
HAL Id: cea-01865050
https://cea.hal.science/cea-01865050

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Filter bank learning for signal classification
Maxime Sangnier, Jérôme Gauthier, A. Rakotomamonjy

To cite this version:
Maxime Sangnier, Jérôme Gauthier, A. Rakotomamonjy. Filter bank learning for signal classification.
Signal Processing, 2015, 113, pp.124 - 137. �10.1016/j.sigpro.2014.12.028�. �cea-01865050�

https://cea.hal.science/cea-01865050
https://hal.archives-ouvertes.fr


Filter Bank Learning for Signal Classification

M. Sangniera,∗, J. Gauthiera, A. Rakotomamonjyb

aCEA, LIST, 91191 Gif-sur-Yvette CEDEX, France
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Abstract

This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing
a data-driven filter bank and by pooling the time-frequency representation to provide time-invariant features. For this
purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It
is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel
learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose
an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical
experiments on both a brain-computer interface dataset and a scene classification problem prove empirically the appeal
of our method.
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1. Introduction

The problem of signal classification is now becoming
more and more ubiquitous, ranging from phoneme or en-
vironmental signal to biomedical signal classification. As
classifiers are often built on a geometric interpretation
(the way some points are arranged in a space), the usual
trend to classify signals is first to extract features from
the signals, and then to feed the classifier with them.
The classifier can thus learn an optimal decision function
based on features extracted from some training examples.
Such features are diverse according to the given classifi-
cation problem: physical perceptions (loudness), statisti-
cal moments (covariance matrix), spectral characterization
(Fourier transform), Time-Frequency (TF) representations
(spectrograms, wavelet decompositions) and so on. In this
scope, features are chosen so as to characterize similari-
ties within a class and disparities between classes to be
distinguished. This property of the features, called dis-
crimination, obviously affects the classifier accuracy: the
more discriminative the features are, the better the classi-
fier performs. Yet, discrimination power may be a subjec-
tive concept, relative to the classifier. Contrarily to this
remark, the features extractor is usually arbitrarily cho-
sen and considered independently from the choice of the
pattern recognition algorithm, so much that there is no
guarantee of any classification efficiency.

Finding discriminative features with respect to the cho-
sen classifier became a field of interest in the 1990’s. It ap-
peared in different areas for different categories of features
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(e.g. [1, 2, 3]). Particularly in signal classification, data-
driven feature extraction algorithms have been especially
designed for TF analysis. This choice is explained by the
study of real-world signals, which are by nature transient
(in most cases). For this kind of signals, keeping informa-
tion in both time and frequency is of major interest. The
bulk of the scientific contributions, concerning automated
learning of a discriminative TF transform, can roughly be
clustered in four fields: wavelet [4, 5, 6] and Cohen dis-
tribution [7, 8] design, dictionary [9, 10, 11] and Filter
Banks (FBs) [12, 13] learning. The previous works exhibit
different aspects of designing a data-driven TF transform:
atomic (wavelets, dictionaries) vs bilinear decompositions
(Cohen transform), convolution (filters) vs matrix prod-
uct (dictionaries), splitting decompositions to feed differ-
ent modules vs keeping the resulting TF representation all
at once, genetic vs gradient-based optimization, misclas-
sification rate vs risk minimization and so on. Yet, most
of these references share one feature: the classifier used is
based on Support Vector Machines (SVMs).

As for us, we are interested in the convolution – all at
once approach, meaning that we will consider filters rather
than dictionaries and a single SVM instead of a complex
classifier (our motivation being the sake of simplicity and
computational efficiency). Concerning signal processing,
this brings us to focus on FBs. This choice is motivated by
the ability of FBs to model a wide class of atomic decompo-
sitions (for instance the cosine, the short-time Fourier and
the wavelet transforms). This ability to analyze signals in
the TF domain is particularly suited for transient signals
and has thus motivated a couple of decades of intensive
studies about FBs from the viewpoint of the reconstructive
approach (with applications in denoising and compression)

Preprint submitted to Elsevier March 4, 2015



[14, 15, 16]. As far as we are concerned, FBs reappeared
recently to be adequate for discriminative feature extrac-
tion [17, 18, 19]. Another motivation for choosing FBs is
that they enable to keep a strong link with the signal pro-
cessing approach, as much as with the machine learning
part, and thus to provide experts with interpretable signal
processing tools. Indeed the very definition of FBs, which
are arrays of filters [14], ensures a direct TF interpretation.

One more point about the classification process has
to be noticed: the TF representation of a signal is rarely
considered in itself as a classification feature, for TF rep-
resentations highly depend on random time shifts. This
property is damaging for the recognition of patterns within
the signals. This is one of the drawbacks resulting from
keeping information both in frequency and time. As a con-
sequence, final classification features are usually obtained
by performing a sort of aggregation of the data obtained
from the TF transform. This operation is called pooling
[12] and will be detailed further in the manuscript. In the
end, the processing chain is successively made up of a TF
representation, a pooling function and a classifier. Our ob-
jective, in this work is thus to propose a novel methodology
to jointly learn the features obtained from an FB together
with an SVM classifier, thanks to solving an optimization
problem.

In a learning task posed as an optimization problem,
the cost function and the solving method are part of the
central concerns. Very often and aside from the dictio-
nary learning, the answers boil down to a gradient-based
optimization or to an evolutionary algorithm minimizing
the misclassification rate on a random evaluation dataset
[12, 5, 13]. In this work, we prefer to adopt a Structural
Risk Minimization approach [20]. This is the one used
in Support Vector Machines. The main benefits of this
approach are to be based on convex optimization (rather
than non-convex and thus difficult) and to consider a reg-
ularized measure of the misclassification rate, that tends
to prevent overfitting.

This work extends the results given in a previous con-
ference paper [21]. Our contributions to the state of the
art stand on the following points:

• we introduce a novel framework which casts the prob-
lem of jointly learning features extracted from an FB
and a large-margin classifier (SVM);

• we show that by restricting in some sense the set of
possible FBs, the optimization problem we have to
solve boils down to a generalized version of a Multi-
ple Kernel Learning problem (MKL);

• because the optimization problem we are interested
in involves an infinite number of possible filters, we
extend existing non-linear MKL algorithms to let
them handle such a situation;

• interestingly, our framework allows us to also learn
the pooling function which builds the final features

from the TF representation obtained by the FB. As
far as we know, this is one of the first successful
attempt at learning the pooling function.

The paper is organized as follows: considering some
notations (Table 1, page 2), we first describe the problem
of FB learning, after reminding the basis of FBs and giving
details of some interesting pooling functions. Then, we ex-
pose the restricted framework in which our work holds and
describe the proposed algorithm, which handles an infinite
amount of filters. We also give some insights concerning
a way to learn the pooling function. As a third part, this
paper discusses some details of the proposed algorithm.
Then, numerical results are exposed in order to back up
the appeal of this approach. Binary classification prob-
lems based on three different datasets are tackled: a built
toy dataset, Brain-Computer Interface (BCI) signals and
environmental audio scenes. Eventually, the last section
deals with the comparison of our approach with previous
works, including Infinite Kernel Learning (IKL), Wavelet
Kernel Learning (WKL) and Convolutional Neural Net-
works (CNNs).

