint UK Land Environment Simulator (JULES), model description-Part 2: carbon fluxes and vegetation dynamics[END_REF][START_REF] Sellers | Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme[END_REF] T/ET values measured by isotopic approaches is considerably higher than that measured by other approaches, such as the combination of sap-flow and eddy covariance [START_REF] Schlesinger | Transpiration in the global water cycle[END_REF][START_REF] Sutanto | HESS opinions: a perspective on different approaches to determine the contribution of transpiration to the surface moisture fluxes[END_REF] . This is because some assumptions underlying this approach (e.g., the isotopic steady state of non-fractionating transpiration vs. fractionating evaporation) are rarely met perfectly in nature [START_REF] Sutanto | HESS opinions: a perspective on different approaches to determine the contribution of transpiration to the surface moisture fluxes[END_REF] . As a result, the constrained T/ET with isotopic observations (0.71 ± 0.07) is higher than that with the non-isotopic observations (0.61 ± 0.06). Nevertheless, the two constrained T/ET values are both higher than ESM simulation results.