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Quantum phase transitions are ubiquitous in many exotic behaviors of strongly-correlated ma-
terials. However the microscopic complexity impedes their quantitative understanding. Here, we
observe thoroughly and comprehend the rich strongly-correlated physics in two profoundly dissi-
milar regimes of quantum criticality. With a circuit implementing a quantum simulator for the
three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed
points and along the multiple crossovers from quantum criticality. Notably, an unanticipated viola-
tion of the maximum conductance for ballistic free electrons is uncovered. The present charge pseu-
dospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated
phenomena.

Quantum phase transitions (QPT) are believed to un-
derpin many intriguing quantum states of matter and
unconventional behaviors [1]. Although they take place
at absolute zero temperature while precisely tuning a
control parameter, such as the magnetic field, continuous
QPTs of second order are accompanied by the develop-
ment of a highly correlated quantum critical state that
extends over a broadening range of parameters as tem-
perature is increased. This regime of quantum criticality
provides a universal description of very diverse strongly-
correlated systems whose properties obey scaling laws
according to the QPT universality class, and not to mi-
croscopic details. While QPTs are ubiquitous in contem-
porary theoretical physics, the challenge is to find well-
controlled experimental systems for their exploration and
quantitative comprehension.

Tunable nanostructures provide a path to a microsco-
pic understanding that circumvents the complexity of
real-world highly correlated materials. So far, however,
the rare examples that exhibit a second-order QPT [2–6]
demonstrate only a single quantum critical point (asso-
ciated with the two-channel Kondo effect, described be-
low). Although non-Fermi liquid, this critical point can
be reduced to a non-interacting system allowing for per-
turbative approaches at low temperatures [7, 8]. Here,
a completely characterized circuit embodies the three-
channel Kondo model, with three fully tunable chan-
nels connected to a magnetic impurity emulated by the
charge states of a metallic island. This gives us access
with the same nanostructure to two universality classes of
quantum criticality (connected with the two-channel and
three-channel Kondo effects) that manifest profoundly
dissimilar physics. For instance, the quantum critical

point for two symmetric Kondo channels can be unders-
tood in terms of free electrons and Majorana fermions
[7, 8], whereas for three symmetric channels it involves
(Z3) parafermions in irreducibly strong interactions [9].
The demonstrated high-precision implementation quali-
fies our device as an analogue quantum simulator, pro-
viding quantitative experimental solutions for the three-
channel Kondo model.

The main findings further detailed in the following sec-
tions are now briefly summarized.

We first explore the two-channel Kondo (2CK) and
three-channel Kondo (3CK) quantum critical physics, by
precisely tuning the connected Kondo channels at sym-
metry. The different low temperature convergence (fixed)
points are determined for the channels’ conductance, and
a perfect quantitative agreement with the universal va-
lues predicted theoretically is found. This constitutes a
direct experimental signature of the Kondo coupling re-
normalization flow toward an intermediate fixed point.
The 2CK and 3CK non-Fermi liquid character is also es-
tablished, through their distinctive temperature power-
laws. More generally, the full conductance renormaliza-
tion flow is unveiled, from asymptotic freedom to quan-
tum criticality, and confronted to state-of-the-art nume-
rical renormalization group (NRG) calculations. In ad-
dition, a connection is established between experimental
scaling Kondo temperature and microscopic model para-
meters.

Secondly, we determine the range of parameters where
quantum criticality applies (different for 2CK and 3CK)
and explore the many-body physics that develops as
the system flows away from quantum criticality upon
reducing temperature. For this purpose, the device
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is controllably detuned from the symmetric 2CK and
3CK quantum critical points. By breaking the Kondo
impurity degeneracy, we observe the generically expec-
ted universal scaling character of the crossover from
quantum criticality. The crossover scaling temperature
experimentally extracted is found to increase as a power
law of degeneracy breaking that closely verifies the
corresponding 2CK or 3CK predictions. Moreover, the
measured full universal conductance scaling curves pre-
cisely match with theoretical calculations (analytical at
2CK, NRG at 3CK). By breaking the symmetry between
channels instead of the Kondo impurity degeneracy, the
full experimental renormalization flow of three channels
competing to screen the Kondo impurity is plainly
exposed. Remarkably, we observe that the conductance
across one channel can markedly exceed the maximum
quantum limit for free electrons, as corroborated by new
NRG calculations.

The multi-channel Kondo model.
The multi-channel Kondo model, which generalizes the
original (one channel) Kondo model, gives rise to arche-
typal QPTs and collective, non-Fermi liquid behaviors
from a minimal Hamiltonian. Although introduced to
account for the different atomic orbitals in metals [11–
13], it has developed over the years into a central tes-
ting ground for strongly-correlated and quantum critical
physics, and a benchmark for many-body theoretical me-
thods [7, 12–20]. The model describes a local Kondo spin
S (here 1/2) coupled antiferromagnetically to N inde-
pendent free-electron continua (N = 3 in Fig. 1A) :

HNCK =
N∑

i=1

Ji si · S +Hcontinua, (1)

with HNCK the N -channel Kondo Hamiltonian, si the
local spin density of electron continuum (channel) i at
the Kondo spin S location, Ji > 0 the coupling strengths
(here isotropic) and Hcontinua the free-electron continua
Hamiltonian. The conventional single-channel model
(N = 1) exhibits universal scaling, but no second-order
QPT or non-Fermi liquid physics. As the temperature
T is reduced, the electrons progressively screen the
Kondo spin, resulting for T → 0 in an idle spin-singlet
[12]. In contrast, for N ≥ 2, there is a competition
between channels to screen the S = 1/2 Kondo impurity,
which develops into second-order QPTs. Each number
of identical channels corresponds to a different class of
quantum criticality [17], with specific non-Fermi liquid
physics [13] and collective excitations revealed by e.g.
a divergent specific heat coefficient c/T as T → 0. The
marginal two-channel case corresponds to a logarithmic
c/T divergence [13] while power law c/T divergences are
predicted for N ≥ 3 [13].

Kondo ‘charge’ pseudospin implementation.
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Fig. 1. Multi-channel Kondo model and ‘charge’ imple-
mentation. A, In the Kondo model, a local spin (red arrow) is
antiferromagnetically coupled to the spin of electrons (blue ar-
rows). Each Kondo channel corresponds to one distinct electron
continuum (here three). B, Sample schematic realizing the ‘char-
ge’ pseudospin implementation of the three-channel Kondo mo-
del. A micrometer-scale metallic island (red disk) is connected to
large electrodes (small gray disks) through three QPCs (green split
gates), each set to a single (spin-polarized) conduction channel (red
dashed lines) indexed by i ∈ {1, 2, 3}. C, D, Quantum channels
conductance measured versus gate voltage Vg are displayed over
half a Coulomb oscillation period ∆ ' 0.7 mV (several sweeps in-
cluding different consecutive peaks are averaged). Measurements at
T ' 7.9 mK and 29 mK are shown, respectively, as open and full
symbols for two (C) or three (D) symmetric channels. The squares
(triangles) correspond to an ‘intrinsic’, unrenormalized transmis-
sion probability across the connected QPCs of τ ' 0.90 (τ ' 0.68).
The red continuous line (C) displays the T = 7.9 mK prediction for
two channels both set to τ = 0.90 [10]. Green arrows indicate the
conductance evolution at δVg = 0 as temperature is reduced.

Experimentally, Kondo nanostructures are usually small
quantum dots [21–24] where coherent electron cotun-
neling merges the distinct electrical contacts into one
Kondo channel [25, 26] (except in two-channel devices
exploiting Coulomb blockade to suppress cotunneling
[2, 5, 27, 28]). In contrast, the recently demonstrated
[6] ‘charge’ Kondo approach [15, 29, 30] is here exten-
ded to three independent Kondo channels. As illustra-
ted in Fig. 1B, the ‘charge’ Kondo impurity S is not a
magnetic spin, but a pseudospin-1/2 (red arrow) built
from the macroscopic quantum states describing the ove-
rall charge Q of a small metallic island (red disk). In
the most straightforward case of a weakly connected is-
land whose charge is well quantized [31], the Kondo spin
S = {↓, ↑} directly maps on the island’s two charge states
of lowest energy {Q,Q + e}. All the other charge confi-
gurations are indeed frozen-out and can be ignored at
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low temperatures T � EC/kB (EC = e2/2C the char-
ging energy, e the electron charge, C the island geometric
capacitance, kB the Boltzmann constant). The ‘charge’
pseudospin energy degeneracy is obtained by tuning with
a gate voltage Vg the device at the degeneracy point bet-
ween the charge states Q and Q+ e. Note that detuning
Vg away from charge degeneracy is completely analogous
to applying a magnetic field on usual magnetic Kondo
impurities [29]. The island charge Kondo pseudospin S
is however not coupled to the real spin of electrons. Ins-
tead, it is flipped by transferring electrons in and out of
the island, through the connected electrical channels (red
dashed lines). By labeling the location of each electronic
states along a channel, this mechanism takes the form of a
Kondo (pseudo)spin-exchange coupling : Introducing an
electron pseudospin s (blue arrow), which corresponds to
the electron localization inside (s =↓) or outside (s =↑) of
the island, the tunneling of an electron flips both its loca-
lization pseudospin s as well as the island overall charge
pseudospin S. Note that a well-developed Kondo effect
requires a continuum of electronic states for both locali-
zation pseudospins. This implies a continuous density of
states in the metallic island (in contrast with small quan-
tum dots). Importantly, the different conduction channels
constitute here separate Kondo channels. Note also that
the same physics is predicted at T � EC/kB for arbi-
trary connection strengths [10, 15, 32], except perfectly
ballistic contacts, despite the coexistence of many charge
states in a quantum superposition near the ballistic limit
[31]. In practice, we find from NRG calculations perfor-
med with a broad range of τ that T . EC/20kB ensures
negligible deviations from universal Kondo physics [10].

