
HAL Id: cea-01867357
https://cea.hal.science/cea-01867357

Submitted on 4 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Cancellation of Transactions in Bitcoin-like
Blockchains

Önder Gürcan, Alejandro Ranchal Pedrosa, Sara Tucci-Piergiovanni

To cite this version:
Önder Gürcan, Alejandro Ranchal Pedrosa, Sara Tucci-Piergiovanni. On Cancellation of Transactions
in Bitcoin-like Blockchains. 26th International Conference on COOPERATIVE INFORMATION
SYSTEMS, Oct 2018, La Valette, Malta. �cea-01867357�

https://cea.hal.science/cea-01867357
https://hal.archives-ouvertes.fr

On Cancellation of Transactions

in Bitcoin-like Blockchains

Önder Gürcan1 and Alejandro Ranchal Pedrosa1,2,3

and Sara Tucci-Piergiovanni1

1 CEA LIST, Point Courrier 174, Gif-sur-Yvette, F-91191 France
2 LIP6 – Sorbonne Université, Paris, France

3 EIT Digital, Stockholm, Sweden
{Onder.Gurcan, Alejandro.Ranchal-Pedrosa, Sara.Tucci}@cea.fr

Abstract. Bitcoin-like blockchains do not envisage any specific mech-
anism to avoid unfairness for the users. Hence, unfair situations, like
impossibility of cancellation of transactions explicitly or having uncon-
firmed transactions, reduce the satisfaction of users dramatically, and, as
a result, they may leave the system entirely. Such a consequence would
impact significantly the security and the sustainability of the blockchain.
Based on this observation, in this paper, we focus on explicit cancella-
tion of transactions to improve the fairness for users. We propose a novel
scheme with which it is possible to cancel a transaction, whether it is
confirmed in a block or not, under certain conditions. We show that the
proposed scheme is superior to the existing workarounds and is imple-
mentable for Bitcoin-like blockchains.

1 Introduction

Bitcoin, introduced by Satoshi Nakamoto [13], is the core of decentralized cryp-
tocurrency systems. Participants following this protocol can create together a
distributed, economical, social and technical system where anyone can join and
leave. User participants create and broadcast transactions across the network for
being confirmed. Miner participants try to confirm them as a block by solving
a computational puzzle (mining). Successful miners broadcast their block to the
network to be chained to the blockchain, being rewarded for their success. In
addition, all participants validate all data (transactions and blocks) broadcast
across the network. It is a very attractive technology, since it maintains a public,
immutable and ordered log of transactions which guarantees an auditable ledger,
accessible by anyone.

The security and sustainability of blockchains, however, are not trivial and
require increased participation, since each participant validates the diffused data,
and keeps a replica of the entire blockchain. Participants consider worthwhile to
join and stay in the system over time only if they find it fair [7]. Miner partici-
pants find the system fair if they are able to create blocks as they expected, and
user participants find the system fair if they manage to cancel their transactions

and/or their transactions are confirmed as they expected. Considering miners,
several formal studies have been conducted so far [6, 5, 18, 15], concluding that
Bitcoin-like blockchains are not promoting participation of miners.

In [7], it has been for the first time shown that Bitcoin-like blockchains are
unfair for user participants. It has also been discussed that for the time being it is
not possible to explicitly cancel a transaction. There are only some workarounds
that a user can try in order to cancel its transaction. One of these workarounds
consist of trying to replace an old transaction with the new one with higher fees
(Replace-By-Fee (RBF)4). This way, it is possible to create another transaction
attempting to spend the same inputs but sending the money to the issuer itself.
This is a workaround for cancellation of unconfirmed transactions by implicitly
marking them to prevent their further use. However, once a transaction is con-
firmed, there is no workaround to reverse the situation. Since double spending is
not allowed, the miners will not put both transactions in their blocks. However,
there is no guarantee that the double spending transaction will arrive to the
miners before the confirmation of the first transaction inside a block. Since it is
like that, once a user decides to issue a transaction, s/he can never abandon this
decision. Considering that a user is a rational agent that aims to maximize its
utility by choosing to perform the actions with the optimal expected outcomes
[17], this implies the utility is going to be minus infinity [7]. In the decision
theory terms, this would mean assuming a user having an infinite interest on a
transaction, which is hard to assume in realistic settings.

To this end, we propose a novel scheme where it is possible to cancel a
transaction by rolling back its state whether it is confirmed in a block or not
under certain conditions. This way, the utility of user agents can be maximized
and, consequently, their willingness to leave the system decreases.

The contributions of this paper are as follows:

– A novel scheme based on a novel type of transaction that enables explicit
cancellation of transactions.

– The implementation of such mechanism in Bitcoin-like blockchains.

The remainder of this paper is organized as follows. Section 2 gives the related
work. Section 3 provides a formalization of the existing Bitcoin-like blockchain
data structure considered in this paper. Section 4 provides a high-level Bitcoin-
like blockchain protocol description as a rational multi-agent model where agents
are using the aforementioned data structure. The proposed scheme for cancella-
tion of transactions is presented in Section 5. Section 6 presents an analysis of
the proposed scheme and, finally, the discussion and conclusions are provided in
Sections 7 and 8, respectively.

4 https://en.bitcoin.it/wiki/Replace_by_fee, last access on 16 July 2018.

2 Related Work

This study is based on our previous study on user (nodes that do not participate
to the mining) fairness in blockchain systems [7]. The closest works in blockchain
systems to our study are [8, 4, 1, 12].