Symbol Definition
ı Imaginary unit.
1 Indicator vector (its size depends on the

context).
4,< Pointwise inequalities.
| · | Pointwise modulus.
◦ Depending on the context, the Hadamard

product between two matrices or composi-
tion between two functions.

? Convolution.
X Set of signals: X = ∪∞n=1Kn.
K Divising ring (either R or C).
K+ Positive semidefinite matrix.

Table 1: Definitions.

2. Filtering to improve signal recognition

This section introduces the learning framework we are
interested in. After reviewing briefly FBs, we highlight
the several manners, we use in this study, to pool a TF
representation and then describe the learning problem we
want to address.

2.1. Filter bank: definitions and notations

FBs are models of linear transformations that embody
a large class of signal processing transforms, among which
the discrete Fourier, cosine and wavelet transforms. Con-
ceptually, an FB is an array of filters followed by downsam-
pling (or decimation) operations (Figure 1) [22]. A quite
famous example is the Fast Wavelet Transform [23], which
is implemented as a multistage FB (i.e. as a cascade of
FBs). It can yet be redrawn as a one-stage bank of l + 1
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filters (with l the scale of the discrete wavelet transform),
as shown by the example in Figure 2.

hd

h2

h1x

↓ Nd

↓ N2

↓ N1
...
...

...

= u(x)

Figure 1: Diagram of a d-channel filter bank u.
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(a) Filter h1 (N1 = 8).
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(b) Filter h2 (N2 = 8).
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(c) Filter h3 (N3 = 4).
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(d) Filter h4 (N4 = 2).

Figure 2: Filter bank of a Haar wavelet transform at scale 3 (in the
Fourier domain).

Mathematically, an FB u : X → X d is a linear ap-
plication defined by a number d of linear filters and of
decimation factors {Nl}1≤l≤d. In this study, the filters
are parametrized by their finite Impulse Responses (IRs)
{hl}1≤l≤d of respective lengths {ql}1≤l≤d. Consequently,
we also note u = (hl, Nl)1≤l≤d to express this parametriza-
tion. A formal definition of u is:

∀x ∈ Kn :

u(x)
def
= {↓ Nl [hl ? x]}1≤l≤d
def
=

{
↓ Nl

[(∑ql
j=1 hl(j)x̃(i− j + 1)

)
1≤i≤n

]}
1≤l≤d

,

(1)
where x̃ is the signal x extended to the past (through
periodization, symmetrization or zero-padding) and ↓ Nl
is the downsampling operator:

∀x ∈ Kn : ↓ N [x]
def
= (x(1 +N(j − 1)))1≤j≤b nN c .

Note that with the definition (1), u(x) is a set of filtered
and downsampled signals, which embodies a TF represen-
tation.

FBs have been extensively studied through the polyphase
framework for the purpose of denoising and compression
[14]. More precisely, given an invertible FB similar to the
one in Figure 1 (the analysis part), there may be several
ways to design an inverse FB (the synthesis part) that re-
constructs the signal after processing it [16]. However, the
work presented here tackles the problem of signal classifi-
cation after the analysis, without taking into account the
inversion and even the invertibility of the FB.

TF analysis came up because of the Fourier transform
inability to analyze time evolution. This is particularly
useful for transient signals, which present different special
frequency features according to the time. Nevertheless,
the time may also be a source of intraclass variability if
for instance the signals are not correctly aligned. Con-
sequently, the next section details how to deal with that
potential drawback.

2.2. Pooling functions

Signal classification usually needs some elaborate fea-
tures based on local behaviors. This is mostly due to intr-
aclass discrepancies, which often require nonlinearities to
be compensated. This is the role of the pooling function
ρ, we mentioned previously. The main pitfall the pooling
function is aimed at overcoming is the random time shift
inherent to real world signals acquisition. That is the pet
hate shared by all the pooling functions used in this study
(Table 2). Secondarily, pooling functions are also aimed
at reducing the dimension of features in order to curb the
curse of dimensionality.

Name Definition of ρ(x)

`p-norm
(∑n

j=1 |x(j)|p
) 1
p

Local-`p-norm

((∑iw
j=(i−1)w+1 |x(j)|p

) 1
p

)b nw c
i=1

Max

(
max

(i−1)w+1≤j≤iw
x(j)

)b nw c
i=1

Mean

(
mean

(i−1)w+1≤j≤iw
x(j)

)b nw c
i=1

Scattering |x| ? g

Table 2: Pooling functions. Parameters: p ∈ N, w ∈ N, g a Gaussian
lowpass filter.

The most widespread pooling function may be the `p-
norm (computed over the whole filtered signal), particu-
larly with p = 2. This method is quite efficient against
random time shifts and is thus often used in signal classi-
fication for the resulting information only depends on the
frequency, not on the time evolution of the signal. How-
ever that lack of time resolution is also the main drawback
of this first pooling function. A way to overcome it is to
compute local invariant features, for instance by partition-
ing the input signal into a set of non-overlapping segments
and, for each such sub-signal, outputting the maximum or
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the mean value (Max and Mean pooling) These methods
have been first introduced for CNNs [12] in order to absorb
space shifts while keeping a trade-off with the space reso-
lution. Finally, the scattering pooling, recently introduced
by [24], has been designed for complex valued signals. The
time shift invariance comes from both the modulus and the
averaging operations. It is shown in [25] that this kind of
pooling is linked with the logarithmic aggregation of the
frequencies used to compute the Mel-Frequency Cepstral
Coefficients (MFCCs).

In the Table 2, definitions are given for a single signal.
Yet, these definitions are easily spread out to a set of sig-
nals (for instance a TF representation) through ρ : X d →
X d defined by:

ρ
(
{xl}dl=1

) def
= {ρ(xl)}dl=1 .

For instance, when applied to a TF representation of a
signal, the `2-norm provides the marginal distribution of
the energy for the given frequency bands.

The frequency features thus obtained (by filtering and
pooling) can be discriminative if they are well designed.
This brings out the central theme of the work presented
in this paper: designing a TF transform that provides the
classifier with the most discriminative transient features,
in order to improve signal classification accuracy.

2.3. Filter bank learning

In the forthcoming sections, we introduce our novel
framework for learning discriminative TF transforms in a
large-margin setting. This framework comes along with
several compelling properties that will be discussed next.

Our objective is to learn the features extracted from an
FB, jointly with a decision function based on SVMs. For
this purpose, let us consider a feature function ρ ◦u : X →
X d, where ρ : X d → X d is a pooling function and u is a
TF transform as defined in the equation (1). As explained
earlier, the underlying assumption is that the features are
extracted from the TF domain.