Each of the Kondo/conduction channels passes
through a different quantum point contact (QPC) indivi-
dually formed and tuned by field effect in a high-mobility
Ga(Al)As two-dimensional electron gas [10]. Single chan-
nels, polarized in real electron spin, are obtained by im-
mersing the device into a large magnetic field (B ' 2.7 T,
corresponding to the regime of the integer quantum Hall
effect at filling factor ν = 3). The Kondo channel cou-
plings Ji (i ∈ {1, 2, 3}) are individually characterized by
the ‘intrinsic’ (i.e. unrenormalized by Kondo or Coulomb
effects) transmission probability τi across the unique
open transport channel of QPCi. The micron-scale se-
paration between QPCs enables independent fine-tuning
(∼ 0.1%) and high-precision characterization (. 2%,
with a large dc bias voltage suppressing Kondo/Coulomb
renormalization [10]) of the Kondo channels, over the full
range τi ∈ [0, 1]. Such fine-tuning of the connected chan-
nels to identical couplings is crucial to approach the frus-
trated, symmetric Kondo critical points. The two-channel
Kondo (2CK) configurations are implemented by setting
τ1 ' τ3 ≡ τ and τ2 = 0, whereas for the three-channel
Kondo (3CK) configurations τ1 ' τ2 ' τ3 ≡ τ . With
the charging energy EC ' kB × 0.3 K (separately ob-
tained from Coulomb diamond measurements) and high-

precision shot-noise thermometry [33], the device is com-
pletely characterized. The knowledge of these parameters
indeed allows for a full quantitative microscopic unders-
tanding [20, 29, 30]. In practice, Kondo physics is ob-
served through the renormalized QPC conductances Gi
measured in-situ. As the symmetry between channels is
found preserved by renormalization (at an experimental
accuracy of ∼ 0.003e2/h), we generally display the ave-
rages G1,3 ≡ (G1 +G3)/2 and G1,2,3 ≡ (G1 +G2 +G3)/3
when investigating the symmetric 2CK and 3CK confi-
gurations, respectively.

Figure 1C,D validates the high-precision implementa-
tion/quantum simulation of the ‘charge’ Kondo model,
and qualitatively illustrates the different two-channel
(C) and three-channel (D) Kondo behaviors. The renor-
malized conductance across channels tuned to ‘intrinsic’
τ ' 0.90 (squares) or 0.68 (triangles) is displayed for
T ' 7.9 mK and 29 mK while sweeping the gate voltage
Vg. The charge degeneracy point is identified as the
conductance peak (δVg = 0). The perfect match, without
any fit parameters, between the conductance data and
the quantitative predictions of the ‘charge’ Kondo model
derived analytically for two near ballistic channels at low
temperature (continuous line in Fig. 1C, [10, 30]) attests
to the accurate device characterization and to its precise
implementation of the model for arbitrary Kondo pseu-
dospin energy splitting (see also [10, 20]). At large δVg,
the conductance is systematically reduced upon lowering
T as usually expected from plain charge quantization.
At δVg = 0 and for two or three symmetric channels set
to τ ' 0.68, we observe instead a conductance increase
due to the Kondo renormalization of weakly connected
channels. Setting the device at the larger τ ' 0.90
results in qualitatively different conductance renormali-
zations at δVg = 0 for 2CK and 3CK, with opposite signs.

Observation of an intermediate non-trivial fixed
point.
The above findings corroborate the theoretical expecta-
tions for the different 2CK and 3CK low-temperature
conductance fixed points [30, 34]. Both 2CK and 3CK
quantum critical fixed points are associated with an in-
termediate value of the renormalized Kondo coupling 0 <
|J | <∞ [11, 13]. In previous experiments on small quan-
tum dots [2, 5], the 2CK intermediate coupling could not
be established. Indeed, T was not low enough with res-
pect to the scaling Kondo temperature TK to show a sa-
turation and, furthermore, a trivial intermediate asymp-
totic value of the measured conductance is also genera-
ted by asymmetries between electrical channels [16], and
therefore does not itself imply an intermediate coupling
in these spin Kondo devices. Moreover, the intermediate
coupling character of the 2CK fixed point is not entirely
invariable, but depends on the choice of representation
[7, 8, 15, 30]. In particular, the 2CK fixed point can be
described as a non-interacting system involving two Ma-
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Fig. 2. Quantum critical fixed points. The conductance of two
(A) or three (B) symmetric channels measured at the charge dege-
neracy point (δVg = 0) is plotted as symbols versus temperature
on a logarithmic scale. Each set of identical symbols connected by
dashed lines corresponds to the same device setting (τ). The pre-
dicted 2CK (A) and 3CK (B) low temperature fixed points for the
conductance per channel in the present ‘charge’ Kondo implemen-
tation are shown as horizontal continuous lines (G2CK = e2/h,
G3CK = 2 sin2(π/5)e2/h).

jorana modes (one free, one in the strong coupling limit
[7]). This dual strong-coupling character of the 2CK fixed
point also materializes in the present ‘charge’ Kondo im-
plementation : Here G1,3 constitutes an alternative probe
of the coupling between electrons and ‘charge’ Kondo im-
purity, which flows not toward an intermediate value per
electrical channel but toward the maximum free-electron
quantum limit G2CK = e2/h [30]. In contrast, the ge-
nuinely intermediate character of the interacting 3CK
fixed point is predicted to show up directly in ‘charge’
Kondo circuits, as a flow of the conductance per chan-
nel G1,2,3 toward the non-trivial intermediate universal
conductance G3CK = 2 sin2(π/5)e2/h ' 0.691e2/h [34].

The precise 2CK and 3CK low-temperature uni-
versal conductance fixed points are experimentally
established by measuring the temperature evolution of
G1(,2),3 for a broad range of symmetric channel settings
(τ ∈ [0.56, 0.985]). For this purpose, and until explicitly
specified, the device is tuned at charge degeneracy
(δVg = 0) where Kondo effect is expected. Figure 2
displays measurements of G1(,2),3 as symbols, versus T
in logarithmic scale. In the 2CK configuration (A), wha-
tever the setting τ , we find that G1,3 always grows as T
is reduced. This observation validates the predicted e2/h
Kondo fixed point (horizontal red line), at an experimen-
tal accuracy of 0.006e2/h (see also [6]). Upon lowering
T in the 3CK configuration (B), G1,2,3 systematically
grows when below 0.68e2/h (T ≤ 40 mK), and decreases
when above 0.70e2/h. This validates the predicted 3CK
universal conductance fixed point G3CK ' 0.69e2/h
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Fig. 3. Non-Fermi liquid scaling exponents. The absolute
difference between symmetric channels conductance at charge de-
generacy and predicted Kondo fixed point (∆G ≡ |G1(,2),3 −
G2CK(3CK)|) is plotted as symbols (open/full for 2CK/3CK) versus
T/TK in a log-log scale for T ∈ {7.9,9.5,12,18,29}mK. Statistical
error bars are shown when larger than symbols. The red and green
continuous straight lines display the predicted power-law scaling at
T/TK � 1 for the conductance per channel in the present ‘charge’
2CK and 3CK implementations, respectively. The scaling Kondo
temperature TK is adjusted separately for each tuning τ of the sym-
metric channels (see corresponding symbols in insets). This is done
by matching the lowest temperature data point ∆G(T ' 7.9 mK)
with the corresponding displayed power-law. Continuous lines in
insets show the predicted power-law divergences of TK versus τ for
2CK (bottom right inset) and 3CK (top left inset).

(horizontal green line) at an experimental accuracy
of ±0.01e2/h. This constitutes a direct experimental
evidence of an intermediate non-Fermi liquid fixed point.

Universal scalings toward quantum criticality.
First, the power-law exponents when approaching the
2CK and 3CK low-temperature fixed points are charac-
terized, and found different from the characteristic T 2

for Fermi liquids. For this purpose, the distance ∆G bet-
ween measured G1(,2),3 and the theoretically predicted
fixed point G2CK (G3CK) is plotted in Fig. 3 versus T/TK.
The continuous straight lines show the universal power-
law scalings asymptotically predicted at low T/TK for the
conductance in the present ‘charge’ Kondo implementa-
tion : ∆G ∝ T for 2CK [20, 30, 35], ∆G ∝ T 2/5 for
3CK [10, 13, 14] (see [10] for further discussion). Com-
paring with the data requires to fix for each τ the cor-
responding scaling Kondo temperature TK(τ). Symbols
in the insets represent the experimentally extracted va-
lues of TK versus τ , which were obtained in practice by
matching the lowest temperature data point for each tu-
ning of τ with the displayed theoretical power-law. The
data-theory comparison in the main panel is therefore in
the conductance evolution as temperature is increased.
We find that the experiment is consistent with predic-
tions close enough to the fixed points (∆G . 0.1e2/h).
Note that the precision is here limited by the increasing
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Fig. 4. Universal renormalization flow to quantum criticality. The measured conductance of the two (A,C) or three (B,C)
connected, symmetric channels is shown as symbols (open/full for 2CK/3CK) for a broad range of settings τ . Black continuous lines are
NRG calculations of the universal renormalization flows (2CK/3CK in (A,C)/(B,C)). Colorized dashed lines shown at low T/TK (A,B), and
close to the Kondo fixed points (C), display the predicted low-temperature power-laws for 2CK (red in (A,C)) and 3CK (green in (B,C)).
Light-blue dashed lines shown at large T/TK (A,B), and for small channels conductance (C), represent the predicted high-temperature
logarithmic scaling G1(,2),3 ∝ log−2(γT/TK � 1), with the slightly different 2CK and 3CK prefactors and γ here used as fit parameters.
A, B, Data (T ∈ {7.9, 9.5, 12, 18}mK) and predictions are plotted versus T/TK in log scale. The corresponding experimental TK are
shown in insets as symbols versus τ , together with theoretical predictions for tunnel contacts τ � 1 (light-blue continuous lines) and for
very large TK at |τ − τc| � 1 (red/green continuous line for 2CK/3CK in insets of (A)/(B)). C, Direct data-theory comparison (no T/TK
rescaling) with ∂G1(,2),3/∂ log(T ) plotted versus G1(,2),3. The discrete experimental differentiation is performed with measurements at
T ∈ {7.9, 12, 18}mK. Kondo fixed points are indicated by arrows.

relative experimental uncertainty as ∆G is reduced. A
direct extraction of the temperature exponents from the
∆G < 0.1e2/h data at T ∈ {7.9, 12}mK (satisfying the
NRG universality criteria T . EC/20kB ' 15 mK) gives
α2CK = 0.83± 0.08 for 2CK and α3CK = 0.42± 0.17 for
3CK.