Herlihy and Moir in [8] study the user fairness and consider as an example the
original Tendermint5 [3, 9]. The authors discussed how processes with malicious
behaviour can violate fairness by choosing transactions [4] then they propose
modifications to the original Tendermint to make those violations detectable and
accountable. Helix [1] and HoneyBadgerBFT [12], on the other hand, attempt
to design consensus protocols focusing on assuring a degree of fairness among
the users by being resilient to transaction censorship where initially encrypted
transactions are included in blocks, and only after their order is finalized, the
transactions are revealed.

Another notion of fairness applied to the user side concerns the fair exchange
in the e-commerce context [2] which is extended to the Bitcoin-Like scenario in
[10] more in the sense that if there are two players performing an exchange then
either both of them get what they want or none of them.

3 Blockchain Model

We model a blockchain ledger as a dynamic, append-only tree B = {b0
#0←−−

b1
#1←−− ...

#l−1←−−− bl} where each block bi (0 < i ≤ l) contains a cryptographic
reference #i−1 to its previous block bi−1, l = |B| is the length of B, b0 is the
root block which is also called the genesis block, bl is the furthest block from the
genesis block which is referred to as the blockchain head, h = |bi| is the height
of bi (the length of the path from bi block to b0)6 and d = |B| − |bi| is the depth
of bi (the length of the path from bi block to bl).

A block bi−1 can have multiple children blocks, which causes the situation
called a fork. The main branch is then defined as the longest path l from any
block to b0 and is denoted as B? where |B?| = l and B? ⊆ B such that |Bx| <
|B?| for all branches Bx ⊂ B where Bx 6= B?. All branches other than the
main branch are called side branches. If at any time, there exists more than one
longest path with a length l (i.e. there are multiple heads), the blockchain ledger
B is said to be inconsistent and thus B? = ∅. This situation disappears when a
new block extends one of these side branches and creates B?. The blocks on the
other branches are discarded and referred as stale blocks.

3.1 Block Model

We denote a block as bi = 〈hi, Ψi〉 where hi is the block header and Ψi is the block
data. The block data Ψi contains a set of transactions organized as a Merkle tree

5 Jae Kwon and Ethan Buchman. Tendermint. https://tendermint.readthedocs.

io/en/master/specification.html, last access on 25 July 2018.
6 For each transaction tx inside bi, the block height |tx| is the equal to h also.

[11]. The set of transactions θm are selected by the miner from its memory pool.
Here it is important to note that, blocks have limited sizes7 and thus the total
size of the selected transactions can not exceed this limit8.

3.2 Transaction Model

We model a transaction as tx = 〈I,O〉 where I is a list of inputs (I 6= ∅) and O
is a list of outputs (O 6= ∅). Each input i ∈ I references to a previous unspent
output for spending it. Each output then stays as an Unspent Transaction Out-
put (UTXO) until an input spends it. If an output has already been spent by
an input, it cannot be spent again by another input (no double spending). We
model the outputs as oi = 〈si,¢oi〉 where si is a set of tuples si = {(ni, condsni

)}
that define the conditions condsni

for the receiver ni ∈ N to become owner of
the coin ¢oi (¢oi ≥ 0). The input that wants to spend the particular coin must
satisfy at least one list of conditions condsni , since an output (a coin) might be
spendable by two different receivers ni, nj ∈ N independently, although it will
ultimately be spent by only one, on a first-come, first-served basis. All inputs of
a transaction have to be spent in that transaction and the total input coins ¢I
has to be greater than or equal to the total output coins ¢O. The fee ftx of a
transaction tx is then modeled as ftx =¢I−¢O. Depending on the fee to be paid,
if there are still some coins left to be spent, the sender can add an output that
pays this remainder to itself.

4 Network Model

In this section we provide a high-level Bitcoin protocol description as a rational
multi-agent model9 where rational agents chooses their actions/behavior with
respect to their perceptions in order to maximize their utility.

We model the blockchain network as a dynamic directed graph G = (N,E)
where N denotes the dynamic rational agent (vertex) set, E denotes dynamic
directed link (edge) set. A link 〈n,m〉 ∈ E represents a directed link n → m
where n,m ∈ N , n is the owner of the link and n is the neighbor of m.

4.1 Agent Model

Each agent n ∈ N has a list of its neighbors Nn where Nn ⊆ N and ∀m ∈
Nn|〈n,m〉 ∈ E. An agent n can communicate one or more of its neighbors
by exchanging messages of the form 〈n,msg, d〉 where n is the sender, msg is
the type and d is the data contained. Using such messages, the (user) agents

7 The current maximum block size in Bitcoin is 1 MB. See https://bitcoin.org/en/

glossary/block-size-limit, last access on 13 July 2018.
8 Average block size for Bitcoin is given in https://blockchain.info/charts/

avg-block-size, last access on 13 July 2018.
9 This description is based on the system and rational models given in [7].

issue transactions (by creating transactions messages and diffusing them to the
network) to send coins to each other.

Each agent n has a memory pool Θn in which it keeps unconfirmed trans-
actions that have input transactions, an orphan pool Θ̄n in which they keep
unconfirmed transactions that have one or more missing input transactions (or-
phan transactions) and a blockchain ledger Bn in which they keep confirmed
transactions where Θn ∩ Θ̄n = ∅, Θn ∩Bn = ∅ and Θ̄n ∩Bn = ∅ always hold.

A (user) agent n can turn to be a miner agent if it chooses to create blocks
for confirming the transactions (mining) in its memory pool Θm, and n is said
to be a miner node if it started mining but has not stopped yet. The set of miner
agents is then denoted by M where M ⊆ N . In order to mine, n ∈ M has to
solve a cryptographic puzzle (i.e. Proof of Work) using its hashing power. The
successful miners are awarded by a fix amount of reward plus the totality of the
transaction fees.