Given a training set {(xi, yi)}1≤i≤N from (Kn × {−1, 1})N ,

a positive symmetric definite kernel k : X d×X d → R and a
trade-off parameter C ( 1

N ≤ C [26]), designing a discrimi-
native TF representation in a kernelized SVM framework
can be formally formulated (like in [27, 3] for other pur-
poses) by:

minimize
u∈T

J(u, k), (2)

where T is the set of TF transforms of finite energy (see
definitions in section 3) and J(u, k) is the optimal value of
the SVM problem depending on both the TF transform u
and on the kernel k:

J(u, k)
def
=


min

f∈H,b∈R,ξ∈RN
1
2‖f‖2H + C1T ξ

s.t.

 yi (f((ρ ◦ u)(xi)) + b) ≥ 1− ξi,
∀i ∈ NN
ξ < 0,

(3)

where H is the reproducing kernel Hilbert space defined
by the kernel function k [28] and ξ is the vector of slack
variables. Note that the optimization program (3) is the
standard problem solved by SVM algorithms. Moreover a
pair (f∗, b∗) solution of (3) gives a learned decision func-
tion through:

x ∈ Kn 7→ sign (f∗((ρ ◦ u)(x)) + b∗) ,

with f∗ defined from a non-negative learned vector α∗ by:

∀x ∈ Kn, f∗((ρ◦u)(x))
def
=

N∑
i=1
α∗
i
>0

α∗i yik((ρ◦u)(xi), (ρ◦u)(x)).

(4)
Note that problem (2) of FB learning could have been

formulated

minimize
f∈H,b∈R,ξ∈RN ,u∈T

1
2‖f‖2H + C1T ξ

s.t.

{
yi (f((ρ ◦ u)(xi)) + b) ≥ 1− ξi, ∀i ∈ NN
ξ < 0.

(5)
Both problems (2) and (5) are hard in that they are non-
convex. Indeed, as the filtered data is consecutively pooled
and kernelized, each non-convexity in the pooling func-
tion ρ and in the mapping induced by the kernel k results
in a non-convexity of the objective function with respect
to the IRs [29, 3]. This effect can be accentuated if the
IRs are naively parameterized in a non-convex way (for
instance by the cutoff frequencies for a bandpass filter).
As a consequence, the strategy of resolution of our learn-
ing problem is a major point to design an algorithm as
efficient as possible, considering both classification accu-
racy and computation complexity. The reason to prefer
the wrapper strategy (2) to the direct one (5) is that the
former enables us to easily deal with infinite mappings in-
duced by such kernels like the Gaussian one (definition
(9)). Moreover, the wrapper strategy provides us with an
algorithm that benefits from the the convexity of the SVM
problem and from the current SVM solvers efficiency (for
instance [30]) in terms of precision and of training time.
Note that problems (2) and (5) are different but if they
are solvable, then they have the same global minimas. As
a consequence, choosing the problem (2) rather than (5)
is equivalent to choosing a kind of resolution strategy.

3. Solving the problem

This section describes how to solve the FB learning
problem. First, we exhibit the few hypotheses, that re-
strict the framework in which our work holds, and then we
propose an algorithm to solve the resulting problem. The
algorithm we present is an extension of the Generalized
Multiple Kernel Learning algorithm [29] so as to handle a
continuously parametrized family of kernels. Eventually,
we detail how our framework interestingly enables to learn
the pooling function, supposed fixed up to this point.
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3.1. Problem restriction

It is possible to find a local minimum of (2) by per-
forming a gradient descent directly on the IR coefficients
(as for instance [3]) but this requires that all the operators
are differentiable and may promote overfitting due to the
high number of parameters. That is why, we propose an-
other approach based on multiple kernels. To this end, we
make three assumptions, respectively on the set of FBs,
on the pooling functions and on the SVM kernels (which
are the three consecutive stages of our processing line).

3.1.1. Filter banks

First, let us consider the set of FBs based on a finite
number of normalized filters hθ, picked from a continu-
ously family parametrized by θ, and whose energies can
be weighted with learned factors µ̃θ:

T def
=
{

(µ̃θhθ, Nθ)θ∈A, µ̃ < 0, ‖µ̃‖`2 = 1 and A ⊂ P
}
,

where P is the continuous set of all possible IR parameters
θ and A is finite. We assume that the dimension of P
is small, i.e. θ is a vector with few components. Indeed,
the idea behind choosing a family of filters is to control
the complexity of the set T by decreasing the degree of
freedom. This is a way to prevent overfitting.

The condition ‖µ̃‖`2 = 1 ensures that the FB is of unit
energy. The main difficulty in this definition comes from
the unknown number of filters used in the FB. Yet, let us
reformulate T in a more convenient way:

T =
{

(µ̃θhθ, Nθ)θ∈P , µ̃ < 0, ‖µ̃‖`2 = 1 and µ̃ FS
}
,

FS (Finite Support) meaning that the number of non-
zero values is finite. Consequently, even though an FB
(µ̃θhθ, Nθ)θ∈P has theoretically an infinite amount of fil-
ters, only a finite number is actually active. The last defi-
nition of T highlights the fact that we will use the notion
of sparsity to deal with the continuous set of parameters
P.

3.1.2. Pooling functions

Let u be a TF transform from T as defined in the pre-
vious subsection. Our next assumption is that the pooling
function ρ : X d → X d is positive homogeneous of degree 1:

∀λ ≥ 0, ∀x ∈ Kd : ρ(λu(x)) = λ(ρ ◦ u)(x).

This property is a very mild condition since it is verified
by all the pooling functions presented in the Table 2.

Consider now the flattening operator vec (·), that re-
turns its input collapsed into a single dimension vector
and let us compute the inner product between two pooled
TF representations:

∀x,z ∈ Kn, 〈vec ((ρ ◦ u)(x)) | vec ((ρ ◦ u)(z))〉`2
= 〈vec (ρ ({↓ Nθ [µ̃θhθ ? x]}θ∈A)) | vec (ρ ({↓ Nθ [µ̃θhθ ? z]}θ∈A))〉`2
=

∑
θ∈A µ̃

2
θ 〈ρ (↓ Nθ [hθ ? x]) | ρ (↓ Nθ [hθ ? z])〉`2 .

(6)

Roughly speaking, equation (6) means that, thanks to the
positive homogeneous property, the inner product between
two TF representations is a convex combination of the
inner products between each frequency band (defined by a
finite IR filter hθ). The next subsection details why this
relation is the key point of our approach.

3.1.3. SVM kernels

Let u be a TF transform from T and assume that the
current set A is of size d. In this paper, we only consider
two kinds of kernels k : X d × X d → R: the linear and the
Gaussian ones. If k is the linear kernel, then:

∀x def
= {xθ}θ∈A, z def

= {zθ}θ∈A ∈ X d :

k(x, z)
def
= 〈vec (x) | vec (z)〉`2 =

∑
θ∈A 〈xθ | zθ〉`2 ,

(7)
where x and z are two TF representations. By definition,
the linear kernel is simply the inner product between the
inputs [20]. If we now define the spanning kernels (kθ)θ∈A
and the multiple kernel k[µ] (where µ is a vector of weights

from Rd+ that will be learned) by:

kθ(x,z)
def
= 〈xθ | zθ〉`2 and k[µ](x,z)

def
=
∑
θ∈A

µθkθ(x,z),

(8)

then, by denoting u0
def
= {(hθ, Nθ)}θ∈A the FB of the nor-

malized filters and by setting x = (ρ ◦ u)(x) along with
y = (ρ ◦ u)(z), we get from (6) and (7):

∀x,z ∈ Kn, k((ρ ◦u)(x), (ρ ◦u)(z)) = k[µ̃2]((ρ ◦u0)(x), (ρ ◦u0)(z)),

where ·2 is the pointwise square function. Basically, the
similarity between two TF representations can be expressed
thanks to the multiple kernel k[µ̃2] as the convex combina-
tion of the similarities between each frequency band.

