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Abstract

In this article, we present a generic software for the simulation of gamma-ray radiography. This software simulates the entire radiographic
system, from the source to the detector consisting of metallic screens and films. In an industrial context where the goal is to detect structural
flaws in material like cracks, this simulator allows to compute gamma-ray images for different system parameters. By this way, engineers can
choose an optimal set of parameters leading to the best image of flaws. We use Monte-Carlo techniques for the simulation of the whole
system composed of a source, an object to inspect and a detector. The main contribution of this paper is to show that simulated images are
coherent with real images although we use a simplified model for particle transport. Besides, we propose an acceleration technique to
simulate the Markov chain of photon transport. Finally, an experimental design is performed leading to a linear model expressing the
influence of the system parameters on image quality. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Radiographic simulation; Nuclear plant control; Experimental design; Monte-Carlo computation; Argentic film homogenization; Importance

sampling

1. Introduction

This article is concerned with industrial radiography
applied to the control of nuclear pressurized water reactor
vessels. In this context, controlled objects are relatively
thick (up to several centimeters). Radiographic controls
aim at detecting structural flaws in materials such as cracks.
Using iridium or cobalt sources of high energy (up to
1.33 MeV), these controls require exposure times as long
as several hours for the thickest objects. This setup implies
that engineers must choose the radiographic configuration
without the help of on-site experiments. The chosen radio-
graphic configuration is the one that is supposed to give the
best image of structural flaws. This paper presents a simula-
tion tool that computes the virtual image corresponding to
any chosen radiographic configuration. This software enables
engineers to determine the optimal configuration before on-
site inspection [4]. Furthermore, this simulation tool is a mean
to qualify methods such as tomography algorithms [6].

The framework. We have designed a Monte-Carlo tech-
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nique to perform the simulation of the entire radiographic
system. By radiographic system, we mean the association of
a source, an object to inspect and a detector composed of a
stack of metallic screens and argentic films (Fig. 1). We
distinguish between two simulation levels of unequal
complexity: in the object (level I) and in the detector
(level II). At level I, the simulation technique is well
known, but not at level II. The principle of the simulation
is to simulate from the source the emission of a very large
number of photons (tens of millions for a small image of
5mm?) and to follow each of these photons during their
interactions within the object and the detector materials.
In our context, an interaction can be a Compton or Rayleigh
collision which modifies the photon direction, or a photo-
electric absorption which causes the photon disappears
(Fig. 2). The neglection of the pair production is valid for
iridium sources, which are mainly used at EDF, but may
impart a bias in the case of a cobalt source.' Moreover,
during Compton or photoelectric interactions, an electron
is emitted. Finally, those emitted electrons are responsible
for the radiographic latent image formation when they
blacken the grains in the film. At level I, electrons are
neglected because their probability to be absorbed before

! Referee’s remark 2.
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Fig. 1. Radiographic system.

the detector is very high due to the object thickness. Photons
transport, i.e. their successive collisions, is simulated by a
random walk. However, at level II, electrons are taken into
account to simulate the image formation. Here photon and
electron transport are modeled by a branching process since
each photon can successively generate several electrons
during its interactions.

Related works. For fives decades, the particle transport
problem at level I has been extensively investigated. This
research began with the neutron transport problem for which
one provided motivation for applying the Monte-Carlo
method [21]. In radiological physics, three kinds of
approaches have been adopted. The first one uses Monte-
Carlo techniques. Several softwares have been developed in
USA (ITS, EGS, MCNP,...) which focus on the simulation
of high energy particles but without modeling the particle
transport in the detector as in our application [15]. The
second one is based on a ray tracing model which is suitable
for dealing with arbitrary object geometry contrary to the
first approach [8,14]. But, this second approach is only valid
for radiographing objects with low energy sources, under
the assumption of uniform distribution of scattered
radiation. Moreover, the estimation of the distribution of
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scattered radiation must be performed through several
experiments. Several codes have been recently developed:
XRSIM [9,12], SINBAD [11], BAMs code [2,22]. The third
approach consists in a probability moment expansion for
the analytical simulation of the photon scattering
problem taking into account regular energy variations.
Recent experiments show that the analytical results are
in good agreement with the Monte-Carlo results [23].
For our application, we have to radiograph thick objects
with high energy sources, and furthermore the radio-
graphic setup must include a detector, and objects and
flaws with arbitrary geometry. Monte-Carlo simulation
coupled with a CAD description for the geometry is
therefore the method of choice for solving our transport
problem.