4.2 Behavior Model

A rational agent behaves according to its local perceptions and local knowl-
edge, models uncertainty via expected values of variables or actions, and always
chooses to perform the actions with the optimal expected outcome (among all
feasible actions) for maximizing its utility [17]. Each rational agent n ∈ N has a
set of actions An and a utility function Un. Using An and Un, n uses a decision
process where it identifies the possible sequences of actions to execute. We call
these sequences as rational behaviors of n and denote as β. The objective of n
is to choose the behaviors that selfishly keep Un as high as possible.

We model the utility function of a rational agent n ∈ N as

Un = u0 +

k∑
i=1

U(βi) (1)

where u0 is the initial utility value, k ≥ 0 is the number of behaviors executed
so far and U(βi) is the utility value of the behavior βi. An agent n ∈ N finds
a system (i.e. the blockchain network) G fair, if the total satisfaction of its
expectations Un is above a certain degree τn where τn < u0 [7].

A utility value U(βi) can also be interpreted as the degree of satisfaction
experienced by the realization of βi. The utility value U(βi) is calculated as

U(βi) = R(βi)− C(βi) (2)

where R(βi) is the overall reward gained and C(βi) is the overall cost spent
for the execution of βi.

When an agent needs to choose a behavior for execution, it needs to calculate
its expected utility value. The expected value E(βi) depends on the probabilities
of the possible outcomes of the execution of βi. We model the expected value as

E(βi) =

m∑
j=1

(pj · U(βji))

=

m∑
j=1

(pj · (R(βji)− C(β
j
i)))

=

m∑
j=1

(pj · R(βji))−
m∑
j=1

(pj · C(βji))

= RE(βi)− CE(βi)

(3)

where m > 0 is the number of possible outcomes, U(βji) is the utility value

of the possible jth outcome βji , pj is the probability of this outcome such that∑m
j=1 pj = 1, and RE(βi) and CE(βi) are the expected gain and the expected

cost of βi respectively.
In the following, we list the user and miner agents behaviors important for

this study10 conforming to the above description. To formalize the behaviors,
we model a round based approach (like Garay et al. [6]) in which miner agents
start creating a new block with at the beginning of the round and a round ends
when a new block is successfully created by one of the miners. Both user and
miner agents make their decisions on a roundly basis. This round-based model
implicitly assumes that the block sent at at the end of the round is immediately
delivered by all participants, i.e. communication delay is negligible with respect
to block generation time.

Miner Agent Behaviors are as follows:

– Selecting transactions. When creating the next block, there is no required se-
lection strategy and no known way to make any particular strategy required,
but there are two transaction selection strategies popular among miners to
include them into their blocks: (1) selecting the transactions with the highest
fees to attempt to maximize the amount of fee income they can collect11.
Since the size of blocks is limited, miners could decide to deliberately exclude
an unconfirmed transaction that has already been received with a lower fee.
This behavior would obviously delay the confirmation time of that transac-
tion and affects its confirmation probability. (2) selecting the transactions
with highest amount of coins moved to attempt to maximize the market
value of the cryptocurrency [14]. Since the size of blocks is limited, miners
could decide to deliberately exclude an unconfirmed transaction that has al-
ready been received with a lower amount. In this study, it is assumed that
miners are using the 1st selection strategy and this behavior is modeled as
P (f) probability function.

10 A detailed list of behaviors, along with their pseudo-codes, can be found in [7].
11 https://en.bitcoin.it/wiki/Transaction_fees, last access on 20 July 2018.

User Agent Behaviors are as follows:

– Issuing transactions. We model issuing a transaction with a specific fee f
as with the action of the form issueTransaction(b,¢) where b ∈ N is the
receiver and ¢ is the amount of coins (Algorithm 1). For simplicity, it is
assumed that a users agent has an ordered set of fees {f1, f2, . . . , fk} to use. It
is also assumed that fi < fi+1 where 0 < i < k and 0 ≤ P (fi) < P (fi+1) ≤ 1
where P (f) is the probability of a transaction with a fee f to be confirmed.

– Leaving because of unfairness. If at any time, an agent a finds G unfair
(Ua ≤ τa), it may decide to leave G if from its points of view it will not be
possible to increase its overall utility above τa by calculating the expected
values of its possible future behaviors. In other words, a may decide to leave
G if Ua +

∑m
j=k E(βj) ≤ τa where βk, ..., βm are sufficiently enough desired

future behaviors of a.

Algorithm 1 The issueTransaction(b,¢) action of a user agent a where a wants
to send ¢ to b using an input set I by paying a fee f and returning the remaining
¢r to itself. Note that each output oi is required to be signed by the public key
pk of the receiver. After creation, the transaction tx is diffused to the neighbors
Na. For more details see [7].

1: action issueTransaction(b, ¢)
2: I ← selectUnspentTransactionOutputs(Ba, ¢)
3: o1 ← 〈(b, pkb),¢〉
4: f ← estimateFee(I, {o1})
5: ¢r ←¢I−¢−f
6: o2 ← 〈{a, pka},¢r〉
7: tx = 〈I, {o1, o2}〉
8: Θa ← Θa

⋃
{tx}

9: sendMessage(〈a,”inv”,H(tx)〉,Na)

In the next section, we present our proposed improvements to allow cancel-
lation of transactions.

5 Cancellation of Transactions

In this section, we improve the models given in Section 3 and Section 4 to enable
cancellation of transactions. We first make necessary definitions (Section 5.1),
then provide a new model for canceling transactions (Section 5.2) and finally
provide user agent behaviors for canceling transactions (Section 5.3).