Respectively, if k is the Gaussian kernel of positive pa-
rameter γ, then:

∀x def
= {xθ}θ∈A, z def

= {zθ}θ∈A ∈ X d :

k(x, z)
def
= exp

(
−γ‖ vec (x)− vec (z) ‖2`2

)
= exp

(
−γ∑θ∈A ‖xθ − zθ‖2`2

)
.

(9)

The Gaussian kernel is a complex similarity function that
reflects the proximity of its inputs mapped in an infinite-
dimensional space [20]. If we define this time the spanning
kernels (kθ)θ∈A and the multiple kernel k[µ] by:

kθ(x, z)
def
= exp

(
−γ‖xθ − zθ‖2`2

)
and

k[µ](x, z)
def
=
∏
θ∈A (kθ(x, z))

µθ ,
(10)

then from (6) and (9), we get:

∀x,z ∈ Kn, k((ρ ◦u)(x), (ρ ◦u)(z)) = k[µ̃2]((ρ ◦u0)(x), (ρ ◦u0)(z)).

The last relation means that comparing two TF rep-
resentations with a Gaussian kernel is like computing a
multiplicative combination of the similarities between each
frequency band in an infinite-dimensional space.
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Thanks to (6), we have shown that for both kernels k
(linear and Gaussian), the problem of learning the weights

µ̃θ of an FB boils down to learning some parameters µθ
def
=

µ̃2
θ of the SVM kernel k[µ], called a multiple kernel [27].

Concerning the choice of a kernel, we recommend to
use the Gaussian kernel (which is in practice rarely worse
than the linear one) expect if the practitioner does not
have enough spare time to perform the cross-validation
on both the cost parameter C and the kernel parameter
γ. In this case, we recommend to choose the linear kernel,
which is quicker to compute and to cross-validate (the only
parameter to determinate is C).

3.2. Learning the TF transform

With the keys given in the previous sections, the prob-
lem of learning a TF transform (2) becomes the one of
learning an infinite combination of kernels:

minimize
µ∈RP

J
(
u0, k[µ]

)
s.t.

 1Tµ = 1
µ < 0
µ FS ,

(11)

where u0
def
= (hθ, Nθ)θ∈P . When the set P is finite, this

kind of problem can be solved thanks to existing Multiple
Kernel Learning solvers like the convex one from [31] for
the linear kernel (7) and a variant of the non-convex one
from [29] for the Gaussian kernel (9) 1. Nevertheless, in
our case P is infinite due to the continuous nature of the
filter parameter θ. Thus, one of the main contributions
of this paper is to propose Algorithm 1 to solve problem
(11).

In practice, such an algorithm already exists when k is
the linear kernel (7) thanks to the so-called Infinite Kernel
Learning approach (IKL) [32]. IKL is a problem intro-
duced and solved by Gehler and Nowozin [32] to spread
out linear MKL to infinitely many kernels. The learning
problem is turned into a dual Semi-Infinite Linear Pro-
gram, calling upon the strong duality of the problem (it
is convex). Then, it is solved with a delayed constraint
generation algorithm.

The algorithm proposed in this paper extends the state
of the art by being the only one to provide a solution to
the problem of FB learning (11) when the kernel is Gaus-
sian. Concretely, our algorithm turns out to be an exten-
sion of the one from [29] so as to handle a continuously
parametrized family of kernels (kθ)θ∈P as defined in (10).

1When the kernel is Gaussian, the problem studied here is slightly
different from the one originally introduced in [29] since we replaced
the Tikhonov regularization on µ by an Ivanov one. This replace-
ment naturally comes from our hypotheses but there are two other
reasons for using an explicit constraint on µ: first, there is no regu-
larization coefficient to tune (which is hard in practice for it requires
either a deep theoretical study or a lot of computational resources)
and then, since µ is guaranteed to be on the unit sphere of the `1-
norm, the cost parameter C carries on its original role.

Data: training dataset {(xi, yi)}1≤i≤N .
Result: (sub)optimal filter bank u∗ and optimal

classifier f∗.

1 A ← linear grid of IR parameters;

2 µ̄← 1
card(A)1 {initial weights};

3 while not suboptimal do
4 u← (hθ, Nθ)θ∈A {bank of normalized filters};
5 (µ∗, f∗)← Solve MKL with (u, (kθ)θ∈A),

initialized with µ̄ {formulas (8) or (10)};
6 A ← {θ ∈ A, µ∗θ > 0};
7 Θ← random sample from P;

8 θ̂ ← argmax
θ∈Θ

V (θ);

9 if V (θ̂) >
∑
θ∈A µθV (θ) then {optimality

condition violated}
10 A ← A∪ {θ̂};
11 µ̄← [µA; 0];

12 else
13 Suboptimality reached;

14 u∗ ← (
√
µ∗θhθ, Nθ)θ∈A;

Algorithm 1: Filter-MKL algorithm.

Our algorithm also applies to the case of FB learning (11)
with a linear kernel (the differences with IKL are discussed
in section 6).

The proposed approach tackles the problem in its pri-
mal form. It is based on the so-called active set principle
[33] and has the flavor of [6]: let us start with a guess A
(A is a finite set of parameters, verifying A ⊆ P) on the
set of solution parameters P∗ (suppose that an oracle gave
it to us) and then solve the multiple kernel problem with
respect to (µθ)θ∈A (line 5 in Algorithm 1). For the linear
kernel, we use the MKL solver from [31] while for the Gaus-
sian one the optimization strategy used here is a reduced
gradient descent [34] with a backtracking linesearch. This
step can be seen as performing of block-coordinate descent
considering that µθ vanishes for θ in P\A. It results in an
active set A∗ of parameters whose weights are non-zeros
and in its complementary non-active set A\A∗. If A in-
cludes P∗ then the optimality conditions are verified for
all θ in P. By contraposition, if the optimality conditions
are not verified for a θ in P, then A does not include P∗
and specially, the violator θ is missing from the guess A.
So let us update A with the rule A ← A∗ ∪ {θ} and solve
again the multiple kernel problem. By doing iteratively
these two steps, the algorithm performs a descent on an
infinite amount of parameters.

We now address how to check the optimality of a given
weighting vector µ with respect to problem (11) (line 9 in
Algorithm 1). If the optimality is not verified by a weight
µθ, then we have to add the parameter θ to the current
set A and iterate. The way to find such a θ is discussed
in section 4, so we only focus on the optimality condition.

Let Y
def
= diag(y) be the matrix of labels, Dθ and K[µ]+
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respectively the matrix of distances in the TF space and
the kernel matrix of data:

Dθ
def
=
(
‖ρ (↓ Nθ [hθ ? xi])− ρ (↓ Nθ [hθ ? xj ]) ‖2`2

)
1≤i,j≤N

,

K[µ]+

def
= (k[µ]((ρ ◦ u0)(xi), (ρ ◦ u0)(xj)))1≤i,j≤N .

As detailed in 7, the main equilibrium condition to be
violated in our algorithm when the kernel k is Gaussian
is:

∀θ ∈ P, V (θ) ≤
∑
θ′∈P,
µ
θ′>0

µθ′V (θ′),

where

V (θ) = −α∗TY
(
Dθ ◦K[µ]+

)
Y α∗,

and α∗ is the optimal dual variable of the SVM problem
applied to {(ρ ◦ u0)(xi), yi)}1≤i≤N with the kernel k[µ].