Second, the investigation is extended to the full 2CK
and 3CK universal renormalization flows. Measurements
(symbols) are now confronted in Fig. 4A,B,C with NRG
calculations spanning the whole range of T/TK (conti-
nuous black lines, see [10]). In panel A (B), G1(,2),3

is plotted versus log(T/TK). Following standard proce-
dures, the theoretical scaling Kondo temperature TK was
normalized so that the NRG universal conductance takes
a value equal to half that of the Kondo fixed point at
T = TK. As in Fig. 3, the experimental TK(τ) (sym-
bols in inset) are adjusted by matching data with theory
at T ' 7.9 mK. These TK(τ) remain therefore identical
to those in the insets of Fig. 3 as long as NRG calcu-
lations and asymptotic power-laws are indistinguishable
(i.e. for TK � 7.9 mK). Remarkably, we observe a quanti-
tative agreement data-universal NRG prediction over six
(2CK) or eight (3CK) orders of magnitude in T/TK. Fi-
gure 4C shows a direct comparison of the same measure-
ments and predictions in a scale-invariant representation,
that does not involve rescaling the temperature in units
of TK, by displaying ∂G1(,2),3/∂ log(T ) versus G1(,2),3.
In this representation, data points correspond to experi-
mental measurements of the so-called beta-function that
determines the corresponding 2CK or 3CK renormaliza-

tion group equation for the conductance. The straight
dashed lines near 2CK and 3CK fixed points (arrows)
represent the predicted non-Fermi liquid power-law be-
haviors discussed in the previous paragraph. Compa-
ring with the experimental slope therefore complement
the approach in Fig. 3. Note the experimental ‘analogue
quantum simulation’ of the universal 3CK beta-function
at G1,2,3 > G3CK, out of reach of NRG calculations.

Third, we explore and understand the quantitative
relationship between scaling Kondo temperature TK and
microscopic model parameter τ (insets of Figs. 3 and
4). At small τ . 0.5, the same expected exponential
behavior TK ' (EC/10kB) exp(−π2/

√
4τ) is observed for

2CK and 3CK [30]. At larger τ , TK appears to diverge
at a specific setting τc. As Kondo physics emerges only
for T < EC/kB ' 300 mK, a much larger value of the
extracted scaling Kondo temperature TK implies that
only the low-temperature part (T/TK � 1) of the full
universal scaling curve is accessible with the correspon-
ding device setting [10]. For 2CK, theory predicts a
divergence at τc = 1 as TK(1−τ � 1) ∝ 1/(1−τ), which
is displayed by the identical continuous red lines in the
insets of Figs. 3 and 4A [30] (see also the prediction of a
peaked TK(J) in [32, 36]). For 3CK, the observed value
τc ' 0.8 is higher than G3CKh/e

2 ' 0.69. This is due to
the conductance suppression by Coulomb interaction at
temperatures T & EC/kB, prior to the development of
universal Kondo physics at low temperatures. Assuming
theoretically that TK diverges at τc, we generally find
[10] that a low-temperature conductance power law
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∆G ∝ Tα corresponds to a power law divergence
as TK ∝ |τ − τc|−1/α. The observed close agreement
between experimental TK(|τ − τc| � 1) in 2CK and
3CK configurations with, respectively, TK ∝ |τ − 1|−1

(red lines in insets) and TK ∝ |τ − 0.8|−5/2 (green lines
in insets), therefore further establishes the predicted
non-Fermi liquid Kondo exponents for two (α2CK = 1)
and three (α3CK = 2/5) symmetric channels.

Crossover from quantum criticality.
When does quantum criticality apply ? As temperature is
increased (up to some limit, here T . min(TK, EC/kB)),
quantum criticality is generally expected to span over a
larger range of system parameters, away from the T = 0
quantum critical point (Fig. 5A). The so-called crossover
temperature Tco delimits quantum criticality from below,
with the critical point itself corresponding to Tco = 0. Ge-
nerically, the crossover from quantum criticality as tem-
perature is lowered should follow universal curves versus
the reduced parameter T/Tco. Indeed, Tco is the only re-
levant temperature scale, encapsulating all microscopic
details, provided the high-energy cutoff for quantum cri-
ticality is much higher. In tunable circuits, the crossover
from 2CK quantum criticality was explored versus Kondo
channels asymmetry [5, 6] and, in the different implemen-
tation of a spin-polarized quantum dot embedded into a
dissipative circuit, versus the difference between resonant
dot level and Fermi energy [4]. These experiments corro-
borate the existence of a universal T/Tco scaling, as well
as the predicted quadratic increase of Tco for small devia-
tions from the 2CK critical point [13, 16, 19]. Here we ex-
plore the disparate universal and exotic behaviors along
the different crossovers induced by breaking the Kondo
(pseudo)spin degeneracy or the channel symmetry, ob-
serve the development of the quantum phase transition
across the symmetric 3CK quantum critical point, and
demonstrate ‘super-ballistic’ conductances.

In a first step, we investigate the crossover from 2CK
and 3CK quantum criticality induced by breaking the
energy degeneracy of the Kondo impurity, with the
connected channels remaining symmetric. We establish
(i) the different 2CK and 3CK power-law dependence
Tco ∝ |∆E|γ for small energy splitting of the charge pseu-
dospin ∆E = 2ECδVg/∆ � EC with ∆ ' 0.7 mV the
gate voltage period ; (ii) a generalized expression of Tco
for arbitrary ∆E ; (iii) the theoretical universal crossover
curves G̃2CK(T/Tco) and G̃3CK(T/Tco), obtained analy-
tically in [20, 30] for 2CK and by NRG here for 3CK.

The crossover temperature Tco is defined such that the
conductance is halfway between the quantum critical re-
gime (≈ G2CK(3CK), at Tco � T � TK) and the Fermi
liquid regime (≈ 0, at Tco � T ), i.e. G1(,2),3(∆E, T =
Tco) ≡ G2CK(3CK)/2. In practice, we fix the electronic
temperature T and adjust the energy splitting ∆E ∝ δVg
in order to obtain this midway conductance value, if pos-
sible. In Fig. 5B,C, this corresponds to the crossings bet-

ween continuous and horizontal dashed lines, where the
experimentally extracted crossover temperature directly
reads T expt

co (∆E) = T . Symbols in Fig. 5D,E display
T expt
co versus ∆E for the settings τ where Tco ∝ ∆Eγ

is expected [10].

The predicted corresponding power-laws are shown
as continuous lines (Tco ∝ ∆E2 for 2CK, Tco ∝
∆E5/3 for 3CK [13]). Fitting separately, for each τ ,
the T expt

co (∆E) ≤ 12 mK data (fulfilling the universality
NRG criteria) yield the values of γ displayed as symbols
in the insets. A statistical analysis of these values give
γ2CK = 2.01±0.04 and γ3CK = 1.69±0.02 for the crosso-
vers from 2CK and 3CK, respectively, in close agreement
with theory.

The theoretically predicted universal crossover curves
G̃2CK(Tco/T ) and G̃3CK(Tco/T ), shown as thick dashed
lines in the right panels of Fig. 5B,C, are confronted with
conductance data. Continuous lines in the left panels re-
present the conductance measured at different tempe-
ratures versus gate voltage for τ1,3 ' 0.94 (Fig. 5B)
and τ1,2,3 ' 0.82 (Fig. 5C). These settings correspond
to well-developed quantum critical regimes T � TK
(small ∆G), a necessary condition to investigate G̃2CK

and G̃3CK down to small Tco/T . As shown in the right
panels, the gate voltage sweeps at different temperatures
(continuous lines) are superimposed when plotted ver-
sus calculated Tco/T , thereby demonstrating the pre-
dicted universal character of the crossover from quan-
tum criticality. Moreover, we find a precise match bet-
ween experimental universal curves and theoretical pre-
dictions G̃2CK and G̃3CK. Note that Tco is obtained from
experimental parameters using generalized expressions
that remain valid for arbitrary gate voltage, beyond the
power-law at small detuning. For ‘charge’ 2CK device
with near ballistic channels, the full quantitative ex-
pression derived in [30] was used in Fig. 5B : Tco '
1.444EC(1− τ1,3) sin2(πδVg/∆). The data-G̃2CK compa-
rison in Fig. 5B is therefore without any fit parameter.
For 3CK, we expect from NRG calculations the simi-
lar generalization Tco = λ3CK sin5/3(πδVg/∆) [10], which
was used Fig. 5C. As the prefactor λ3CK(τ, EC) is not
known, the value λ3CK = 36 mK was freely adjusted in
the data-G̃3CK comparison shown in Fig. 5C.

In a second step, the development of the 3CK QPT
driven by the channels’ competition to screen the Kondo
spin is plainly observed, through the conductance renor-
malization flow of asymmetric channels upon lowering
temperature (Fig. 6). Here the Kondo ‘charge’ pseudos-
pin is energy degenerate (δVg = 0), QPC1,3 are tuned
symmetric (τ1 ' τ3), and τ2 is adjusted separately. Fig. 6
displays as colored lines the temperature evolution of the
measured conductances G2 (vertical axis) and G1,3 (hori-
zontal axis) from 55 to 7.9 mK (arrow at lowest T ), with
each line corresponding to a different device setting. In
total, 15×14 settings of {τ2, τ1 ' τ3} were measured, with
τ1,2,3 picked among fourteen fixed values ranging from 0.1
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Fig. 5. Crossover from quantum criticality by pseudospin degeneracy breaking. A, Quantum criticality extends as T rises.
It is delimited from below by the crossover temperature Tco, which increases as a power-law for small parameter-space distances from
the critical point (e.g. charge pseudospin energy splitting ∆E ∝ δVg, channels asymmetry ∆τ). Along the crossover, theory predicts

universal T/Tco scalings (e.g. Gi(T,∆E) = G̃(T/Tco)). B, C, The conductance of two (B) and three (C) symmetric channels set, res-
pectively, to τ1,3 ' 0.94 and τ1,2,3 = 0.82, are plotted as continuous lines versus |δVg| (left side) and Tco/T (right side, see text) for
T ∈ {7.9, 9.5, 12, 18, 29, 40, 55}mK. Colored thick dashed lines (grey dash-dotted lines) shown in right sides display the corresponding
theoretical universal crossover curve G̃2CK and G̃3CK (the predicted Tco/T � 1 power-laws). The only fit parameter is an unknown

fixed prefactor for the 3CK crossover scale Tco (no fit parameters in (B), see text). D, E, Experimental crossover temperatures T expt
co are

plotted as symbols in a log-log scale versus ∆E, for two (D) and three (E) symmetric channels. Each set of symbols connected by dashed

lines represents one device setting τ1(,2),3 (see insets). Full symbols correspond to T expt
co ≤ 12 mK. Straight continuous lines display the

predicted power-laws Tco ∝ ∆Eγ , with γ = 2(5/3) for 2CK (3CK). Fitting T expt
co (∆E) ≤ 12 mK separately for each τ yields the values of

γ shown as symbols in the insets with the fit standard error.

to 0.985 [10] and including also τ2 = 0. The data closest
to the diagonal grey line correspond to three channels tu-
ned symmetric (τ1 ' τ2 ' τ3). Below the diagonal, where
τ2 < τ1 ' τ3, the data flow toward the predicted 2CK
fixed point (red disk, at G1,3 = e2/h and G2 = 0). Above
the diagonal, where τ2 > τ1 ' τ3 such that a flow toward
the 1CK fixed point involving QPC2 is expected (blue
disk, at G1,2,3 = 0), we observe a monotoneous decrease
of the conductance G1,3 across the less strongly coupled
QPCs. In contrast, G2 first rises, markedly oversteps the
free-electron quantum limit e2/h (up to +25%), and then
decreases toward the zero conductance 1CK fixed point
as T is further reduced.