5.1 Definition

We define cancellation of transactions as intentionally marking a transaction
by its issuer to prevent its further use, i.e. negating the effect of a transaction

by its issuer and thus creating a new state as if the issuer of the transaction
has never sent money to the recipients12. Here it should be emphasized that
such cancellation can only be performed by the issuer of the transaction, since
the receiver can always create another transaction that returns the money back
to the original account and sign it. However, such a case is not considered as
cancellation but as refunding.

5.2 Cancellation-enabled Transaction Model

In this subsection, we improve the transaction model given in Section 3.2 to
allow cancellation of transactions, as defined in Section 5.1.

We consider that a transaction can be canceled by its issuer before a prede-
fined cancellation timeout rc. Such a condition impacts directly in the required
amount of time to consider that a transaction is final13. We define a final trans-
action as a transaction that is not cancellable any more. However, it should
be noted that this definition is relative to a branch of the blockchain. If a side
branch that does not contain a transaction becomes longer than the current
main branch that contains that transaction, technically that transaction is said
to be rolled back, however this is different from canceling it.

Being tx = 〈I,O〉 a valid transaction issued by n ∈ N , a cancellation trans-
action txc is a transaction issued by n that gives ownership of the coins back to
the user n ∈ N that issued tx, although perhaps in a different address. In real-
ity, our proposed solution gives more freedom than this definition, as we discuss
further on.

5.3 Cancellation Behaviors of User Agents

Consider a user agent a ∈ N that issues a transaction tx at round r0 for sending
¢ coins to user node b ∈ N , with a fee of ftx, has an interest I on tx and a
waiting cost C(¢).

Assuming that tx is confirmed at most at round n, the cumulative expected
value E is:

E(β0) =

n∑
r=1

P (f)
r−1
· P (f) · (I − f)−

n∑
r=1

P (f)
r−1
· C(¢)r−1 (4)

where R(β0) = (I − f) and C(β0) = C(¢) (based on Equation 1 in [7]).
Now suppose user agent a decides to cancel tx at round r1 (r0 ≤ r1 < rc).

There are two possible user agent behaviors to cancel tx:

– β1: Canceling with cancellation transaction,

12 It is important to note that the fee paid to the miner is not considered.
13 This complies with previous usage of transactions that are

’non-final’:https://bitcoin.stackexchange.com/questions/9165/
whats-are-non-final-transactions, last access on 13 July 2018.

• Explicit cancellation mechanism for transactions that are even confirmed,
proposed by us in this paper (see Algorithm 2).

– β2: Canceling with a Replace-By-Fee (RBF) transaction
• Implicit cancellation mechanism for only unconfirmed transactions, pro-

posed by Bitcoin.

where user agents calculate the expected values considering the gain and the
cost of each behavior as in [7]. For simplicity, and without loss of generality, we
consider that fees are not changing per round.

β1: Canceling with cancellation transaction User creates a transaction txc
at round r1 with a fee ftxc, where ftxc has a value such that txc is supposed to
be appended to the blockchain in less than round rc + r, being r the round in
which tx hits the blockchain.

The expected gain RE(β1) of behavior β1 is then as follows:

RE(β1) =

(
n∑

r=r0

P (ftx)
r−1

P (ftx) ·
(r+rc∑
s=r+1

P (ftxc)
s−1−r

P (ftxc)
))

· (I − ftx − ftxc)

=

(
n∑
r=1

P (ftx)
r−1

P (ftx) ·
(rc∑
s=1

P (ftxc)
s−1

P (ftxc)
))

· (I − ftx − ftxc)

(5)

where R(β1) = (I − ftx − fftxc), and r and s (r0 < r ≤ s) are the rounds in
which tx and txc are appended to the blockchain, respectively. Note that, for r1 <
r, the transaction txc is orphan and thus it can be appended in the blockchain
only at r = s or r < s. Furthermore, if r1 > s, then the best option is to use
this behavior (since RBF transactions cannot be used anymore). Therefore, we
compare for cases where r0 ≤ r1 ≤ r. For further simplification, without loss of
generality, we use r0 = 1.

The series given in Equation 5 follow two nested geometric distributions X v
(ptx), Y v (ptxc), with probabilities of success ptx = P (ftx) and ptxc = P (ftxc).
Therefore, considering x = qtx = 1− ptx and y = qtxc = (1− ptxc), we have the
following solution to the series:

RE(β1) =

(
n∑
r=1

xr−1 ptx ·
(rc∑
s=1

ys−1ptxc

))
· (I − ftx − ftxc) (6)

We can extract all constant values into c = ptx · ptxc · (I − ftx − ftxc), and
consider the solution to

gβ1
(n) =

n∑
r=1

xr−1 ·
rc∑
s=1

ys−1 · c =

n−1∑
r=0

xr ·
rc−1∑
s=0

ys · c (7)

As such, notice that, applying basics of geometric convergent series, the inner
series

∑rc−1
s=0 ys converges to 1−yrc

(1−y) and thus the outer one:

gβ1
(n) =

(1− xn)(1− yrc)

(1− x)(1− y)
· (1− x)(1− y)(I − ftx − ftxc)

= (1− xn)(1− yrc)(I − ftx − ftxc)
(8)

And thus, being the expected gain when gβ1(n) tends to infinity:

lim
n→∞

gβ1(n) = (1− yrc)(I − ftx − ftxc) (9)

As for the cost resulted from the Time Value of Money (TVM)14, both trans-
actions use the same amount money, but we consider that the TVM remains for
as long as the transaction is not fully canceled. As such, the expected cost of
behavior CE(β1) of β1 is modeled as follows:

CE(β1) =

∞∑
r=1

P (ftx)
r−1
·
(r+rc∑
s=r1

P (ftxc)
s−1−r1 · C(¢tx)s−1

)
(10)

Where C(¢) represents the waiting cost derived of the time value of money,
per round. These series are identical to gβ1

(n) applying x = qtx, y = qtxc ·C(¢tx)
and the constant c by d = C(¢tx)r1 , therefore, we define hβ1

(n):

hβ1
(n) =

n∑
r=1

xr−1 ·
r+rc−r1∑
s=1

ys−1 · d =

n−1∑
r=0

xr ·
r+rc−r1−1∑

s=0

ys · d (11)

For which the result is analogously obtained as for gβ1
(n) (note that |xy| < 1 to

guarantee convergence):

hβ1(n) =
(1− xn

(1− y)(1− x)
− yrc−r1 · 1− (xy)n

(1− y)(1− xy)

)
· d (12)

And thus, again, being the cost when hβ1
(n) tends to infinity:

lim
n→∞

hβ1
(n) =

(1

(1− y)(1− x)
− yrc−r1 · 1

(1− y)(1− xy)

)
· d

=
(1

(1− qtxcC(¢tx))(1− qtx)
− (qtxcC(¢tx))rc−r1

· 1

(1− qtxcC(¢tx))(1− qtxqtxcC(¢tx))

)
· C(¢tx)r1

(13)

14 The concept that indicates that money available at the present time worths more
than the identical sum in the future due to its potential earning capacity.

Algorithm 2 The issueCancellableTransaction(b, ¢, rc) and
issueCancellationTransaction(tx) actions of a user agent a. The former
contains the necessary constraints (e.g., txc is only valid if current block-height
|Ba| is less or equal than |tx|+ rc) for the latter action to work.

1: action issueCancellableTransaction(b, ¢, rc)
2: I ← selectUnspentTransactionOutputs(Ba, ¢)
3: o1 ← 〈{(b, skb), (a, ska and |Ba| ≤ |tx|+ rc)},¢〉
4: f ← estimateFee(I, ftx)
5: ¢r ←¢I−¢−f
6: o2 ← 〈{a, pka},¢r〉
7: tx = 〈I, {o1, o2}〉
8: Θa ← Θa

⋃
{tx}

9: sendMessage(〈a,”inv”,H(tx)〉,Na)
10:
11: action issueCancellationTransaction(tx)
12: i1 ← tx.o1
13: o1 ← 〈(a, pka),¢〉
14: f ← estimateFee(i1, ftx)
15: ¢r ←¢I−¢−f
16: txc = 〈i1, o1〉
17: Θa ← Θa

⋃
{txc}

18: sendMessage(〈a,”inv”,H(txc)〉,Na)

β2: Canceling with a Replace-By-Fee (RBF) transaction User agent
issues a transaction txr with a greater fee than the fee of tx, hoping to replace
it before tx hits the blockchain (i.e. rc = 0). Such implicitly tells miner agents
to ignore tx. In this case, we model the reward as follows:

RE(β2) =

(∞∑
r=r0

P (ftx)
r−1

P (ftx) ·
(r∑
s=r1

P (ftxr)
s−1−r1

P (ftxr)
))
· (I − ftxr)

(14)

and its expected cost:

CE(β2) =

∞∑
r=r0

P (ftx)
r−1
·
(r∑
s=r1

P (ftxr)
s−1−r1 · C(¢tx)s−1

)
(15)

For both, the process is analogous to extract gβ2
(n) and hβ2

(n), obtaining:

gβ2
(n) =

(1− xn

1− x
− yr1 · 1− (xy)n

1− xy

)
· (1− x)(I − ftxr),

with x = qtx, y = qtxr

(16)

lim
n→∞

gβ2
(n) =

(1

1− qtx
− qr1txr ·

1

1− qtxqtxr

)
· (1− qtx)(I − ftxr) (17)

and

hβ2(n) =
(1− xn

(1− y)(1− x)
− yr1 · 1− (xy)n

(1− y)(1− xy)

)
· d,

with x = qtx, y = qtxr · C(¢tx), d = C(¢tx)r1 , |xy| < 1

(18)

limn→∞hβ2
(n) =

(1

(1− y)(1− x)
− yr1 · 1

(1− y)(1− xy)

)
· d

=
(1

(1− qtxr · C(¢tx))(1− qtx)
− (qtxr · C(¢tx))r1

· 1

(1− qtxr · C(¢tx))(1− qtxqtxr · C(¢tx))

)
· C(¢tx)r1

(19)

In the next section, we will compare β1 and β2 by quantitatively analysing
the equations formulated in this section.

6 Analyses and Results

We analyzed the rational behaviors of user agents proposed in Section 5.3 using
gnuplot 5.2.415. It is assumed that the initial utility values u0 of all agents are
the same and high enough from the threshold τ . In the following, we provide
results of these analyses employing synthetic data.

Recalling Equation (4), it is clear that, depending on the values of P (f) and
C(¢), the expected value E may or may not converge to −∞. For the geometric
distributions of RE(β1) and RE(β2), we can see that they always converge, since
all three P (ftx), P (ftxc)P (ftxr) are positive, and strictly less than 1. For the
expected costs, CE(β1) converges to the value listed in equation(13) if and only
if |qtxc ·C(¢tx)| < 1. Analogously, CE(β2) converges to the value of equation (19)
if and only if |qtxr · C(¢tx)| < 1.