Our contribution. In this context, our aim was to build a
simulation tool that simulates images close to reality in
acceptable time. Image quality depends on parameters
describing the radiographic system configuration: source
type, source diameter, source/object distance, object thick-
ness, object material, screen thickness, film type, etc. The
main contributions of our paper are (i) the development of a
software which simulates images sensible to the physical
parameters describing the radiographic configuration, (ii)
the design of an acceleration technique for reducing the
computing time, (iii) the use of an experimental design
technique to summarize the influence of the parameters on
image quality.

2. Simulation

Let us first describe the source and the object as it is
considered in the software. Sources are gamma sources
with spatial extent. To simulate photon emission, we draw
uniformly its initial position in the sphere representing the
source. The angle a of the emission cone follows the law
p(a) = (sin @)/(1 — cos ap,,), and the photon direction is
drawn from a uniform distribution on this cone. The photon
energy at its emission depends on the source type. For
instance, a cobalt 60 source has two equiprobable energy
levels (1.17 and 1.33 MeV), and so the energy follows a
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Fig. 2. (a) Compton collision. (b) Photoelectric absorption.
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(a) (b)

Fig. 3. (a) Real image. (b) Simulated image (with N = 400 millions of
photons). (c) Image (b) with blur.

Bernoulli law with parameter 0.5. For iridium 192 source,
four energy levels must be taken into account.

The object is freely parameterized by the user. Objects
are generally made of steel or aluminium, and flaws are
represented by steel, aluminium or air inclusions. Though
our simulation software enables to simulate images of flaws
with complex geometries, we present our results with a
parallelipedic electro-eroded notch in a steel object for
simplicity purpose. Such a simulated image with an iridium
source 390 mm above the object is shown in Fig. 3. The
object is 70 mm thick, with a notch of 15 mm depth. The
lead front and back screens are 0.2 mm thick. The pixel size
is 50 wm. The differences between the three images will be
discussed in Section 4. Complex structures like cracks in a
casted elbow can also be simulated since the geometry of
objects and flaws is described by a boundary representation
model or a constructive geometry model. In that case, our
code MODERATO is linked to a CAD modeling software
[19].

2.1. Simulation in the object

Each photon is emitted by the source with a direction a
and an energy A. Between the source and the object, a
photon follows a straight path in the air without energy
loss. Once in the object .#, a photon encounters several
collisions that modify its direction and energy until it
escapes from the object or is absorbed by it (Fig. 4). A
photon transport is defined by its successive collisions in
the object. Following previous works [21,24], we adopt the
classical Markov model for this random walk (see Refs.
[7,10,16] among many others). Let us denote by {Z,,n =

Fig. 4. Photons trajectories.

0} this chain, Z, being the first collision. {Z,} are random
vectors

Zﬂ = (yn? All)’

with states (s,,A,) in § = .4 X & C R*xR", s, denot-
ing the position in .# C R* of the nth collision, and A,
the photon energy at s,. The Markovian property means
that the photon state, after the nth collision, is com-
pletely determined by a conditional probability distribu-
tion depending only on the previous state z,—;. Then
the Markov chain is entirely defined by its transition
probabilities.

Markovian formulation. Let us consider the nth random
collision Z, = (¥, A,), as shown in Fig. 5. Three random
events are likely to occur: photoelectric absorption (Phot),
Compton diffusion (Comp) or Rayleigh diffusion (Rayl). Let
us denote by C, the discrete random variable with values
{Phot, Comp, Rayl}. Its probability distribution 7y(C, =
c|A,_) only depends on the incident photon energy and
the atomic number of the material. The direction a, of a
photon after Compton or Rayleigh collisions follows a
well-known probability distribution, as does the distance
L, between s, and s,+;. Let us write:

Sn+1 — Sp

a, = > 'en = ||Sn+1 — Sn

B ||sn+l — S

>

Instead of z, = (s,,, A,,)) we will use:
iy = (an9’en9An)'

Since (a,,L,) defines s,, we continue to denote by z, the
states (a,,L,,A,). The transition kernel dK defines
the probability distribution of Z, conditionally to the
previous state z,_

dK(Zn—l ;Zn) = Z 7T(Zn|zn—l7 Cn = C)WO(Cn = C|/\n—l)
= Z 77'l(an|zn—l7 C,=o0)