The non-monotonous behavior of G2 when higher than
G1,3 might appear counter-intuitive. Indeed, a flow to-
ward the low-temperature 1CK ‘strong coupling’ fixed
point is expected, which corresponds to a renormalized
Kondo coupling growing monotonously (J2 →∞). Howe-
ver J2 connects with the tunnel coupling/hopping inte-
gral of electrons across QPC2 in the ‘charge’ Kondo map-
ping, and free-electron theory predicts a non-monotonous
dependence of the conductance with the hopping inte-

gral (with a maximum for the J2 value that best pre-
serves translational invariance, and G2(J2 →∞) = 0). In
contrast, the present measurement of a conductance that
exceeds the maximum possible value for non-interacting
electrons in the ballistic limit is highly non-trivial and
was not anticipated (although reproduced by new NRG
calculations, see below). Notably, such a super-ballistic
conductance, also in an intermediate temperature range
and of similar amplitude, was coincidentally observed in
clean graphene constrictions [37] and explained as a col-
lective viscous flow of the electronic fluid induced by
electron-electron collisions [38]. We speculate that the
electron-electron interactions mediated by the Kondo im-
purity within the electronic channel across QPC2, expec-
ted particularly strong near the turning point where G2

is maximum, might also result in such a viscous electronic
fluid behavior. An interesting specificity of our system is
that the super-ballistic magnitude and the temperature
range where it takes place can be controlled in-situ, by
separately adjusting the channels.

The experimental findings are compared with NRG
calculations of the universal crossover flow from 3CK
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Fig. 6. Three-channel Kondo renormalization flow with
super-ballistic conductances. Each colored line displays for a
fixed device tuning ({τ1 ' τ3, τ2}) at charge degeneracy (δVg = 0),
the measured channels’ conductance at T = 55, 40, 29, 18, 12, and
7.9 mK (arrow at lowest T ). The lines’ color reflects the direction
(the angle) of the vector connecting lowest and highest tempera-
ture data points, to improve readability. QPC1 and QPC3 are set
symmetric (τ1 ≈ τ3 tuned among fourteen values from 0.1 to 0.985
[10]), and only the renormalized average G1,3 is shown on the hori-
zontal axis. QPC2 is adjusted separately to a coupling τ2 selected
among the same fourteen values and also τ2 = 0. Solid lines and
filled arrows indicate an experimental standard error on G2h/e2

and G1,3h/e2 below 0.05 (usually well below). Dashed lines and
open arrows indicate a standard error on G2h/e2 between 0.05 and
0.1. The green, red and blue disks correspond, respectively, to the
predicted 3CK, 2CK and 1CK low temperature fixed points. The
thick grey lines represent NRG calculations of the universal cros-
sover flows from 3CK, with arrows pointing to lower temperatures.
Notably, the conductance G2 can markedly exceed the maximum
free electron limit e2/h.

quantum criticality, induced by an initially minute asym-
metry between G2 and G1,3 [10]. These are displayed as
two thick grey lines originating from the 3CK fixed point,
with arrows pointing toward lower temperatures. For
G1,3 > G2, NRG predicts a monotonous crossover flow
from 3CK to 2CK conductance fixed points that closely
matches the nearby data. For G2 > G1,3, the universal
NRG crossover flow from 3CK to 1CK reproduces the
observed non-monotonous behavior, confirms the naively
expected vanishing of G2 at the 1CK fixed point, and
establishes that a super-ballistic conductance exceeding
by approximately 20% the free-electron maximum limit

follows from the 3CK model, in quantitative agreement
with the experiment. Note that while experimental
and NRG flows point to the same direction near 3CK
and 1CK fixed points, clear crossings are also visible
in intermediate regimes above the diagonal, including
between different experimental device settings. These
mostly take place between flows involving opposite
renormalization directions of G2, as expected from the
non-monotonous relationship between G2 and Kondo
coupling J2 that specifically shows up above the diagonal.

Outlook.
Quantum impurity models such as the preeminent
Kondo-type allow exploring strongly-correlated and
quantum critical physics [17, 18], and their solutions can
be used to obtain the properties of strongly-correlated
materials within the ‘dynamical mean field’ approxima-
tion [39]. We have shown that metal-semiconductor hy-
brid circuits constitute widely tunable and fully charac-
terized ‘charge’ Kondo devices, thereby providing expe-
rimental test-beds of exotic many-body behaviors at the
high-precision level of quantum simulators. In particu-
lar, the specific observation of super-ballistic conduc-
tance opens a research path for low-power electronics.
Although the present implementation has no clear appli-
cation potential, it forms a powerful platform to unders-
tand the underlying mechanisms of a behavior susceptible
to arise in diverse clean systems with strong electron-
electron interactions. We anticipate that similar metal-
semiconductor hybrids will form building blocks for a
wide range of investigations of the strongly-correlated
electron physics, and in particular the emergence of exo-
tic parafermions quasi-particles [7, 9, 35]. Measurements
of complementary observables such as charge suscepti-
bility, fluctuations and heat current, as well as inves-
tigations of the dynamical and out-of-equilibrium res-
ponses could unveil yet hidden facets of the exotic un-
derlying physics. Furthermore, direct generalizations of
the present ‘charge’ Kondo implementation should grant
access to quantitative investigations of many thus far in-
accessible strongly-correlated phenomena [17], including
the nano-engineered competition between Kondo chan-
nels, dissipation (note the specific proposal in [40]), frac-
tional quantum Hall effect and multiple impurities.
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MATERIALS AND METHODS

Sample and setup

B 1 µm

QPC2

QPC3

QPC1

Vg

Fig. S1. Colored micrograph of the sample, with mea-
surement schematic. The central metallic island (bright) is
connected to the circuit through QPCs formed by field effect
in a buried two-dimensional electron gas (dark grey) using
surface split gates (green). The voltage Vg, used to tune the
metallic island at charge degeneracy, is applied to a capaci-
tively coupled plunger gate (yellow). Note that the voltages
applied to the two lateral gates (yellow and uncolored) are suf-
ficiently negative to deplete the two-dimensional electron gas
underneath (except for electronic thermometry and characte-
rization purposes). Due to the strong perpendicular magnetic
field B = 2.7 T, the current propagates along spin-polarized
edge channels (red lines) of the integer quantum Hall effect
(only the relevant outermost edge channel is shown).

Sample. The sample was nanostructured by standard
e-beam lithography in a Ga(Al)As two-dimensional
electron gas located 105 nm below the surface, of den-
sity 2.5 1011 cm−2 and mobility 106 cm2V−1s−1. The
ohmic contact between the micrometer-scale metallic

node/‘island’ and the buried two-dimensional electron
gas was realized by thermal diffusion into the semicon-
ductor of a metallic multilayer of nickel (30 nm), gold
(120 nm) and germanium (60 nm). The typical energy
spacing between electronic levels in the central metallic
island is δ ≈ kB × 0.2µK. The measurements were
performed under a strong magnetic field B ≈ 2.7 T, in
the regime of the integer quantum Hall effect at filling
factor ν = 3. This specific choice was driven by the
need to have simultaneously three well-behaved QPCs,
without sharp resonances over the full range τ ∈ [0, 1],
as well as very low temperatures (vibrations in our setup
increase the temperature at high field, see [33]) and good
ohmic contacts between the outer edge channel and the
metallic island. The interface quality between metallic
island and two-dimensional electron gas is characterized
by a residual reflection probability lower than 4 10−4

for each of the outermost quantum Hall edge channels
originating from the three QPCs. The charging energy
EC = e2/2C ≈ kB × 299 ± 5 mK ≈ 25.8 ± 0.5µeV is
obtained from the half-height in drain-source dc bias
voltage of measured Coulomb diamonds (not shown, the
uncertainties are rough estimates based on four different
measurements).

Experimental setup. The device was installed in a
dilution refrigerator including multiple filters along the
electrical lines and two shields at the mixing chamber.
Details on the fridge wiring and on the sample hol-
der are provided in [33]. Conductance measurements
were carried out by standard lock-in techniques at
low frequencies, below 200 Hz (see sample micrograph
with a schematic measurement setup in Fig. S1). The
amplification gains and injected signals are precisely
calibrated on-chip, from the signal measured with the
QPCs closed (τ = 0). Noise measurements for the
electronic thermometry were performed in the MHz
range using a homemade cryogenic amplifier. Details on
a very similar noise measurement setup can be found in
the supplementary materials of [41].
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Experimental methods

Electronic temperature. Below 50 mK, the electronic
temperature was extracted on-chip using quantum
shot-noise primary thermometry [33]. Above 50 mK,
T is given by a standard (RuO2) thermometer ther-
mally anchored to the mixing chamber of the dilution
refrigerator. From shot-noise thermometry, we obtain
for the data points used in the paper T = {7.9 ±
0.1, 9.5± 0.2, 12.1± 0.2, 18± 1, 28.9± 0.8, 40.1± 0.4}mK
with the uncertainty corresponding to the standard
error on the mean value of T determined from the
statistical analysis of several temperature measurements
(typically 10). From RuO2 thermometry, we obtain
T = {40.3 ± 0.2, 55.1 ± 0.3, 75.4 ± 0.6}mK with the
displayed uncertainty corresponding to the temperature
drift during the measurements. Note the good agreement
between the two thermometry methods at 40 mK.