Obviously, many values will have a strong impact in the results. Specifically,
the correlation between the fees of a transaction ftx and how much they increase
the probability of such transaction to be included in each round P (ftx). There
are some online results on the average fees in Bitcoin and the average amount of
blocks (rounds) a transaction takes with each fee 16. Again, it is easy to see that
the average amount of blocks is the expected value of a geometric distribution
of which the probability p is the one we are looking for, and, therefore, one can
obtain this value solving the series. However, this is out of the scope of this
document. Furthermore, we show further on that the cancellation transaction
behavior can be better even under optimistic values for this probability, in which
a small increase of the fee ftx incurs in a big increase in the probability P (ftx).

Figure 1 left shows the gain, cost, and expected values E of both behaviors,
as functions on the number of rounds, and fixing the rest of the variables. Notice

15 http://www.gnuplot.info/, last access on 24 July 2018.
16 https://bitcoinfees.earn.com/, last access on 24 July 2018.

that here we consider that 20 Satoshis give a probability of P (20) = 0.5, while
P (50) = 0.6. In this case, we can see how our approach is better, regardless of
the round. To the right, we compare our approach with different assumptions on
the increase required in the fee to increase the probability of a transaction being
included. We can see how our approach is not always the best, and for example
when only 10 Satoshis are required to increase the probability to P (30) = 0.6,
using a Replace-By-Fee transaction is a better behavior.

	0

	10

	20

	30

	40

	50

	60

	2 	4 	6 	8 	10 	12 	14 	16 	18 	20

Ex
pe

ct
ed

	V
al

ue
	(S

at
os

hi
)

round

I=100,	C(c)=1.9,	r1=1,	ftx=20,	ftxc=20,	rc=6,	ptx	=	0.5,	ptxc=0.5,	ftxr=50,	ptxr=0.6

gΒ1(n)
hΒ1(n)
eΒ1(n)
gΒ2(n)
hΒ2(n)
eΒ2(n)

(a)

	0

	10

	20

	30

	40

	50

	2 	4 	6 	8 	10 	12 	14 	16 	18 	20

Ex
pe

ct
ed

	V
al

ue
	(S

at
os

hi
)

round

I=100,	C(c)=1.9,	r1=1,	ftx=20,	ftxc=20,	rc=6,	ptx	=	0.5,	ptxc=0.5,	ptxr=0.6

eΒ1(n)
eΒ2(n),	ftxr=30
eΒ2(n),	ftxr=40
eΒ2(n),	ftxr=50

(b)

Fig. 1: Expected reward g, cost h, and value functions e as functions on the
number of rounds, comparing both behaviors (a). Also, comparison of different
assumptions on the relationship between ftx and P (ftx) for canceling with can-
cellation transaction behavior β1 and canceling with a RBF transaction behavior
β2 (b).

One can note that another important variable fixed in figure 1 is r1, that is,
the round at which the user decides he wants to cancel the transaction tx, issued
at round 1. In figure 1, we assume r1 = 1. However, it is important to consider
that the user may want to cancel the transaction later than when they issued it.
Finally, rc can also have an impact in the results, since it increases the time in
which a transaction can be cancellable by the cancellation transaction behavior
β1, but it also increases the cost of such behavior, since it can lead to a greater
waiting time. In the following, we study how the results vary depending on r1
and rc.

For such cases where the series converge, we consider the values in rounds in
the infinite (that is equations (9, 13, 17, 19)), and tweak other values. Firstly, it
is easy to note that behavior β1 also converges for rc →∞:

lim
n→∞,rc→∞

E(β1)(n, rc) = lim
n→∞,rc→∞

gβ1
(n, rc)− hβ1

(n, rc)

= (I − ftx − ftxc)−
C(¢tx)r1

(1− qtxcC(¢tx))(1− qtx)

(20)

While limn→∞,rc→∞ E(β2)(n) does not depend on rc by construction. It is
possible to see, however, how the gain decreases for β2 when r1 increases, while
in β1 this is irrelevant. Nevertheless, the cost increases with rc for β1, since this
leads to higher waiting cost.

Figure 2 left compares several values depending on r1, when the amount of
rounds n tends to infinity. One can see how, for rc = 6, it is a better approach to
use β1 for r1 > 4. Furthermore, even if rc tends to infinity, and being optimistic in
terms on the correlation between fees and probability of hitting the blockchain,
β1 seems to be a better behavior for r1 > 5. Nevertheless, if one decides within
the first rounds to cancel the transaction, then it is better to use behavior β2 and
issue a Replace-By-Fee transaction. Recall, however, that figure 2 plots values
for n → ∞. For constant number of rounds, with r1 = 1, figure 1 already
showed that β2 is only a better approach when one can be optimistic about the
probability of a transaction with a slightly higher fee hitting the blockchain.

-150

-100

-50

	0

	50

	1 	2 	3 	4 	5 	6

Ex
pe
ct
ed
	V
al
ue
	(S
at
os
hi
)

r1

I=100,	C(c)=1.9,	ftx=20,	ptx	=	0.5,	ptxc=0.5,	n	->	infty

eΒ1(r1),	ftxc=20,	ptxc=0.5,	rc	->	inftyeΒ1(r1),	ftxc=20,	ptxc=0.5,	rc=6eΒ1(r1),	ftxc=30,	ptxc=0.6,	rc	->	inftyeΒ1(r1),	ftxc=60,	ptxc=0.7,	rc	->	inftyeΒ2(r1),	ftxr=30,	ptxr=0.6,	rc	->	inftyeΒ2(r1),	ftxr=60,	ptxr=0.7,	rc	->	infty

(a)