XWZ('em /\n|an’ Zn—1> Cn = C)WO(Cn = C|)\n—l)7

ey

where these lines follow the Bayes’ formula. We derive
from the particle physics laws, the expression of 7| and

7, [24]. For a Compton collision, 7r; is the Klein—Nishina
law denoted KN. The Rayleigh diffusion is governed by a

Fig. 5. Collision parameters for the photon transport model.
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law denoted R, derived from KN. These laws describe the
deviation ¢, = a, —a,_; :

m (an|Zn—l’ Cn = ComP) = KN((an - an—l)7 /\n—l)a

m (an|zn71’ C,= Rayl) = R(a, — a,—1).
R does not depend on the energy. For ¢ € {Comp, Rayl}, 7,
is an exponential law ﬁ(/u,()\,,))2

772(’em /\”|an’znfl, Cn = c) ocC M(An)ef“()‘"w"

XI[/\n = ﬁ(/\n—]a a, — an—])L

where w is the so-called attenuation function and # is a
determinist function giving the photon energy after a
collision:’

A
1+ kA(1 —cos @)

(A, ) = (2)

Simulation process. For every photon emitted by the
source, the software simulates its random walk by succes-
sive simulations. At the nth collision, the collision type c is
drawn according to 7,(C,, = c|A,_1)

o)
O-Comp(/\) + O'Rayl(/\) + O'Phot()\) ’

where o. depends on the material type. The interested
reader can find these ‘cross-section’ values, for example,
in tables [13]. These coefficients also define the attenuation
function

M(A) o€ Tcomp(A) T ORayi(A) + Tppi(A),

where the constant of proportionality is a characteristic of
the material. Let us note that the simulation algorithm must
take into account the case when a photon crosses a flaw,
which is not explicit in the expression of ;.

We now present the simulation process for level I which
is a classical process. At the nth step of the random walk, the
simulation software draws the collision type according to
Eq. (3). If ¢ = Phot then the walk terminates. If ¢ = Comp,
then ¢, and L, are, respectively, drawn according to KN and
, while A, is computed by Eq. (2). Similarly, if ¢ = Rayl
then ¢, and £, are drawn according to R and 7, while the
energy remains unchanged. With source energies used for
our controls (from 0.3 to 1.33 MeV), Compton interaction is
predominant. But while a photon loses energy during its
successive collisions, Rayleigh and photoelectric absorption
become more and more probable. By simulating a very large
number N of random walks, we obtain a ‘virtual image’
behind the object. This image is obtained by counting on
a regular grid ¢ the number of photons in each cell.

Variance reduction. In Annex, we propose a new tech-
nique to reduce N without degrading image quality. The
reduction rate is around 30%. This technique belongs to

m(c|d) = 3

2 1[A] is the indicator function: 1[A] =1 if A is true and O otherwise.
% k is a constant: it is the inverse of the electron energy at the rest.

the family of ‘importance sampling’ techniques [10]. It
consists in modifying the transition kernel so that photons
are more likely to reach the detector. Indeed, in most of our
radiographic setup with the natural Markov chain, around
70% of photons do not reach the detector (Fig. 4). This
occurs either because photons are absorbed or because
they exit from the object outside the detector. Modifying
the transition kernel alleviates this drawback.

2.2. Simulation in the detector

Our software deals with the usual radiographic detector
consisting in a stack of films and screens. To simplify our
presentation we suppose that the detector only contains a
film between a front screen and a back screen (Fig. 1).
Particle transport in the detector (level II) is more complex
than in the object since photons participate to the image
formation through the electrons that are emitted during the
photon collisions. A film is composed of at least one emul-
sion layer of gelatin containing silver halide grains on a film
base. As particles do not encounter interactions in the film
base that contribute to the image formation, we make the
simplifying assumption of a film consisting of gelatin
containing silver halide grains with uniform spatial reparti-
tion. Then, the film thickness is the sum of the gelatin layer
thicknesses. Note that the film base can be easily truly
modelized if cross-section tables are available for the
material. In our experiments, the film is 40 pm thick with
mean grain density of 10° grains/mm’® and mean grain
diameter of 0.7 wm. Particle transport is summarized on
Fig. 6. It can be seen as a branching process [1], because
a single photon can successively liberate several electrons.
Once liberated, an electron has a straight trajectory along
which it crosses all the grains situated on it.