Quantum point contact characterization. As gene-
rally observed in the integer quantum Hall regime, the
conductance across each QPC shows a broad and very
well defined e2/h plateau when varying the corresponding
split gate voltage (see inset in Fig. S2E for a gate voltage
sweep of QPC2 including several plateaus). Tuning the
QPC to a conductance below e2/h corresponds to par-
tially opening a single (spin polarized) electronic chan-
nel. We extract its ‘intrinsic’ transmission probability τ
essentially by applying a large dc bias voltage (∼ 50µV)
that suppresses the Kondo and Coulomb conductance re-
normalizations, such that τ ' Gh/e2.

The precise procedure is now described in more
details. For characterizing QPCi (i ∈ {1, 2, 3}), we close
QPCj 6=i (Gj 6=i = 0) and tune a continuous lateral gate
on the other side of the metallic island in the middle
of a very broad conductance plateau for which two
edge channels are perfectly transmitted (the yellow
gate in Fig. S1 for i ∈ {1, 3}, the uncolorized gate for
i = 2). Note that the small capacitive crosstalk effect
on the characterized QPC is compensated (see next
section). A very well defined and voltage independent
(in the probed range) h/2e2 resistor is therefore in series
with QPCi, as schematically represented in Fig. S2A.
Applying a dc voltage Vdc across the whole device
suppresses the low bias dynamical Coulomb blockade
reduction of Gi (see e.g. [42] for a theoretical description
of dynamical Coulomb blockade), as can directly be
seen Fig. S2B. The ‘intrinsic’ transmission probability
τi is here identified with the differential conductance
Gi measured at large bias voltage (compared to EC/e).
The corresponding Gi(Vdc) data at T = 18 mK are
shown as continuous lines in Fig. S2B for the different
device settings (black, red, blue for i = 1, 2, 3, respec-

tively). In practice, we extract τi from the average of
Gi(Vdc) in the range |Vdc| ∈ [45, 51]µV (grey bands
in Fig. S2B). This choice reflects a good compromise
between completely suppressing the dynamical Cou-
lomb blockade renormalization (large enough |Vdc|)
and making sure that the energy dependence of the
intrinsic τi remains negligible (small enough |Vdc|). Note
that the symmetry between QPCs was finely adjusted
directly from the conductances measured in the 3CK
configuration at the specific temperature T = 18 mK.
At large |Vdc| & 20µV, visible differences develop both
between QPCs as well as between opposite voltages for
the same QPC. We attribute these differences to the
small but non-negligible energy dependence of τi, which
effectively results in an experimental uncertainty on the
determination of its absolute value. The corresponding
uncertainty is estimated from the standard error ∆τ on
the mean value τ determined from the six measurements
G1,2,3(Vdc ∈ ±[45, 51]µV) (three QPCs tuned symmetric
at low bias, each measured separately for large positive
and negative bias voltages). The mean τ are shown
as horizontal dashed lines in Fig. S2B. The extracted
values of τ1,2,3, τ and ∆τ are recapitulated in the
table shown Fig. S2C. Figures S2D,E,F display τ1,2,3 as
symbols versus the voltage V qpc

1,2,3 applied on one side
of the split gate controlling QPC1,2,3, respectively. In
order to illustrate the regular gate voltage dependence,
continuous traces in the same panels display gate voltage
sweeps of the corresponding QPC conductance, with
an essentially suppressed dynamical Coulomb blockade
renormalization (short-circuiting the island in panels
D,E ; with a dc voltage of −50µV in panel F).

Capacitive crosstalk corrections. Each QPC is
slightly impacted by the gate voltages applied to control
the other QPCs. Thanks to a distance of several microns
this capacitive crosstalk is relatively small. Typically,
changing the voltage on the other QPCs’ split gates has
an effect 100 times smaller than directly changing the
voltage of the split gate used to form the considered
QPC. Although small (the effect on τ is at the most,
and generally well below, 0.05), these capacitive cross-
talk corrections were straightforwardly calibrated and
systematically corrected for, in order to best preserve
the QPCs symmetry. Typically, spanning τ on one QPC
amounts to gate voltage variations below 0.1 V, resulting
in crosstalk corrections smaller than 1 mV on the other
QPCs split gate.

Renormalized channel conductance. Here we
detail the relation between individual QPC conduc-
tances and the currents and voltages across the whole
‘charge’ Kondo device. Applying a small voltage V1
(eV1 < kBT/2) on the large voltage biased electrode
feeding QPC1 (see Fig. S1), we measure the current
I1 flowing through QPC1 toward the large grounded
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Fig. S2. QPCs characterization. A, Schematic circuit used to determine τ1,2,3 : a large bias voltage is applied to the
characterized QPC in series with a known resistance h/2e2. B, Conductance of the QPCs measured at T = 18 mK versus
dc voltage (continuous lines, black for QPC1, red for QPC2 and blue for QPC3), in the configuration shown in (A) with
the series resistance subtracted. The low bias conductance dips result from the dynamical Coulomb blockade, while the high
bias plateaus correspond to the ‘intrinsic’ transmission probabilities τ1,2,3. C, The ‘intrinsic’ transmission probabilities τ1,2,3
at the experimental set points used in the main text are defined as the average of the QPCs conductance on the large bias
ranges ±[45µV, 51µV] (grey areas in (B)). The individual transmission probabilities τ1,2,3 are averaged to give τ (horizontal
colored dashed lines in (B)) and the estimated uncertainty ∆τ (the standard error on the mean value τ calculated from six
measurements, at negative and positive bias voltage for the three QPCs). D, E, F, The ‘intrinsic’ transmissions τ1,2,3 of the
QPCs are plotted as symbols versus the voltage V qpc

1,2,3 applied on one side of the corresponding split gate. The continuous lines

are measured using the lateral characterization gates to short-circuit the metallic island for (D),(E), or with h/2e2 in series
(see (A)) at an applied bias voltage Vdc = −50µV for (F). The inset in (E) shows QPC2 conductance over a larger gate voltage
range including several plateaus, which illustrates the broad separation between channels.

electrodes on the other sides of QPC2 and QPC3. From
Kirchoff’s laws, I1/V1 = 1/(1/G1 + 1/(G2 + G3)).
Repeating the same procedure for the three QPCs
(in practice this is done simultaneously using lock-in
techniques), allows us to extract the individual values
of G1, G2 and G3 as long as the three conductances
are non-zero, in the 3CK configurations. Note that
in the 2CK configurations (G2 = 0), the redundant

measurements I1/V1 = I3/V3 ≡ G1,3/2 do not allow us
to extract separately G1 and G3.

Data reproducibility. The experimental data shown
in Fig. 2, 3, 4 and 6 are extracted from the average of
the conductance at degeneracy (δVg = 0) obtained from
many Coulomb peaks. Considering only the symmetric
2CK and 3CK device configurations, a total of 6074
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Fig. S3. Data analysis. The device conductance through

QPC2 (g2−13 ≡ 1/(1/G2 + 1/(G1 +G3)), measured at charge

degeneracy (δVg = 0) for τ1,2,3 ≈ 0.1 and T ≈ 12 mK, is plot-

ted as symbols versus gate voltage Vg at the consecutive peak

maximums. The same Vg sweep (a 1h long measurement) is

repeated twice with a 15h time interval. The data points be-

low the statistical threshold shown as a red continuous line

are automatically discarded.

conductance peaks were measured, corresponding in
average to 27 peaks per displayed data point. This
allowed for the automatic detection and exclusion of
statistically anomalous measurements (of statistical
probability . 1% assuming a gaussian distribution).
The excluded measurement artifacts and the automatic
procedure are illustrated in Fig. S3. Symbols represent
measurements of the maximum peak conductance (at
δVg = 0) across the whole device when the current
is injected from the electrode connected to QPC2

(g2−13 ≡ 1/(1/G2 + 1/(G1 + G3)). The data points ob-
tained by sweeping the gate voltage (Vg) at T ' 12 mK
and τ ' 0.1 are plotted versus Vg at the position of
the consecutive peak maximums. The same sweep was
performed twice with a 15h time interval. While in
the first sweep (full symbols) all the maximum peak
conductances are at similar values, the second sweep
(open symbols) shows a pronounced dip of the measured
conductance maximums for Vg ∈ [−0.402,−0.393] V.
Such non-reproducible experimental artifacts are at-
tributed to the activation of charge fluctuators in the
device vicinity. In order to discard such dip artifacts,
we automatically remove all peak measurements whose
conductance is more than six times the expected stan-
dard deviation (from instrumental noise, separately
calibrated) below the highest measured value. The
highest value and the corresponding lower threshold
are shown in Fig. S3 as a black dashed line and a red
continuous line, respectively.

Power-law exponent of crossover temperature.

This section concerns the experimental determination
of the power-law exponent γ describing the increase
of the crossover temperature Tco versus the charge
pseudospin energy splitting ∆E (Fig. 5D,E). We pro-
vide here the explicit device settings criteria used to
restrict the analysis where such power-law behavior
is expected. Two additional criteria complement the
already mentioned low temperatures corresponding to
the universality regime (T ≤ 12 mK < EC/20 ' 15 mK) :
(i) The power-law dependence only applies in the limit
of small energy splitting ∆E, as directly seen from
the generalized expression of Tco for the crossover
from 2CK quantum criticality given by Eq. S7. In
practice, we only considered the settings of τ for which
∆E < EC/3 ' kB × 100 mK (corresponding to a
maximum of 9% relative deviation of Tco from the
power-law dependence). (ii) The Kondo temperature
must be sufficiently high with respect to T . Indeed, a
universal crossover flow is generally expected only in
the limit T, Tco � TK. Specifically, a too large difference
between G1(,2),3(δVg = 0) and G2CK(3CK) (which occurs
if TK is not large enough compared to T ) results in a
non-negligible gate voltage shift of the crossing point
G1(,2),3(δVg) = G2CK(3CK)/2. As the gate voltage at the
crossing point is used to extract Tco(∆E), such a shift
would translate into an experimental error. In practice,
we therefore only considered the settings of τ for which
|1−G1(,2),3(δVg = 0, T )/G2CK(3CK)| < 0.25.