Respectively, when the kernel k is linear, the main con-
dition to be violated is identical with [32, 6]:

V (θ) = α∗TY Kθ+Y α
∗,

where Kθ+ is a spanning kernel matrix defined by:

Kθ+
def
= (kθ((ρ ◦ u0)(xi), (ρ ◦ u0)(xj)))1≤i,j≤N .

In both cases (linear and Gaussian kernels), the opti-
mal decision function resulting from solving the learning
problem is formulated by:

∀x ∈ Kn, f∗ ((ρ ◦ u∗)(x))
def
=

∑N
i=1 α

∗
i yik[µ∗] ((ρ ◦ u0)(x), (ρ ◦ u0)(xi))

=
∑N
i=1 α

∗
i yik ((ρ ◦ u∗)(x), (ρ ◦ u∗)(xi)) ,

(12)

where α∗ is the optimal dual variable of the SVM problem
applied to
{(ρ ◦ u0)(xi), yi)}1≤i≤N with the kernel k[µ∗], µ

∗ is the
optimal vector of weights from the MKL problem and
u∗ = (

√
µ∗θhθ, Nθ)θ∈A. Note that when the optimal TF

transform u∗ is known, the decision function from (12)
turns out to be the one from a single SVM with a usual
kernel k.

3.3. Learning the pooling function

Previous works [35, 36] show the importance of choos-
ing an appropriate pooling function, as it is part of the very
first stages of the processing line. Following this observa-
tion, an attempt at designing data-driven pooling func-
tions recently appeared [37]. Interestingly, the framework
we built in this article, also enables to learn the pooling
function as the concatenation of several pooling functions.
This kind of functions, that we call multiple pooling func-
tion, is defined as:

F def
= {(η̃rρr)1≤r≤p, η̃ < 0 and ‖η̃‖`2 = 1} ,

where p is the positive number of spanning pooling func-
tions ρr and η is the weighting vector. Then, for any
multiple pooling function ρ from F ,

∀x, z ∈ Kn, 〈(ρ ◦ u)(x) | (ρ ◦ u)(z)〉`2
=
∑p
r=1 η̃

2
r 〈(ρr ◦ u)(x) | (ρr ◦ u)(z)〉`2 .

(13)

This relation is a mirror image of (6) for multiple pool-
ing functions. Consequently, learning the pooling function
can be seen as learning a multiple kernel in the same way
as it has been done before to learn an FB. In this context,
given a TF transform u, the optimal decision function re-
sulting from solving the problem of learning the pooling
function is formulated by:

∀x ∈ Kn, f∗ ((ρ∗ ◦ u)(x))
def
=

∑N
i=1 α

∗
i yik[η∗] ((ρ0 ◦ u)(x), (ρ0 ◦ u)(xi))

=
∑N
i=1 α

∗
i yik ((ρ∗ ◦ u)(x), (ρ∗ ◦ u)(xi)) ,

(14)

where ρ0
def
= (ρr)1≤r≤p, α

∗ is the optimal dual variable of
the SVM problem applied to {(ρ0 ◦ u)(xi), yi)}1≤i≤N with
the kernel k[η∗], η

∗ is the optimal vector of weights from
the MKL problem and ρ∗ = (

√
η∗rρr)1≤r≤p.

Learning the pooling function seems advantageous,
since the practitioner does not need to choose a partic-
ular pooling function beforehand (in practice, it is quite
difficult to have an intuition on which pooling function
will perform the best), nevertheless we have to be care-
ful since adding new variables to the optimization scheme
may promote overfitting. For this purpose, we propose a
three-stage approach: in a first step, we draw a linear grid
of parameters for the finite IR filters and we learn the pool-
ing function with this first FB. Then, we solve (11) (Algo-
rithm 1) with the learned pooling function and finally learn
it again with the optimal FB. This is the approach used
in the numerical experiments (section 5). Unreported ex-
periments show that this approach is more efficient than
including the pooling learning in each iteration of Algo-
rithm 1.

4. Discussions

We now discuss two points of the proposed algorithm.
The first one is the way to concretely check the optimality
condition (that is how to find a violator for the active
set strategy and how to define a stopping criterion). The
second one deals with the convergence of the algorithm
and with the normalization of the kernels.

4.1. Column generation

There are two difficulties in checking the optimality
conditions of a problem with an infinite amount of param-
eters. The first one is to find parameters that violate the
equilibrium conditions, in order to run the active set strat-
egy. As in [38], this can be done by randomization (line
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7 in Algorithm 1). The second difficulty is to solve the
variational subproblem:

maximize
θ∈P

V (θ), (15)

in order to stop the process. Indeed, if a maximizer θ̂
satisfies V (θ̂) ≤ ∑

θ∈P,
µθ>0

µθV (θ), then there is no more

violator and the system is at an equilibrium.
In practice, this problem is very hard to solve (because

of its nonconvexity) and it is accepted that if no parameter
drawn by randomization at a given iteration violates the
equilibrium condition, then this is true for all parameters
[38] and the algorithm can stop.

In [32], a similar subproblem is solved thanks to a
Newton method initialized with several points. On the
contrary, the main point of using randomization here is a
complexity concern: gradient-based techniques are gener-
ally slow because of the gradient computation and of the
curvature of the objective, and even more when the pro-
cess is repeated with several initializations. Moreover as
the randomization approach does not compute any gradi-
ent, it can address non-smooth functions with respect to
θ (for instance when using a Max pooling function).

Akin to [32], which initializes the gradient-based algo-
rithm with violator parameters from previous iterations,
the randomization step can be driven thanks to a prob-
ability distribution based on the knowledge acquired at
the previous iteration. Suppose that, at the first iteration,
spanning kernels are built on a uniform grid of parameters,
that spans the set P. Then, the solution of the multiple
kernel problem gives a rough guess of the discriminative
power distribution over P, thanks to the objective func-
tion V of (15). Each iteration is thus aimed at refining
the previous solution more than at discovering new ones.

An estimation of this distribution is directly propor-
tional to θ ∈ P 7→ max

(
0, V (θ)−∑θ∈A µθV (θ)

)
. One

option to refine the sampling is then to regress the (nor-
malized) previous function and to sample some filter pa-
rameters following this regression, using for instance a
Metropolis-Hastings algorithm. In practice, thousands of
realizations are needed to come close to the regressed dis-
tribution while in the proposed algorithm only few hun-
dreds are sampled. As a consequence, in practice our al-
gorithm randomizes some parameters following both a uni-
form distribution over P and a uniform distribution over
a small box centered on the violator parameter of the pre-
vious iteration. Again, this heuristics is more aimed at
refining the selected parameters than at speeding up the
algorithm.

4.2. Computational considerations

Due to the non-convexity of our learning problem, we
do not look for a global minimum. Theoretically, the algo-
rithm may stop on a local maximum, but in practice this
is very unlikely, since such an equilibrium is unstable. We
are yet ensured that the objective value strictly improves

at each step. This is so since at each iteration, we build
upon a multiple kernel, another one which is exactly the
same except for a new kernel with a null weight. This
new multiple kernel is not a critical point since the added
kernel violates the equilibrium conditions. Consequently,
solving a multiple kernel problem with this new set of ker-
nels from the given set of weights ensures to make a steady
progress.