We assume that a grain is blackened as soon as an elec-
tron reaches it. Let us emphasize that this electron transport

| hoton \ |
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g material
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Fig. 6. Particle transport in the detector (—photon trajectory, - - -electron

trajectory).



A. Bonin et al. / NDT&E International 35 (2002) 503-510 507

simplification enables the software to generate realistic
images in acceptable time. In the film, an electron blackens
all the grains that it crosses along its trajectory. Each photon
of the virtual image obtained at level I generates such a
branching process. Finally, the latent image is obtained by
counting on a regular grid the number of blackened grains in
each cell.

Homogenization. To simulate the branching process in
the film, an obvious approach would be to simulate a repar-
tition of spherical grains with random radii and then to
simulate the branching process through this spatial configur-
ation. This would be extremely time and memory consum-
ing due to the large number of grains. This is why we have
adopted an ‘homogenization’ approach that we present in
the following.

The mean number of grains by volume unit is very high
for commonly used films so that a 5 mm? film contains
several billions of grains. Manufacturers try to obtain a
homogeneous repartition for grains and we can assume
that the grain repartition is uniform. This is why we consider
the film as a homogeneous material which will be later
characterized by two parameters: €, the mean distance
between two grains and 7, the mean grain diameter. Thus
the detector is composed of three homogeneous materials:
two screens and a film. Then the photon transport in these
materials is similar to the one in the object, the cross-section
coefficients being those of the grains.

Electron transport. After the Compton collision of a
photon with energy A, the emitted electron has energy A’
and deviation angle ¢’ satisfying (cf. Fig. 2 and Ref. [17]

I— ) KA(1 — cos @)

U1+ kAL —cos )’

1
(1 + kMtan(l/¢)’

“)

¢' = arctan

where ¢ is the photon deviation angle. The mean free path
of the electron is defined in Ref. [20]
0.407

L= )88 ) < 0.8 MeV
r

1
= —(0.542\' — 0.133)if A > 0.8 MeV, (5)
.

r being the volumic density of the material.

In the screens, only electrons diffused towards the film
contribute to the image formation, so only back-scattered
electrons are useful in the back-screen (the front screen
plays a reinforcing role as it liberates numerous electrons
that will reach the film because of the low screen thickness).
In the back screen, back-scattering predominates and we
model it directly. For an electron, the probability to be
back-scattered is determined thanks to dedicated cross-
sections, and the back-scattering angle ¢’ follows the
Rutherford’s law [5]. We now describe the particle transport
in the film.

Simulation process. The film (gelatin and grains) being

considered as a homogeneous material, photons collisions
are simulated according to the simulation process described
in Section 2.1. Then, given these collisions, we have to
simulate the electron trajectories across the grains although
they are not explicitly present in the homogenized film.
Because of the simplification made earlier, for every elec-
tron we can assume that the positions where it hits a grain
along its trajectory, are distributed as the grain positions
along this trajectory. Consequently, this distribution can
be described by a model with parameters €, and 7,. To do
that, we decompose the length trajectory as

1
L' =%, with £ = 7+ ¢, (6)
i=1

where £ is the distance between two collisions occurred
within two neighboring grains (we assume that only one
collision can occur in a grain). The collision number /
depends on the electron energy. € is the random distance
between two neighboring grains and 7 is the random length
of the electron path in both grains. We suppose that £
follows an exponential law &((7, + eg)_l) whose expecta-
tion is E(£}) = 7, T €. To simulate an electron trajectory,
the algorithm computes £’ by Eq. (5) and then draws
successively €} according to the exponential law under
the constraint (6). After each collision i, the electron loses
a part of its energy as it can be computed by inverting

Eq. (5).

3. Experimental results and optimization

In Section 1, we have mentioned that the radiographic
image quality depends on the choice of the radiographic
setup: source type, source diameter, film type, front and
back screen thickness, source/object distance, and on the
object parameters: thickness, inclusion position, material
type, etc. We try now with our simulation software to under-
stand the influence of these parameters on the image quality
y measured in terms of contrast and blur in the case of
parallelipedic inclusions. The contrast is the gray level
difference between the inside and outside of the flaw in
the simulated image. The blur is the measured line spread
function of the flaw edge. It means that we are able to extract
such values from every image.