SUPPLEMENTARY TEXT

Model, predictions and super-ballistic observation

Multichannel ‘charge’ Kondo model. The mapping
of the circuit Hamiltonian in the weak coupling limit to
an anistropic Kondo model is here made explicit, follo-
wing [29]. The circuit Hamiltonian for a metallic island
coupled through N single-channel point contacts to N
different leads is usually written [29,32] :

H = HI +
N∑

i=1

(HLi +HQPCi) +EC

(
Q̂

e
− Q0

e

)2

, (S1)

with HI (HLi) the Hamiltonian describing the electron
continuum in the island (in the lead i), Q̂ the island
charge operator, Q0 a gate voltage dependent charge off-
set, and HQPCi the Hamitonian describing the electron
transfers between island and lead i (across QPCi) :

HQPCi = ti
∑

k,k′

c+Iik′cLik +H.c., (S2)

where cIik′(Lik) is the electron annihilation operator in
the island (lead) associated with the conduction channel
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across QPCi and ti the coupling coefficient (here assu-
med independent of Lik and Iik′). Introducing the elec-
trons’ ‘localization pseudospin-1/2’ (si) between island
(pseudospin state ↓) and lead i (pseudospin state ↑), and
regarding the island’s charge Q̂ as an independent ma-
croscopic quantum degree of freedom (which is valid in
the continuous density of states limit, see e.g. [32] for
a specific discussion), the circuit Hamiltonian reads (see
[20,29,32] and also [43]) :

H =HI +
∑

i

[
HLi +Neti(S

+s−i + S−s+i )
]

+EC

(
Q̂

e
− Q0

e

)2

, (S3)

with S± =
∑
Q |Q± 1〉 〈Q|, s+i = (1/Ne)

∑
k,k′ c

+
LikcIik′ ,

Ne ≡
√∑

k,k′ the effective number of electrons, and

s−i = (s+i )†. For small enough coupling coefficients
ti, the term proportional to EC in eqs S1 and S3
effectively freezes out all island’s charge states in the
limit T � EC/kB, except for the two of lowest energy
(tuned at degeneracy in the Kondo regime). In this
low-temperature limit, the charge states of the island
therefore reduce to a pseudospin S of 1/2, which is
flipped by tunneling onto or off the island at each of the
QPCs. The terms of the form S+s−i in Eq. S3 indeed
describes a spin exchange between the Kondo impurity
charge pseudospin-1/2 and the localization pseudospin-
1/2 of the electrons in continuum i. Note that the Kondo
exchange is here proportional to ti, in contrast with spin
Kondo devices based on small quantum dots where spin
flips result from virtual, second-order processes. Fur-
thermore, the last term in Eq. S3 reduces to a Zeeman
splitting ∆E of the charge pseudospin of 1/2, with an
effective magnetic field that is simply proportional to
the gate voltage detuning δVg from charge degeneracy
(∆E = 2EC|δVg|/∆, for |δVg| < ∆/2 with ∆ the gate
voltage period of Coulomb oscillations) [29]. Note that
the corresponds to the anisotropic Kondo model, since
there is no component Szszi (in contrast to Eq. 1, where
the coupling coefficient J is assumed identical for the x,
y and z components). This anisotropy of the coupling is
irrelevant in the renormalization group sense as it disap-
pears in the low-temperature limit [13]. At T ∼ EC/kB,
the thermal activation of additional charge states
effectively breaks the charge pseudospin-1/2 mapping,
and thereby provides a high energy cutoff for Kondo
physics (for a specific NRG study, see section “charge’
Kondo universality’ and Fig. S4). Note finally that the
experimentally probed electrical conductances across the
charge Kondo electronic channels are connected, in usual
Kondo language, to two-particle correlation functions
(see [34,35] and also [43–45]). Those correlation functions
were calculated exactly at the fixed point by Ludwig
and Affleck using conformal field theory [14] and, for the

2CK model, as a full function of temperature via NRG in
[20]. In contrast, for previous spin 2CK nanostructures
based on small quantum dots [2,5] the conductance is
proportional to the single-particle T matrix [16].

Multichannel Kondo physics with strongly cou-
pled contacts. Beyond weakly coupled QPCs, quantum
fluctuations compete with the freezing of higher energy
charge states, which can break the direct mapping of the
two lowest energy charge states on a Kondo pseudospin
S = 1/2 (note that charge quantization breakdown is
found and predicted only close to the ballistic limit, see
[31] for an experimental exploration). Nevertheless, even
for nearly ballistic contacts, where many charge states
coexist in a quantum superposition, the low-temperature
physics at the degeneracy point (δVg = 0) as well as
the crossover flow from quantum criticality should be
universal, indistinguishable from what one expects from
the standard S = 1/2 multichannel Kondo model. This
was shown in [15], in particular by mapping the circuit
Hamiltonian derived for two nearly ballistic channels
onto the Hamiltonian obtained by Emery and Kivelson
[7] for the anisotropic two-channel Kondo model in
the Toulouse limit (see below Eq. 53 of [15]). It is
also attested by the identical expression for the uni-
versal conductance flow G̃2CK(T/Tco) for the crossover
from 2CK quantum criticality (given by Eq. S4 with
T/TK = 0) derived analytically in both the opposite
tunnel and nearly ballistic limits (Eq. 6 in [20] and
Eq. 38 in [30], respectively). Besides these limits, the
general case of arbitrary coupling strength was studied
numerically (see e.g. [20,32] and section “charge’ Kondo
universality’), further corroborating the robust Kondo
character including in the presence of strongly coupled
contacts.

Non-Fermi liquid temperature exponents. For N ≥
2 Kondo channels and a Kondo impurity of spin S = 1/2,
observables are naively expected to display the dominant
temperature power-law T 2/(N+2) in the vicinity of the
NCK fixed point (see e.g. [13] and references therein).
This is however not necessarily the case : different power
laws can arise e.g. for observable involving operators in
the charge or spin sectors [13] or due to a vanishing first
order development near the fixed point.

For 2CK (N = 2), the Kondo channels conductance in
the present ‘charge’ implementation is predicted to scale
linearly (∆G ∝ T ), and not as the naively expected

√
T .

This prediction was obtained both analytically in the case
of a nearly ballistic channel (see Eq. A9 in [30], the speci-
fic discussion in Methods of [6], and Eq. S4 with Tco = 0),
and from recent NRG calculations starting from the op-
posite limit of a tunnel contact [20]. Note the difference
with the conductance in previous spin 2CK implemen-
tations with small quantum dots, where the naively ex-
pected

√
T was predicted and observed [2,5]. Indeed, the
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conductance in these spin Kondo devices is proportional
to the single-particle T matrix [16], whereas in the ‘char-
ge’ implementation it relates to two-particle correlation
functions (see [35] and also [43, 45], or Eq. S10). After
submission of this manuscript, three new works calcula-
ting the 2CK power law dependence of the conductance
in the ‘charge’ Kondo implementation with different me-
thods appeared (see [35] and also [43, 45]) : a linear be-
havior is also found in [35] and [43, 45] (a different T 2

scaling initially obtained in the published article [45] was
subsequently corrected in an Erratum and also in the
second arXiv version).

For 3CK (N = 3), the naively expected T 2/5 is
precisely reproduced by the new NRG calculation of
the universal ‘charge’ Kondo conductance curve shown
Fig. 4B,C. This is best seen by plotting in a log-log
scale the difference ∆G between this NRG curve and
the predicted 3CK fixed point G3CK = 2 sin2(π/5)e2/h,
as shown Fig. S5. Note that the new preprint [43]
finds a different power law T 4/5. However, the general
prediction T 4/(N+2) of [43] for arbitrary N also seems in
contradiction with previous calculations in the large N
limit of the frequency dependence at zero temperature
ω2/(N+2) (see eqs D30 and D11 in appendix D of
[44]), which instead correspond to the naively expected
power law also predicted here by NRG for N = 3.
In practice, we chose in the manuscript to keep using
the NRG prediction T 2/5, that precisely matches the
naive expectation. From an experimental stand point,
although the data is closer to T 2/5, it does not allow to
unambiguously rule out T 4/5 due to the relatively large
uncertainty combined with the possibility that observing
T 4/5 requires approaching even closer of the fixed point.

ZN parafermions. As a guide to the reader, we point
out the particularly accessible discussion in the last
paragraph of [43], which complements the original
works [7,9]. The authors of [43] relate the non-Fermi
liquid character of the N -channel Kondo fixed point
(N ≥ 2) to the ZN parafermionic theory describing
the renormalization flow at the generalized Toulouse
point. The parafermion charge e × (2N − 2)/(N + 2)
is mentioned and a connection is made with the zero
temperature residual entropy at the NCK fixed point
(S = ln (2 cos [π/(N + 2)]), as indicated in e.g. [13] and
as also explicitly confirmed in the present context by our
NRG calculations).

2CK conductance in near ballistic, low tempera-
ture limit (kBT � EC, 1− τ1,3 � 1). Here, we provide
the theoretical expression used to calculate the conduc-
tance displayed as a continuous line in Fig. 1C and the
universal crossover curve G̃2CK(T/Tco) shown as a thick
dashed line in Fig. 5B. In addition, one can derive from
this formula the quantitative theoretical expression of Tco
for the crossover from 2CK quantum criticality for arbi-

trary δVg at 1 − τ � 1 (used in Fig. 5B), and also the
2CK non-Fermi liquid scaling exponent for the conduc-
tance ∆G ∝ T/TK at δVg = 0 and τ1 = τ3 ≡ τ (Fig. 3),
together with the tested functional form TK ∼ EC/(1−τ)
(bottom right inset of Fig. 3). The analytical prediction
of eqs 38, 26 and A9 in [30] give for the overall conduc-
tance g1-3 across the two connected QPC1,3 both set to be
nearly ballistic, but not necessarily to identical tunings,
and for low temperatures T � EC/kB :

g1-3 = 1/(1/G1 + 1/G3)

=
e2

2h

[
1− T

T ?K
−
∫ ∞

0

cosh−2(x)

1 + (2xT/Tco)2
dx
]
, (S4)

with

T ?K =
16EC/

(
kBπ

3 exp(C)
)

2− τ1 − τ3 + 2
√

(1− τ1)(1− τ3) cos(2πδVg/∆)
,

(S5)

Tco =
2 exp(C)EC

π2kB
× (S6)

(
2− τ1 − τ3 − 2

√
(1− τ1)(1− τ3) cos(2πδVg/∆)