-150

-100

-50

	0

	50

	1 	2 	3 	4 	5 	6

Ex
pe
ct
ed
	V
al
ue
	(S
at
os
hi
)

r1

I=100,	C(c)=1.9,	ftx=20,	ptx	=	0.5,	ptxc=0.5,	n	->	infty

eΒ1(r1),	ftxc=20,	ptxc=0.5,	rc	->	inftyeΒ1(r1),	ftxc=20,	ptxc=0.5,	rc=6eΒ1(r1),	ftxc=60,	ptxc=0.6,	rc	->	inftyeΒ1(r1),	ftxc=120,	ptxc=0.7,	rc	->	inftyeΒ2(r1),	ftxr=60,	ptxr=0.6,	rc	->	inftyeΒ2(r1),	ftxr=120,	ptxr=0.7,	rc	->	infty

(b)

Fig. 2: Expected values for canceling with cancellation transaction behavior β1
and canceling with a RBF transaction behavior β2 as a function on r1, with
different values for rc, ftx and P (ftx) where I = 100. To the left, optimistic
values for P (ftx) (better for β2).

As a result, we suggest always creating the initial transaction tx as if it
can be canceled by a cancellation transaction txc. However, depending on the
conditions, the user may choose to issue a Replace-by-Fee transaction txr as
well as trying to cancel tx. Nevertheless, a transaction that can be canceled in rc
rounds leaves this transaction as non-final for the first rc, increasing the block-
depth required for a receiver of coins to consider full ownership of such coins.
The receiver can however move the coins to a new UTXO. Besides, txr is more
flexible and may work even if tx is prepared for being canceled by txc.

In general, it seems as a good approach to firstly issue an RBF transaction,
and after round r1 issue a cancellable transaction such that ftxc + ftx = ftxr.
Otherwise, miners will always choose the one that gives higher reward. It is
possible that the left side should be greater, ftxc + ftx > ftxr, to account for

more space used by two transactions, in such a way that the reward for the miner
equalizes.

7 Discussion

In this section, we discuss the proposed mechanism, and the results obtained
from several perspectives: fairness, security and implementability.

7.1 Fairness

To the best of our knowledge, this is the first study focusing on providing an
explicit mechanism for cancellation of transactions to improve the fairness for
users. In other words, the proposed mechanism is a first step towards guaran-
teeing fairness for users, given that fairness is the overall satisfaction of rational
agents. Moreover, we showed that the users as rational agents have no incentive
to choose the Replace-by-Fee behavior (β2) since its cancellation timeout is much
less shorter. As a result, it can be said that the proposed mechanism is superior
to the Replace-by-Fee workaround provided by the existing protocol.

7.2 Security

To avoid double-spending attacks and inconsistencies, blockchains need a se-
lection strategy based on a predefined criteria. Bitcoin uses the longest chain
strategy for selecting the main branch. Moreover, there can be situations where
the network is partitioned for some time and then reconnects, with17 or without
any malicious participant. The question is: which branch should be followed in
case the cancellation transaction exists only in one branch, and there is another
transaction that is spending the transaction we wish to cancel in another branch?
Should we throw away one or more branches that creates such inconsistencies?
Which branch should be followed?

In our opinion, pruning any chain (i.e. reducing the length of the chain)
is dangerous and weakens its security level, which is directly proportional to
the work that must be done to replace such a chain and allow an attacker to
target the chain more easily. Thus, we think that the blockchain should remain
append-only. Furthermore, we claim that the existing longest chain rule should
remain the same. Even though with this setting the cancellation might be at
times ignored, the security of the blockchain is more important than what the
user desires. Furthermore, an upgrade to support cancellation of transactions
should be backward compatible, not to require a hard-fork for existing Bitcoin-
like blockchains.

17 If there is a malicious participant that is partitioning the network, this is called a
man-in-the-middle-attack.

7.3 Implementability

As shown in Section 6, the proposed cancellation mechanism is feasible. This
section shows its implementability in Bitcoin-like blockchains. Many such block-
chains (Bitcoin, Bitcoin Cash, Litecoin, etc.) already give support to a similar
feature as the one described in this document, motivated by the implementation
of 2nd-layers in their network, such as the Lightning Network [16].

Bitcoin, for instance, provides support for lightning, thanks to the imple-
mentation of Bitcoin Improvement Proposal (BIP) 11218 in the system. BIP
112 implements the opcode19 OP CHECKSEQUENCEVERIFY (typically referred to as
OP CSV), that prevents a non-final transaction from being selected for inclusion
in a block until the corresponding input has reached the specified age, as measured
in block-height or block-time. In this case, a non-final transaction refers to the
fact that it has not reached the specified age. As such, BIP 112 already offers
functionality of giving preference to some specific node to spend an UTXO.

Algorithm 3 Node a sends coins to node b in a transaction.

1: IF

2: <pubkey of node b> CHECKSIG

3: ELSE

4: "30d" CHECKSEQUENCEVERIFY DROP

5: <pubkey of node a> CHECKSIG

6: ENDIF

For example, node a can pay node b in a transaction with the redeem script
given in Algorithm 3. In this case, node b can spend the output at any time, while
node a needs to wait 30 days. After such time, any of the two can independently
spend the output. However, we would like the inverse functionality where node
a can still cancel the issued transaction in the first 30 days, if node b has not
spent this output (Algorithm 4). Before 30 days, both node a and node b can
independently spend the output. After 30 days, only node b can spend it.