Experimental design methodology is a well suited tech-
nique to analyze and optimize the influence of parameters
(also called factors) (cf. Ref. [18] among many others). We
have identified eight main factors. For sake of clarity, we
restrict our presentation to three factors with two modalities:
source diameter (0.1 mm, 3 mm), front screen thickness
(low, standard), back screen thickness (low, standard).
These factors are, respectively, denoted by A, B, C and are
coded by {—1,1}. To observe all factor combinations we
need to perform 2* experiences, that is eight simulations.
Fig. 7 shows simulated images corresponding to six com-
binations in the same radiographic setup as Fig. 3.



508 A. Bonin et al. / NDT&E International 35 (2002) 503-510

(a)

Fig. 7. Simulated images (with N = 400 millions of photons) from a two-
level factorial design 23, the factors being: A = source diameter, B = front
screen thickness, C = back screen thickness. For the first line: A = 0.1 mm
and for the second line: A =3 mm. For each line, the factor modalities
correspond to: (a) film ‘alone’, (b) film with front screen, (c) film with
front screen and back screen.

The results of these simulations respect the expert knowl-
edge. Without screen of significant thickness, the radio-
graphic image has a very poor quality whatever the source
size: 0.1 mm (Fig. 7(a)/line 1) or 3 mm (Fig. 7(a)/line 2).
The main qualitative effect is due to the front screen factor B
(Fig. 7(b)). Given B, the source factor A has major influence
but the back screen factor C has a minor one.

This experimental design can be more deeply analyzed by
statistical techniques [18]. If we consider that the image
quality measure y is the occurrence of a random variable
Y, this analysis is based on a linear model which gives a
decomposition of the expectation E(Y). For each triplet
(a,b,c) € { — 1, 1}3, this expectation is denoted by E(Y) =
7(a, b, ¢), and the model reads as

T(a,b,c) =&+ aey(a) + beg(b) + ceclc) + abeyp(a,b)

+ ac eycla,c) + be ege(b, ) + abe egpc(a, b, c),

where ey4, eg and e are the main effects, eyp,...,e4pc are the
interaction effects and e is the mean effect. This model
naturally assumes that: Y, e (@) =0,...,> , eqpa, b) X
=Y, eqp(a, b) = 0,... The statistical analysis of the eight
y values extracted from the simulated images confirms
that first, B and second, A are the main principal effects.
Furthermore, A has a slight influence through the inter-
action AB. On this limited experimental design, the
effect of C is not statistically significant. So, the model is
reduced to:

T(a,b,c) = & + aey(a) + beg(b) + ab eyp(a,b). @)
For instance, the triplet (1, — 1,1) gives:
(1, —1,1) =& + e4(1) — eg(—1) — e45(1, —1).

For this linear model, the effects are estimated by minimiz-
ing the least-square criteria between y and 7.

800000 —
v
.E 700000 ——
<
]
°0 6000004
=)
2
5 500000
s
3 400000
=
5 300000
B
2 200000
g
100000
Z
4
o . . . . : : .
0 0.05 0.1 0.15 02 0.25 03 035 04

Front screen width (mm)

Fig. 8. Image density versus front screen thickness.

Surprisingly, the simulation software is able to reproduce
fine effects that we observe on real radiographic images. For
instance, using our simulation software, we have obtained
an image density curve in terms of the factor B (front screen
thickness). This curve is coherent with the real experiments
(Fig. 8).

Thus, we determine that the optimal front screen thick-
ness is 0.75 mm, which is exactly what real experiments
give for this configuration. In this context we can try to
optimize the system parameters by handling more than
one factor, for instance A and B. Such a problem can be
solved by using a model similar to Eq. (7) but with quanti-
tative variables A and B instead of binary ones. It is the
well-known surface response technique where one tries to
optimize the system response y in terms of a and b, [18]. Let
us add that the computation of a simulation without impor-
tance sampling, and using 100 million of photons for a
5mm? film digitized on a 100” grid takes less than one
hour on a Pentium IIT 650.

4. Conclusion

We have presented a simulation tool for representing the
radiographic process from the source to the detector. The
particle transport simplification and the Markov chain simu-
lation acceleration lead to acceptable computation times in
the industrial context of non-destructive evaluation. This
simulation tool is highly configurable and simulated images
are sensitive to parameter modification in the same way as
real images. Besides, the experimental design through
surface response methodology and the resulting model is
of great interest for experts to assist them in their analytical
approach of radiography.