)
,

where C ' 0.5772 is the Euler-Mascheroni constant and
∆ the gate voltage period of Coulomb oscillations. Note
that the numerical prefactor for the scaling Kondo tem-
perature T ?K in Eq. S5 does not precisely correspond to
the convention used in the main article, which is based on
the knowledge of the full renormalization flow only acces-
sible through NRG methods (see next section for further
discussion). For two symmetric channels τ ≡ τ1 = τ3
and at charge degeneracy δVg = 0, one finds Tco = 0
and T ?K ∝ EC/(1 − τ). The low temperature criteria
T � EC/kB therefore implies that Eq. S4 is valid only
in the asymptotic regime T � T ?K, where ∆G ∝ T . The
universal 2CK crossover curve for the conductance per
channel G̃2CK(T/Tco) (thick dashed line in Fig. 5B) cor-
responds to 2g1-3 as given by Eq. S4 in the limit of ne-
gligibly small T/T ?K. Importantly, the universal charac-
ter of G̃2CK is attested by the fact that the exact same
expression was obtained in the opposite limit of tunnel
contacts τ1,3 � 1 (Eq. 6 in [20]). For two symmetric
channels τ ≡ τ1 = τ3 at arbitrary charge degeneracy δVg,
the crossover temperature simplifies into :

Tco = 8 exp(C)EC(1− τ) sin2(πδVg/∆)/(kBπ
2), (S7)

which was used to plot the data versus Tco/T in the
right side of Fig. 5B. Note that the generically expected
quadratic dependence of Tco with the parameter-
space distance to the 2CK quantum critical point
is recovered for both small δVg � ∆ and small
∆τ ≡ τ1−τ3 � 1−〈τ1,3〉. The continuous line in Fig. 1C
corresponds the conductance G1,3 = 2g1-3 calculated
with eqs S4, S5, S7 using the separately characterized
values τ1 = τ3 = 0.9, T = 7.9 mK, EC = kB × 0.3 K and
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∆ = 0.7 mV, without any fit parameters.

Kondo temperature versus model parameters.
Here, we discuss the relationship between scaling/Kondo
temperature and microscopic model parameters τ and
EC, with a specific focus on the existence of a power-law
divergence at a critical setting τ = τc. The first cha-
racteristic of the Kondo temperature TK is that it cor-
responds to the scaling temperature in the universal re-
normalization flow regime. With such a definition alone,
the multiplicative factor of TK(τ, EC) is an arbitrary
constant value. Following standard practice [46], this fac-
tor is set such that G1(,2),3(T = TK) = G2CK(3CK)/2.
The Kondo temperature therefore also corresponds to
the characteristic temperature scale at which Kondo phy-
sics develops when starting with a weak Kondo coupling
(e.g. τ � 1). Beyond initially weak Kondo couplings,
G2CK(3CK)/2 may not be within the explored range of
renormalized conductances (e.g. for large τ). However,
the scaling Kondo temperature TK can always be ad-
justed by matching the data in the universality regime
(T � EC/kB) with the full universal curve obtained by
NRG starting from a weak tunnel coupling. The defini-
tion of TK as the scaling Kondo temperature allows for
values possibly much larger than EC/kB. In such cases,
TK does not correspond to the temperature scale at which
Kondo physics develops since the universal Kondo re-
gime only takes place well below the high-energy cutoff
EC. For 2CK, Matveev and Furusaki predict in [30] that
TK(1− τ � 1, EC) ∝ EC/(1− τ), where τc = 1 (see pre-
vious section). Note that a peaked Kondo temperature at
a specific Kondo coupling setting was subsequently pre-
dicted for 2CK in [32,35]. In general (beyond 2CK), the
power-law scaling of TK at |τ − τc| � 1 can be obtai-
ned assuming that the Kondo temperature TK diverges
at a critical transmission probability τc (in agreement
with experimental observation, see insets in figs 3 and
4B). Expanding linearly the channels conductance for
|τ − τc| � 1, one finds at T � EC/kB :

Gi(T ) = GNCK × (1 +A(τ − τc)(kBT/EC)α) , (S8)

with A a multiplicative factor of order 1, GNCK the NCK
low-temperature conductance fixed point, and α the tem-
perature exponent for the conductance when approaching
the Kondo fixed point (α = 1 for 2CK , α = 2/5 for
3CK). Comparing with the low-temperature Kondo sca-
ling Gi(T ) − GNCK ∝ (T/TK)α, where all microscopic
parameters are encapsulated in TK, directly gives

TK(|τ − τc| � 1) ∝ EC|τ − τc|−1/α. (S9)

This prediction, which is novel for 3CK, is shown
as continuous lines in the insets of Fig. 3 using the
corresponding theoretical values of α. A close agreement
is observed with the data.

Asymptotic crossover limit G̃NCK(Tco/T � 1). Here
we derive the asymptotic functional form at Tco/T → 0
(close to quantum criticality) of the universal conduc-
tance curve G̃(Tco/T ) describing the crossover from
NCK Kondo quantum criticality induced by breaking the
degeneracy of the charge Kondo pseudospin (∆E 6= 0,
∆τ = 0, T � TK). These asymptotic functional forms
are shown for 2CK and 3CK as grey dash-dotted lines
in the right side of Fig. 5B and Fig. 5C, respectively.
The limit Tco/T → 0 corresponds to very small gate
voltage detuning δVg/∆ � 1 (∆ being the gate vol-
tage period). Although the physics is dominated by
non-Fermi liquid scalings induced by the NCK quantum
critical point, the expansion at T 6= 0 of the physical
conductance observable with respect to δVg is regular
(analytic), as finite temperature regularizes infrared
divergences in the corresponding coefficients. From the
even symmetry between positive and negative detunings
δVg, the first term in this expansion is quadratic in δVg.
In the presently considered regime T � TK, this reads
∆G ≡ G(δVg → 0) − GNCK ∝ δV 2

g . On the other hand,
we generally know that G(T � TK, δVg) can be reduced

to a universal function G̃NCK of the rescaled temperature
T/Tco (for Tco � TK). Moreover, using the analogy
between Zeeman splitting of a magnetic impurity
and charge pseudospin energy detuning (∆E ∝ δVg),
conformal field theory predicts that the crossover

temperature scales as Tco ∝ δV
(N+2)/N
g in the limit of

small δVg (see e.g. [13]). By direct identification, one
immediately deduces the power-law asymptotic behavior
G̃NCK(Tco/T � 1)−GNCK ∝ (Tco/T )2N/(N+2). At 2CK,
this expression reduces to a linear asymptotic scaling
G̃2CK(Tco/T � 1) − e2/h ∝ (Tco/T ), in agreement with
the full analytical prediction (Eq. S4, see right side of
Fig. 5B). At 3CK, the above asymptotic expression
reduces to G̃3CK(Tco/T � 1) − G3CK ∝ (Tco/T )6/5, in
agreement with novel NRG calculations (see right side
of Fig. 5C).

Super-ballistic conductance. NRG calculations di-
rectly show that the emergence of a super-ballistic single-
channel conductance follows from the Kondo model. It
arises along the non-monotonous renormalization flow to-
wards the 1CK fixed point, when considering the conduc-
tance observable in the present ‘charge’ implementation.
Note that a similar observation (although less substan-
tial) was previously made when investigating the ‘charge’
Kondo renormalization flow with two channels (see Me-
thods in [6] for a specific discussion). Experimentally, the
opening of a second channel across QPC2 could, in prin-
ciple, provide a simple explanation for the measurement
of a conductance G2 above e2/h. However this simple
explanation can be directly ruled out, without the need
to invoke the NRG confirmation. Firstly, the second and
third (inner) quantum Hall edge channels that could pos-
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sibly be transmitted across QPC2 (the experiment is per-
formed at filling factor ν = 3) are completely reflected,
by a large margin, when the first (outer) quantum Hall
edge channel is partially transmitted. This is evidenced
by the very broad (0.25 V in split gate voltage V qpc

2 ) and
very flat e2/h plateau, which separates the full opening of
the first channel from the point where the second chan-
nel starts to open (see inset of Fig. S2E). Secondly, this
e2/h plateau is very robust up to energies much higher
than the charging energy EC ' 26µeV that sets an up-
per bound for Coulomb and Kondo effects : We checked
the plateau robustness up to a dc voltage of Vdc ' 70µV
applied directly across QPC2 (we did not try higher va-
lues), and found that the plateau remains very precisely
at G2 = e2/h. Moreover, we find that a QPC initially
completely closed stays closed even in the presence of
the charge Kondo effect (here with two symmetric chan-
nels as shown with the G2 = 0 data in Fig. 6, and also
with two asymmetric channels in the previous ‘charge’
Kondo experiment described in [6]). In fact, the conduc-
tance of a channel that is initially (at high T ) less coupled
to the island than the other ones is found and predicted
to be systematically further suppressed as temperature
is reduced (e.g. an hypothetical weakly transmitted se-
cond channel across QPC2, despite the above evidences
that there is no such second channel). In contrast, we
observe here a large G2 overshoot, of up to +0.25e2/h
above the free electron quantum limit e2/h. We now list
the specific QPC tunings of τ1,2,3 for which we found a
super-ballistic conductance G2 in Fig. 6 (in the explored
temperature range, only including data points for which
the statistical uncertainty on G2 is smaller than 0.1e2/h,
and with the discrete settings of τ2 in the indicated ranges
as given Fig. S2C) : at τ1,3 ' 0.1 for τ2 ∈ [0.79, 0.94] ;
at τ1,3 ' 0.20 for τ2 ∈ [0.64, 0.98] ; at τ1,3 ' 0.34 for
τ2 ∈ [0.68, 0.98] ; at τ1,3 ' 0.48 for τ2 ∈ [0.74, 0.98] ;
at τ1,3 ' 0.56 for τ2 ∈ [0.79, 0.98] ; at τ1,3 ' 0.64 for
τ2 ∈ [0.82, 0.98] ; at τ1,3 ' 0.68 for τ2 ∈ [0.85, 0.98] ;
at τ1,3 ∈ {0.74, 0.79} for τ2 ∈ [0.90, 0.98] ; at τ1,3 ∈
{0.82, 0.85} for τ2 ∈ {0.94, 0.98} ; at τ1,3 ∈ {0.89, 0.94}
for τ2 ' 0.98.