As illustrated in BIP 6820, and by James Prestwich21, OP CSV compares the
top stack item to the input’s sequence no field. Thus, the top stack item is parsed
just as the sequence no field for nSequence (the input-level relative time-lock).
That is, it interprets 18 of the 32 bits (the remaining 14 bits are still undefined).
There are two special flags: the disable and the type flag. The disable flag (bit
31, the 32nd least significant bit) specifies that logs are disabled. The type flag

18 https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki, last ac-
cess on 28 August 2018.

19 Operation codes from the Bitcoin Script language which push data or perform func-
tions within a pubkey script or signature script.

20 https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki, last ac-
cess on 28 August 2018.

21 https://prestwi.ch/bitcoin-time-locks/, last access on 28 August 2018.

Algorithm 4 Node a cancels the transaction.

1: IF

2: <pubkey of node b> CHECKSIG

3: ELSE

4: "-30d" CHECKSEQUENCEVERIFY DROP

5: <pubkey of node a> CHECKSIG

6: ENDIF

(bit 22, the 23rd least significant bit) specifies the type of information: if set,
the remaining 16 least significant bits are interpreted in units of 512 seconds
granularity, if not, they are interpreted as block-height. The flag (1 ≤≤ 22)
is the highest order bit in a 3-byte signed integer for use in bitcoin scripts as
a 3-byte PUSHDATA with OP CHECKSEQUENCEVERIFY (BIP 112), as detailed in the
specification of BIP 68.

At the time of writing, using OP CSV with value 0x00400001 and 0x00C00001

applies the same timelock: a relative locktime of 512 seconds. Moreover, the
specification says OP CSV “errors if the top stack item is less than 0”. We propose,
however, to consider the sign bit as the sign flag, and interpret instead this
negative value exactly as detailed in the aforementioned example.

OP CSV is useful for considering a relative time from the inclusion of the
transaction in the blockchain. If, instead, one would like to specify an ab-
solute time, or a block-height, this is possible using OP CHECKLOCKTIMEVERIFY

(OP CLTV) (see BIP 6522). Analogously, we propose the same consideration for
OP CLTV. These two simple backward compatible features can be implemented
after proposing them in a new BIP. Also, for simplicity, and to comply with the
current definition of OP CSV and OP CLTV, we propose referring to each upgrade
as OP CHECKSEQUENCEVERIFYINVERSE (OP CSVI) and OP CHECKLOCKTIMEVERIFYINVERSE

(OP CLTVI).
As such, we show that it is possible, and convenient, to implement the re-

quired opcodes to give support for cancellation transactions in Bitcoin, making
use of the sign bit, that was useless until now, although it was respected as the
sign bit. We do this in a backward compatible way.

8 Conclusions

In this paper, we proposed a novel explicit transaction cancellation mechanism
that cancels issued transactions under certain conditions. Such a mechanism
increases the fairness for the users and thus increases the security and sustain-
ability of the blockchain system. To avoid security issues and related complex
analyses, the proposed mechanism sticks as much as possible to the original Bit-
coin protocol, introducing mechanisms to improve the degree of fairness of the

22 https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki, last ac-
cess on 28 August 2018.

system. To this end, we showed the implementation of our approach for Bitcoin,
and consider also its implementability for Bitcoin-like blockchains.

References

1. Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich, O.,
Tamari, R., Yakira, D.: Helix: A scalable and fair consensus algorithm. Tech.
rep., Orbs Research (2018), https://orbs.com/wp-content/uploads/2018/07/

Helix-Consensus-Paper-V1.2-1.pdf
2. Asokan, N.: Fairness in electronic commerce (1998)
3. Buchman, E.: Tendermint: Byzantine Fault Tolerance in the Age of Blockchains.

Ph.D. thesis, University of Guelph (6 2016)
4. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability

of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 154–167. ACM (2016)

5. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Int.
Conf. on Fin. Cryp. and Data Security. pp. 436–454. Springer (2014)

6. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis and
Applications, pp. 281–310. Springer Berlin Heidelberg, Berlin, Heidelberg (2015),
http://dx.doi.org/10.1007/978-3-662-46803-6_10

7. Gürcan, Ö., Del Pozzo, A., Tucci-Piergiovanni, S.: On the bitcoin limitations to
deliver fairness to users. In: Panetto, H., Debruyne, C., Gaaloul, W., Papazoglou,
M., Paschke, A., Ardagna, C.A., Meersman, R. (eds.) On the Move to Meaningful
Internet Systems. OTM 2017 Conferences. pp. 589–606. Springer Int. Publishing,
Cham (2017)

8. Herlihy, M., Moir, M.: Enhancing accountability and trust in distributed ledgers.
CoRR abs/1606.07490 (2016), http://arxiv.org/abs/1606.07490

9. Kwon, J.: Tendermint: Consensus without mining. Tech. rep., Tendermint (2014),
https://tendermint.com/static/docs/tendermint.pdf

10. Liu, J., Li, W., Karame, G.O., Asokan, N.: Towards fairness of cryptocurrency
payments. arXiv preprint arXiv:1609.07256 (2016)

11. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function,
pp. 369–378. Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

12. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft pro-
tocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 31–42. CCS ’16, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2976749.2978399

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), https://

bitcoin.org/bitcoin.pdf
14. Pappalardo, G., di Matteo, T., Caldarelli, G., Aste, T.: Blockchain inefficiency in

the bitcoin peers network. CoRR abs/1704.01414 (2017), http://arxiv.org/abs/
1704.01414

15. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. IACR Cryptology ePrint Archive 2016, 454 (2016)

16. Poon, J., Dryja, T.: The bitcoin lightning network. i pp. 1–22 (2015)
17. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3. internat.

ed.). Pearson Education (2010)
18. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. In: International Conference on Financial Cryptography and Data Security.
pp. 515–532. Springer (2016)