Learning a multiple kernel supposes to compare dis-
criminative power of kernels. For this reason, kernels must
be approximately of the same magnitude, otherwise some
kernels may get a major role in the multiple kernel only
because of their high magnitude but without being dis-
criminative. This is one of the pitfalls around minimizing
the SVM objective and we have to be careful with it. To
prevent this effect, kernels are set up with the following
rule: if it is a linear kernel, it is normalized by its trace; if
it is a Gaussian kernel, the distance matrix is normalized
by its Frobenius norm. In both cases, the normalization
factor is propagated to the learned weighting vectors µ∗

and η∗ when creating the optimal FB and the optimal
pooling function.

5. Numerical experiments

This section is aimed at demonstrating the appeal of
the proposed method with several experiments. First of
all, we give some examples of IR parametrization for which
parameters can be learned by our algorithm. Then, we
deal with a hand-crafted problem to describe a basic ap-
plication. In addition, we tackle two real-world situations:
a Brain Computer Interface classification problem and a
scene classification task.

5.1. Settings

The first simple IR parametrization which can be con-
sidered is a bandpass filter, designed through a window
method. Let us note ωon and ωoff the normalized cut-
off frequencies of the filter (0 ≤ ωon, ωoff ≤ π). Then

θ
def
= (ωon, ωoff) and P def

= [0, π]
2
. The IR (of length q) is

therefore:

∀(ωon, ωoff) ∈ P, ∀t ∈ Nq :

h(ωon,ωoff)(t)
def
=

sin(ωofft− ωoff
q
2
)− sin(ωont− ωon

q
2
)

t

W (t)

ν
,

where W is a window function (for instance Hanning or
Blackman) and ν is a normalization factor to get a unitary
energy.

Another option is the Morlet wavelet. It consists in a
complex-valued wave modulated by a Gaussian window of
width σ. The envelope factor σ controls the number of
oscillations in the wave packet. The parameter vector is

θ
def
= (τ, σ) and lives in P def

= [1, βτ ]× [1, βσ] (where βτ and
βσ are upper bounds, for instance 50). The IR formula is
then:
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∀(τ, σ) ∈ P, ∀t ∈ Nq :

h(τ,σ)(t)
def
= e

−8

(
πτ(t− q

2
)

σq

)2 (
e4ıπ

τ(t− q
2
)

n − e−σ
2/2

)
1

ν
,

where ν is still a normalization factor. The complex-valued
wavelet approach in union with the scattering pooling is
quite interesting since, as the Morlet wavelet is almost
analytic for σ > 5 (i.e. its Fourier transform is almost
null for negative frequencies), it is close to a one-stage
scattering transform, which has been proved to be efficient
for signal classification [25].

Finally, the methods we will confront in this section are
summarized in the Table 3. The bulk of them ends with an
SVM classifier. The method, nicknamed SVM in the table
and the figures, is a naive approach considering the time
series as the features. Max builds upon SVM and pools
the signals by computing local maxima. On the contrary
to both last methods, DFT considers the magnitude of the
discrete Fourier transformations of the signals and MFCC
their MFCCs. Those four methods are the baselines for
our study.

We also consider advanced methods like Convolutional
Neural Networks [12] (CNN ) and Wavelet Kernel Learning
[6] (WKL). All the study long, a CNN has one convolu-
tional layer with three feature maps. The shrinkage factor
of the subsampling layer is the same as the one in the Max
and Mean pooling used with the methods proposed in this
paper (Nθ being set to 1 for all θ). These ones are called
Band-Max, Band-`2 and Morlet-Scattering, according to
the family of filters (bandpass or Morlet wavelet) and to
the kind of pooling function (see Table 2).

For the real datasets (BCI and scene classification),
our method includes both without and with learning the
pooling function (see Section 3.3). In this last case, our
method is nicknamed Band-Pooling or Morlet-Pooling, ac-
cording to the family of filters, and the multiple pooling
function is made up of Max, Mean and Scattering pooling
with different values of window w (see Table 2) and of `p-
norms (p ∈ {1, 2}). Moreover, the weights of the pooling
functions are uniformly initialized.

The results of classification accuracy given in this sec-
tion are the ones obtained with the test dataset and with
a Gaussian SVM kernel, since those with a linear one are
not better. For the purpose of the study, these results are
given through statistics based on 10 runs for each of which
the dataset is randomly split into non-overlapping train-
ing and test sets (with a ratio of 70-30%). Moreover the
SVM parameters C and γ are tuned through a five-fold
validation resampling of the training set. Finally, before
each learning step, the training set is normalized to unit
magnitude, and the test set is rescaled accordingly.

5.2. Toy dataset

The considered toy dataset is made up of two classes
based on different patterns (Figure 3). The first pattern

is a sine curve with a normalized frequency that varies
around 0.039. The second one is the same on the first half
and then, is formed by another sine curve with a higher
normalized frequency that varies around 0.117. Variable
frequencies are the first kind of intraclass distortions that
characterize our toy dataset. The second kind of intraclass
discrepancies introduced is a slight random time-shift. In
the end, a random colored noise is added to each signal.
This one comes from a Gaussian white noise that is filtered
by a filter randomly chosen among [1,−2, 1], [0, 1,−1] and
[1, 0, 1]. This noise is stationary at the scale of the signal
but nonstationary at the scale of the dataset (considering
that the dataset comes from the segmentation of a single
long time signal).

0 127

-1.00

1.00

0.00

(a) Class 1.

0 127

-1.00

1.00

0.00

(b) Class 2.

Figure 3: Toy dataset.

Obviously, the dataset has been designed in order to
invalidate other approaches (Table 3). Indeed, Figures 4
and 5 show that the Fourier Transform (DFT ) is not suit-
able for this problem and that the Shannon representation
(SVM ) has difficulties to handle the colored noise. Yet the
use of a Max pooling function jointly with the Shannon
representation (Max ) improves the classification accuracy.
The Convolutional Neural Network (CNN ), as for it, tends
to overfit with small training datasets and with a low SNR.
The Wavelet Kernel Learning approach (WKL) performs
well but does not seem to handle really noisy data. In
comparison to all those methods, the proposed approach
applied with bandpass filters (Band-Max ) is always on top
thanks to the filters learning in union with a Max pooling
function.

-19.49 -10.38-18.04 -16.51 -15.16 -13.66

0.49

1.00

0.60

0.70

0.80

0.90
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SVM
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DFT

CNN
WKL

SNR (dB)

A
U
C

Figure 4: Toy dataset: accuracy with respect to the SNR.

Figure 6 shows an instance of learned FBs. The main
discriminative filter is a bandpass one centered on the nor-
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Abbreviation Analysis Pooling Classifier Remark
SVM - - SVM
Max - Max SVM
DFT Discrete Fourier Transform - SVM
MFCC Mel-Frequency Cepstrum - SVM
CNN Convolutional Neural Network Mean MLP [12]
WKL Wavelets `2-norm MKL [6]
Band-Max Learned bank of bandpass filters Max SVM Proposed method
Band-`2 Learned bank of bandpass filters `2-norm SVM Proposed method
Morlet-Scattering Learned bank of Morlet wavelets Scattering SVM Proposed method
Band-Pooling Learned bank of bandpass filters Learned SVM Proposed method
Morlet-Pooling Learned bank of Morlet wavelets Learned SVM Proposed method

Table 3: Confronted methods.