Numerics

Numerical renormalization group calculations.
Numerical calculations of the universal 2CK and 3CK
conductance presented in figs 4,5,6 were performed using
a variant of Wilson’s numerical renormalization group
(NRG) technique (see e.g. [18] and [47]), adapted to treat
the multichannel charge-Kondo Hamiltonian, Eq. S1, in
the limit where the island charging energy EC is the lar-
gest energy scale in the problem (including the conduc-
tion electron half-bandwidth D ; the effect of EC < D is
discussed in the next section). In this case, the two charge
states of the island of lowest energy form a pseudospin-

1/2, while the other charge states can be ignored whate-
ver the QPCs’ connection strengths. The resulting aniso-
tropic multichannel Kondo model (Eq. S3 including only
the two lower charge states) is solved non-perturbatively
with NRG. The conduction electron density for each of
the N channels is discretized logarithmically and the
system is then mapped onto a 1-dimensional model in
which the Kondo pseudospin is connected to one end of
the bundle of N semi-infinite ‘Wilson chains’. The re-
normalization group character of the problem is revea-
led by iterative diagonalization of the chain : the phy-
sics at successively lower energy scales is probed at each
step as high-lying states are iteratively eliminated. The
computational complexity of an NRG calculation scales
exponentially with the number of channels, N . Conse-
quently, although standard NRG methods could still be
used for 2CK (Fig. 4A,C), the charge-3CK model would
have been essentially intractable (large symmetries are
broken due to the spin anisotropy inherent to the charge-
Kondo setup, and further reduced in the vicinity of the
critical point by channel asymmetry and gate detuning
of charge degeneracy). This limitation was overcome by
using for the 3CK calculations (shown figs 4B,C, 5C
and 6) the recently-developed ‘interleaved NRG’ (iNRG),
which makes use of a modified discretization to com-
bine the N Wilson chains into a single generalized chain
[48, 49]. The experimental quantity of interest is the li-
near response dc differential conductance, whose accurate
calculation requires further modification of the standard
NRG procedure, as now briefly described. To the Hamil-
tonian Eq. S1 we add a time-dependent bias term to lead
i, Hbias = eViN̂Li cos(ωt), where N̂Li =

∑
k c

+
LikcLik is

the total electron number operator for lead i. Measure-
ment of the resulting current into lead j allows determi-
nation of elements of the conductance tensor Gij(T, Vi) =

d〈Îj〉T /dVi. Within linear response Vi → 0, we employ
the Kubo formula [50],

Gij(T ) =
e2

h
lim
ω→0

[
2π~2 ImKij(ω, T )

~ω

]
, (S10)

where the limit ω → 0 yields the desired dc
conductance. Kij(ω, T ) is the Fourier trans-
form of the retarded current-current correlator,
Kij(t, T ) = iθ(t)〈[ṄLj(t), ṄLi(0)]〉, where ṄLα = d

dtN̂Lα.
In NRG, Kij(ω, T ) is obtained directly on the real axis
as an entire function of ω for any T . It is calculated
using the full density matrix, established on a complete
basis [51]. However, straight application of this approach
is plagued by numerical instabilities : Kij(ω, T ) must be
determined very accurately to avoid the spurious diver-
gence of K(ω, T )/ω on taking the ω → 0 limit. Instead,
we exploit the identity ImKij(ω, T )/ω = ωIm K̃ij(ω, T ),
which we derived from equations of motion, where
K̃ij(t, T ) = iθ(t)〈[N̂Lj(t), N̂Li(0)]〉. This trick is found
to drastically improve the accuracy of the conductance
calculation in NRG. It is especially important in the
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Fig. S4. Universality criterion at finite EC and arbitrary QPC couplings. NRG calculations of the 2CK channels conductance
G1,3 are plotted versus rescaled temperature T/TK. The universal conductance curve shown as a black dashed line (calculated
in the regime kBTK � D � EC, i.e. with two charge states and tunnel contacts) is compared to finite EC calculations (colored
continuous lines ; EC = 0.1D in panel (A), EC = 0.01D in panel (B) ; including twenty charge states of the metallic island
in NRG) for different settings of the normalized QPC coupling coefficient tρ (with t defined Eqs. S2,S3, and ρ the ‘effective’
electronic density of states). The universality criterion kBTuni ≡ EC/20 is pointed out with vertical arrows of the same color as
the corresponding NRG calculation at finite EC.
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Fig. S5. 3CK non-Fermi liquid power-law. The T 2/5

power-law (straight dashed line) naively expected near the
3CK fixed point is compared with the 3CK universal conduc-
tance curve calculated by NRG, as a function of the rescaled
temperature T/TK in a log-log scale. The black continuous
line displays the difference ∆G between NRG calculation and
predicted fixed point G3CK = 2 sin2(π/5)e2/h.

three channel case, whose fixed point conductance
takes a nontrivial intermediate value (see [34] and also
[43, 44]). The true ‘universal’ renormalization flow of
the conductance is obtained formally in the scaling
limit kBTK/D → 0. In practice, we use ρt = 0.025

(ρ ≡ Ne/2D, t ≡ t1(,2),3) yielding TK ∼ 10−15D/kB.
For 2CK NRG calculations, we used a discretization
parameter [47] Λ = 3, retained Ns = 10000 states at each
step, and averaged the results of Nz = 4 calculations.
For 3CK iNRG calculations, we used Λ = 3, Ns = 38000,
and Nz = 3. The three spinful channels, each with
U(1) conserved charge, were interleaved, and global
U(1) spin symmetry was exploited (note the inherent
spin-anisotropy of the charge-Kondo setup).

‘Charge’ Kondo universality. To what extent does
one recover universal Kondo physics at low temperature
in the present ‘charge’ implementation : Does it depend
on the channels coupling strength or on the ratio EC/D ?
How small does the temperature need to be in practice ?
We systematically find, based on 2CK NRG calculations,
that the universal Kondo scaling curve for the conduc-
tance is accurately recovered for T . min(EC, D)/20kB,
including when the deduced scaling temperature TK is
large with respect to EC/kB or D/kB. Previous calcu-
lations in [20] investigated the non-universal behavior
resulting from the finite conduction electron bandwidth
D, which was assumed to be much smaller than EC.
In that case, whatever the temperature and coupling
strengths, only two charge states are accessible and
need to be included in the calculation. Here we consider
the effect of a finite island charging energy EC in
Eq. S1, which requires going beyond the spin- 12 Kondo
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paradigm. In practice, 20 charge states are taken into
account in the calculations. In Fig. S4, the full universal
2CK conductance scaling curve (black dashed line ; two
charge states, tunnel contacts) is plotted versus T/TK
and compared to NRG calculations at finite EC (colored
continuous lines ; EC = 0.1D in panel A, EC = 0.01D
in panel B) for different values of the normalized
QPCs coupling ρt ∈ {0.075, 0.10, 0.14, 0.23}, with ρ the
electronic density of states per unit energy (ρ ≡ Ne/2D)
and t defined eqs S2,S3. The identical scaling observed
for all values of t at low enough T/TK, systematically
seen also in the opposite regime D � EC (not shown),
shows that there exists a temperature Tuni(t,D,EC)
below which the measured channels conductance Gi(T )
collapses to the same universal Kondo curve when
rescaled by TK – independently of TK/D, TK/EC, EC/D
or ρt. Defining Tuni as the temperature below which
deviations from universality are smaller than 0.01e2/h,
we find numerically kBTuni ∼ EC/20 for EC < D,
and more generally kBTuni ∼ min(EC, D)/20. Vertical
arrows in Fig. S4 indicate the position of EC/20kB in
rescaled temperature, with the same color code as the
corresponding finite EC NRG calculation. Note that
the pronounced deviations from universality at higher
temperature strongly depend on the ratio EC/D as well
as on the number of charge states included in the cal-
culation. While we naively expect a similar universality
criterion for 3CK, it should be noted that in this case
two different universal curves exist on approaching from
below (τ < τc) or above (τ > τc) because the critical
3CK fixed point conductance takes an intermediate
value (0 < G3CK < e2/h).

3CK-Fermi liquid crossover. We address the crosso-
ver from 3CK quantum criticality induced by an energy
splitting ∆E ∝ δVg of the ‘charge’ Kondo impurity. Is the

universal character of the crossover curve G̃3CK(Tco/T )
preserved over the full range of gate voltage detuning
δVg, like at 2CK (for 2CK see Eq. S4, derived for near
ballistic channels such that TK � EC/kB � Tco) ? If it is
the case, what is the generalized, periodic expression of
Tco versus arbitrary detuning δVg (for 2CK, see Eq. S7) ?
Here, we detail NRG calculations that establish the
experimental observation of a robust universality for
G̃3CK(Tco/T ), for any gate voltage detuning, as well as
the generalized expression for the crossover temperature
Tco ∝ sin5/3(πδVg/∆) (see Fig. 5C). First, the universal

form G̃3CK(T/Tco) shown in Fig. 5C was obtained in
the standard Kondo limit (retaining just two charge
states, and with Tco � TK). Second, we focus on the
more challenging numerical study of the relationship
between Tco and arbitrary δVg. This requires to directly
calculate the correct form of the full Coulomb peaks (see
Fig.1 and Fig. 5B,C), for which one must simulate the
effect of finite δVg over an entire charging period. This

involves including many charge states in the calculation
(as in the previous section), beyond the standard Kondo
model description restricted to the two lower charge
states. From analysis of the temperature-dependence
of the conductance for a given gate voltage δVg within
these NRG calculations, the crossover scale Tco(δVg)
could be extracted directly. For 3CK, we find a robust

power law Tco ∝ δV
5/3
g for small δVg, as expected from

conformal field theory. But for larger δVg, we find marked
deviations, which follow the generalized periodic form
Tco ∝ sin5/3(πδVg/∆), to within a numerical accuracy
better than 0.5%. This is reminiscent of the periodic
variation of the crossover scale in the 2CK model near
perfect transmission, as derived analytically by Matveev.
We note, however, that no such analytical predictions as
yet exist for 3CK, since the critical point is irreducibly
interacting. Interestingly, the data (both experimental
and numerical) over the entire range of δVg, when
rescaled in terms of this crossover scale Tco, fit to the
universal form G̃3CK(T/Tco) – analogous to the beha-
viour in the 2CK case. This novel finding extends and
strengthens the notion of universality in the 3CK system.
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