The qualities of this simulation software must, however,
be tempered by the fact that the film development process is
not modelized. This leads to a difference between real and
simulated images as shown on Fig. 3. Development seems to
introduce an additional blur. We work on estimating this
blur through a point spread function estimated from the
comparison of real and simulated images. Fig. 3(c) shows
the introduction of such a blur. However, this blur does not
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modify the relative influence of parameters on the radio-
graphic images, and consequently it is not a drawback for
factor analysis.

5. Annex: variance reduction

Following Ref. [7], the two next sections recall the clas-
sical framework for achieving variance reduction using
importance sampling technique. To gain an advantage,
most successful applications of the method rely on exploit-
ing the peculiarities of the particular problem at hand. In the
third section, we propose a original and generic approach to
determine specific laws for importance sampling.

Natural Markov chain. Let us assume that the grid ¥ is
composed of elementary cubes v and that the range of
energy is partitioned into intervals A of center A. For
every 7 = (v,A), we have to estimate the probability
0(zp) = Prob(zy; 7") that a photon reaches ¥~ from its initial
state zy. This probability is written:

0(20) = > P;(zo)
i=0

J

where Pj(z) is the probability that a photon reaches ¥~ from
the state z; after j and only j collisions in .# after z:

Pi(zg) = P[Zjs1 € V', Z; & V|Zy = z).

Let us truncate this series:

J
0(z0) = D Pj(z)-
i=0

J

The estimate of Q(zy) will be of the form:

J
0(z0) = > Pi(z0).
-

J

Let us detail how the estimate Isj(zo) is obtained. Let
(,0<n=J+ 1};=1...m be m independent occurrences

of the Markov chain {Z,,0 <n=J+ 1} with kernel
K(zp;-). By noting that

jt+1
Pi(zp) = J( — []‘[ dK(anl;z”)]l[s, € M, 51 EVII[AL € A]
LsensZjt 1 n=1

= Egoo[l[; € M, S}y E VI,
@)

we are lead to consider the following estimator:

p S i i i =

Piz) = - S €., ) € VI[AY € A
i=1

This estimator is justified by the law of large number and by
the fact that it is unbiased: [Ele)[Pj(Zo)] = P;i(zp)-
(z93)

Biased Markov chain. To reduce the computation time,
we do not use anymore the natural Markov chain but a new
Markov chain with kernel K for which the associated esti-
mator Pj(zo) has an equivalent accuracy, but for a smaller

number of occurrences (i < m). In the literature, this
procedure is called ‘importance sampling’. So, let {z”,0 <
n=J+1},—;  be m independent occurrences of the
Markov chain {Z,,0 < n =< J} with kernel K. The new
estimator is:

By — | i AR (VA4
! m S| o dR@ZY 5 Z))

X190 e 4,77, € vIIIAf), € K]

1 & i i ! A
S vy e a7\, e vi[AY), € R].

i=1

Clearly, this is an unbiased estimator: [EI'(}HI))[PJ'(Z())] =
o

P;(zp). This property is due to the weight 11’;”.

Biased kernel estimation. The importance sampling tech-
nique consists in replacing the natural laws m, 7, and 7,
which define the kernel K by new ones in order to define the
biased kernel K. Let us present our original approach for the
deviation law in the case of Compton collision.

To do that, let us consider m, independent occurrences of
the natural Markov chain, with my < m. Let D=
{(¢;,A);i = 1,...,m{} be the set of deviations and energies
obtained during the simulation of these occurrences (we
have m, < m{, since there are at least one collision per
photon). For every A, this set gives a sample of the random
variable (<D|/\) of law KN(¢, A). Now, let D be the restric-
tion of D to the occurrences having reached the grid %.
For every A, D gives a sample of the biased law KN,
which contributes to dg&r}e K. I,’\rJactically, we choose a
parametric expression KN, for KN, and then, the biased
law is estimated according to the pseudo maximum like-
lihood principle [3]. By setting D = {(¢;, A;) : \; € A},
for every A, we compute the pseudo maximum likelihood
estimate of a:

Gy = arg max l_[ KN, (¢;A)).
(¢i,\)ED;
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