30 40060 100 200
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Size of the training set
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Figure 5: Toy dataset: accuracy with respect to the size of the train-
ing set.

malized frequency 0.117. This is indeed the most discrim-
inative feature between the two classes of signals.
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Figure 6: Toy dataset: instance of learned filter banks (each color
embodies a filter in the Fourier domain).

5.3. Real-world problems

BCI problem. Akin to [6], we consider as a first real-world
case, a Brain Computer Interface problem. Electroen-
cephalographic activity has been recorded from a healthy
man with a cap containing 32 tin electrodes placed on stan-
dard positions. The subject performed imaginary plantar
flexions of the right foot. The aim is to reach a given tar-
get torque, either as fast as possible or following a 4s linear
torque increase. Both protocols (quick and slow flexions)
generate different Movement-Related Cortical Potentials
(MRCPs) that we want to classify. Thus, it is a biclass
problem consisting in single trial classification of MRCPs.

The dataset contains 75 signals (of length 512) from each
class, as many as imaginary tasks performed by the sub-
ject. Experiments have been undertaken on the channels
9, 12, 17, 29 and 30 as in [6].

Acoustic scenes. As a second real-world case, we tackle
a Computational Auditory Scene Analysis (CASA) situ-
ation. CASA is the field of computer science that looks
for how to mimic the ability of Humans to follow spe-
cific sound sources in a complex audio environment [39].
Two kinds of problems fall in CASA: acoustic event de-
tection and acoustic scene classification. As for us, we
are only interested in the problem of acoustic scenes (or
soundscapes) classification. Its aim is to characterize the
environment of an audio stream by providing a semantic
label. For instance, the database we are interested in is
made up of 10 classes [39]: busy street, quiet street, park,
open-air market, bus, subway-train (or tube), restaurant,
store / supermarket, office and subway station (or tube
station). The database contains 10 audio recordings (30-
second segments) for each scene. To make it, three dif-
ferent recordists recorded each scene type. They visited a
wide variety of locations in Greater London over a period
of months (Summer and Autumn 2012), with moderate
weather conditions and varying times of day and week.

In our experiment, each recording is split into 300-
millisecond frames, filtered and downsampled in order to
reduce the computational complexity. The goal is then to
label these subsignals in the framework of several binary
classification problems, for instance tube vs tube station.
The baseline we consider is an SVM classifier applied to
the MFCCs (MFCC ). This approach, which is often used
to classify audio signals, seems really efficient on some of
the biclass problems studied in this paper (for instance
office vs supermarket).

Results. The box plots in Figure 7 (BCI experiment) bring
out that the naive approaches, considering either the sig-
nals as classification features (SVM ) or the magnitudes
of the Fourier transform (DFT ), fail to correctly general-
ize from the training dataset. This proves the appeal of
data-driven methods for signal classification. Moreover, it
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seems that a Morlet wavelet along with a Scattering pool-
ing (Morlet-Scattering) achieves comparable but slightly
better results than a bandpass FB with a Max pooling
(Band-Max ), and really better results than bandpass fil-
ters with an `2-norm (Band-`2). As the latter method
corresponds to considering the marginal distribution of the
energy for discriminative frequencies (i.e. there is no infor-
mation in time), it demonstrates the improvement of TF
methods compared to frequency approaches for this nu-
merical experiment. Nevertheless, for the scenes dataset
(Figures 8), this variant often performs the best. This is
so probably because subsignals are quite short.

For both experiments, there is always a variant of our
method that outperforms the other competitive approaches.
For WKL, we used the same setting as in the paper that
introduced the method [6] (full stochastic WKL with a 6-
tap wavelet and a marginal Gaussian kernel, which demon-
strated better results than without pooling the filtered sig-
nals) and recovered similar results than in the latter paper
for the BCI experiment, even though the signals have not
been normalized in the same way (zero mean and unit
variance in [6] and unit magnitude in this paper). Some
insights of our preeminence are that i) our method en-
ables several families of filters and several ways of pooling,
ii) the parameter of the Gaussian kernel is fixed in WKL
while it is not in our method, iii) our approach with a
Gaussian kernel naturally needs a non-linear multiple ker-
nel, which as been proved to be better than a linear one
for some problems [29], while WKL systematically uses a
linear multiple kernel.

Our approach looks also truly better than CNN. In-
deed CNN shows poor results, most likely because of the
high level of noise in the BCI signals and more generally
speaking because of the difficulty to correctly train them
without being a specialist. On the contrary, our method
is easy to tune for real-world situations.

With minor exceptions, learning the pooling function
(methods Band-Pooling and Morlet-Pooling) gives quite
similar results (and even better for several problems) to
the best pooling function chosen by hand. This leads us
to an interesting statement: the practitioner does not need
to have an intuition on which pooling function to use, or
to try many of them independently. Learning the pooling
function enables to automatically tune our method and
generally gives results comparable to a handcrafted ap-
proach.

6. Related works

6.1. Convolutional Neural Networks

Considering an FB to model a discriminative TF trans-
form leads us to an already addressed problem: the Con-
volutional Neural Networks [12]. CNNs are the state of
the art in many pattern recognition problems, like charac-
ter recognition. The efficient machinery of a CNN is built
upon one or several stages of FBs that filter the signals

and reduce their dimension. Each FB contains a nonlin-
earity thanks to a so-called activation function. Then, the
resulting features feed a Multi-Layer Perceptron (MLP),
which is a non-linear classifier.

The approach presented here affords a new sight line
to the problem of learning a discriminative FB, compared
to a CNN. The main point of the approach is to work in
a kernelized framework, which provides non-linear classi-
fiers based on convex optimization (note that problem (2)
could also be formulated differently, for instance through
the SVM radius-margin bound [40] or through the kernel
target alignment criterion [41], but this seems more natu-
ral this way and more convenient due to the non-convexity
of the other formulations). On the contrary, MLP is based
on a gradient descent of a non-convex objective. Conse-
quences are noteworthy since, as it has been explained in
the previous sections, the overall optimization scheme, we
propose, handles a part of the intrinsic non-convexity of
the problem through an inner randomization step, that
makes it more stable than a randomly initialized gradient
descents.

Besides, this approach proposes an answer to the main
risk of CNNs, which is to overfit the training data, result-
ing in a poor ability to classify unknown signals. It can
first occur with small training datasets. This phenomenon
is often observed with CNNs (this is the case for instance
in the toy dataset of Section 5.2), while our method is ex-
pected not to be subject to this drawback since it is based
on SVM. Indeed, SVM tends to maximize the margin be-
tween both classes. Moreover, overfitting with CNNs ap-
pears because of the high complexity of the model (there
are numerous parameters). On the contrary, as the filters
we use are controlled by few parameters, our method is
somehow regularized by the family of filters we chose and
tends therefore to prevent overfitting.

Finally, the proposed method offers several other con-
veniences. For instance, as gradients are computed with
respect to filters weights, there is no need to consider
smooth functions. Particularly, pooling functions like Max
pooling can be handled without any concern. At the end,
the proposed scheme is quite automated and does not need
a deep experience to be tuned, unlike Neural Networks.

6.2. Infinite and Wavelet Kernel Learning

IKL [32] and WKL [6] are two distinct problems. While
the first one is aimed at learning a multiple kernel (a con-
vex combination) with potentially infinitely many kernels
through Semi Infinite Linear Programming, the second one
learns a combination of a huge number of kernels based on
parts of wavelet decompositions, thanks to an active set
method. Despite those differences, both problems share
quite resembling algorithms, based on a column genera-
tion technique with a sparse MKL as inner problem. The
major difference is the way to generate the column. While
IKL tries to solve a non-convex problem, WKL samples
some kernels until finding one that violates the optimality
conditions.
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(b) Channel 12.
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(c) Channel 17.
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(d) Channel 29.
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(e) Channel 30.

Figure 7: BCI dataset: classification accuracy for several channels.

The work presented here is algorithmically inspired by
both these contributions since we learn a product of poten-
tially infinitely many kernels through an active set method.
Yet, our approach is different from both IKL and WKL in
the target: our work is firstly to learn a discriminative TF
transform jointly with an SVM classifier. In addition, our
approach has been driven in order that the resulting classi-
fication tool can be easily reduced to a two-stage line: first
an FB and then an SVM classifier. This reduction is not
possible with WKL, which can turn into a hindrance for in-
terpreting the learned result. Note also that our algorithm
turns out to be an extension of the non-linear MKL from
[29] to an infinite amount of kernels. This problem can cer-
tainly not be addressed by IKL nor by WKL. Finally, even
though there is no proof on convergence, we exhibit the
strict decrease of the objective despite the non-convexity
of the inner MKL problem when the kernel is Gaussian.

7. Conclusions

This paper has introduced a novel approach to learn
a one-stage filter bank for signal classification. It took
a fresh look at learning a discriminative time-frequency
transform compared to the widespread convolutional neu-
ral networks. The method proposed to jointly learn a filter
bank with an SVM classifier. The SVM kernels, we con-
sidered in this article, were the linear and the Gaussian
ones. They were computed by filtering the signals thanks
to the filter bank, and by pooling the result. We showed
that, by choosing a specific family of filters, defined by few
parameters, the optimization problem is actually a multi-
ple kernel learning problem, where the number of kernels
can be infinite. We thus provided an active constraint al-
gorithm, that extended existing methods and that is able
to handle such a problem by generating a sparse and fi-
nite non-necessarily convex combination of kernels. One
advantage of our method, compared to neural networks, is
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(b) Office vs supermarket.
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(c) Office vs quiet street.

Figure 8: Scenes dataset: classification accuracy.

that the number of filters has not to be chosen beforehand,
it is automatically determined. Moreover, although it was
not our main goal, we proved that the built framework also
enables to learn a particular form of pooling function (and
thus the translation-invariance of the kernels). Numeri-
cal experiments undertaken on a brain-computer interface
dataset and on a scene classification problem showed that
the proposed approach is competitive and provides a rele-
vant alternative to existing methods. Additionally, learn-
ing the pooling function appeared to be an extra feature
for the practitioner, who does not need to chose the kind
of translation-invariance beforehand.

As a kernel learning method, the main limitation of our
approach is the computational complexity. Even though
finding a new coordinate in the active constraint algorithm
is a highly parallelizable task, the algorithm is poorly scal-
able. The previous pitfall is related to the difficulty of se-
lecting hyperparameters in kernel learning methods, which
is still an open question. We are thus determined to devote
some efforts in alleviating this pitfall.
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Appendix A. Optimality conditions

The principle of active set needs some optimality neces-
sary conditions to have the current set evolve up to its final
form. Despite the non-convexity of the MKL problem for
the Gaussian kernel k, the Karush-Kuhn-Tucker (KKT)
conditions can be used since they are necessary conditions

for non-convex optimization programs. The forthcoming
paragraphs are thus dedicated to derive a way to check
the optimality of a given weighting vector µ, regarding
problem (11).

Let us write a Lagrangian function L associated to
(11), where λ is the Lagrange multiplier of the sparsity
constraint 1Tµ = 1 and τ is the dual vector of the non-
negativeness constraint µ < 0:

∀(µ, λ, τ ) ∈ RP × R× RP ,
L(µ, λ, τ ) = J

(
u0, k[µ]

)
+ λ(1Tµ− 1)− τTµ.

At an equilibrium in the multiple kernel problem (po-
tentially a local minimum or maximum), the KKT condi-
tions hold: 

1Tµ = 1, µ < 0
τ < 0
τθµθ = 0, ∀θ ∈ P
∇µL(µ, λ, τ ) = 0.

Both first conditions (primal and dual feasibility) are
just reminders. The last one is however quite important
and can be rewritten:

∇J̃(µ) + λ1− τ = 0, (16)

where
J̃ : µ ∈ RP 7→ J

(
u0, k[µ]

)
.

Combining the third KKT condition with (16) leads
to:

∀θ ∈ P,


∂J̃

∂µθ
(µ) = −λ, if µθ > 0

∂J̃

∂µθ
(µ) ≥ −λ, if µθ = 0.

(17)

Once the equilibrium is achieved, the Lagrange multi-
plier λ is given by:

λ
def
= −

∑
θ∈P, µθ>0

µθ
∂J̃

∂µθ
(µ).
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It remains then to compute the partial derivatives of J̃ .
This is possible thanks to the theorem 4.1 from [42], which
claims that since the SVM objective function is differen-
tiable and has a unique minimizer (this is guaranteed if
the kernel matrix is positive definite, which can be always
true by adding a little ridge), the gradient of J̃ is given
by the gradient of the SVM objective at the optimum.
To compute it, let us write the SVM dual problem. Let

Y
def
= diag(y) and K[µ]+

be the positive definite kernel

matrix defined by:

K[µ]+

def
= (k[µ]((ρ ◦ u0)(xi), (ρ ◦ u0)(xj)))1≤i,j≤N .

In practice, instead of tackling problem (3), SVM solves
the dual form (in which α is the dual vector):

maximize
α∈RN

1Tα− 1

2
αTY K[µ]+

Y α

s.t. 0 4 α 4 C1, yTα = 0.
(18)

Thus from [42],

∀θ ∈ P, ∂J̃

∂µθ
(µ) = −1

2
α∗TY

∂K[µ]+

∂µθ
Y α∗, (19)

where α∗ is the same as in (4) and (12). Let us compute
the partial derivative of the kernel: as k[µ] is a product of
spanning kernels,

k[µ]
def
=
∏
θ∈P

kµθ

θ = e−γ
∑

θ∈P µθdθ ,

where dθ is a similarity measure depending on θ, then:

∂k[µ]

∂µθ
= −γdθk[µ].

Now, let Dθ be the similarity matrix:

Dθ
def
= (dθ(xi,xj))1≤i,j≤N ,

then the main equilibrium condition to be violated is:

∀θ ∈ P, − ∂J̃

∂µθ
(µ) = −γ

2
α∗TY

(
Dθ ◦K[µ]+

)
Y α∗ ≤ λ.
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