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Abstract

This is the first participation of CEA LIST
to the Event Nugget track. We only consid-
ered the English dataset. The purpose of our
submissions was to investigate the interest of
considering the detection and the classifica-
tion of event mentions as two separate tasks
rather than a joint task. Our baseline, which
yields our best results, is inspired from the
TAC 2016 deep learning approach of (Nguyen
et al., 2016b).

1 Overview

The goal of the Event Nugget (EN) task is to extract
event mentions (i.e. words most clearly showing that
an event takes place) from documents. Moreover,
those event mentions are assigned a type and a sub-
type according to a pre-defined taxonomy. This tax-
onomy, the DEFT Rich ERE (Song et al., 2015), de-
fines 38 subtypes among 9 types. Since the subtypes
of Rich ERE are mentioned as "types" in the track
guidelines and scorer, we will respectively refer to
the Rich ERE type and subtype level annotation as
“TYPE" and “type". Along these TYPEs and types,
we need to predict a realis type, labeling the event as
Actual, Generic or Other.

We treat these two tasks independently but in a
similar manner, leading in both cases to a compo-
nent based on neural networks as the core technique
to benefit from their ability to automatically learn
relevant features. We consider these tasks for every
word of a target document. Since our two compo-
nents are close in their architecture, we will focus
on the event type classification first, then detail the
specificity of the realis part.

2 Event Detection and Classification

The aim of this component is to find every event
mention in an input document. To do this, each tar-
get document is first tokenized and split into sen-
tences. We then apply syntactic parsing to these sen-
tences to extract both constituents and dependencies.
All this pre-processing is performed by the Stanford
CoreNLP tool (Manning et al., 2014). Inspired from
(Nguyen et al., 2016b), we only consider single to-
ken mentions. Our system treats the event detec-
tion task as a classification task for every token in
the document. The choice of this single-token view
was made considering that, since multi-token trig-
gers represent only 1.9% and 3% of the triggers in
the test set of TAC 2015 and TAC 2016 respectively,
its impact on global performances was expected as
limited. Moreover, it allows the introduction of a
positional feature that greatly improves the perfor-
mance of the neural network systems. Since we pre-
dict a class for every token of the document, which
includes tokens that are not triggers, we introduce
an "OTHER" class denoting that the current token is
not a trigger of any type.

2.1 Encoding

We consider every token in every sentence as a trig-
ger candidate that we represent by a fixed-size con-
text window centered on this token. We trim longer
sentences and use a special padding token if the con-
text window falls out of the sentence boundaries.
Let t0 be the trigger candidate and w the size of
the window. t = [t−w, t−w+1, . . . , t0, . . . , tw−1, tw]
denotes the context window centered on t0. We
then turn this vector of token indexes into a matrix
X = [x−w,x−w+1, . . . ,xo, . . . ,xw−1,xw] by re-



Figure 1: Illustration of our convolutional neural network (CNN) model, adapted from (Nguyen et al., 2016b)

placing every token index ti by its real-valued repre-
sentation xi = [ei, di, gi, qi] combining the follow-
ing representations:

Word embedding ei This embedding corresponds
to the word ti and can be pre-trained on a large
corpus to provide semantic and syntactic informa-
tion about the word (Mikolov et al., 2013).

Distance embedding di This vector encodes the
relative distance i between the current word ti and
the trigger candidate t0.

Dependency vector gi The size of this binary vec-
tor corresponds to the number of different basic
dependencies provided by the Stanford CoreNLP
tool. We set the value to 1 for each dimension if
there exists a dependency of this kind between ti
and t0.

Chunk embedding qi This vector embeds the
chunking information of the current token, with
BIO annotations.

The input matrix X is then fed into a convolu-
tional neural network (CNN) model that learns to
map this representation to an event type (or the ab-
sence of event).

2.2 Token-based Convolutional Neural
Network

We use a classical convolutional neural network, il-
lustrated by Figure 1, which passes the input matrix
X through a dropout layer then a convolutional layer
and a maxpooling layer. This way, an abstract rep-
resentation of the trigger candidate automatically is
learned by the network. This representation is finally
fed to a dense layer with one output per class and a
softmax applied to it. This allows us to compute the
probability distribution of the event classes for the
trigger candidate.

3 Training schemes

Event type Since we predict the trigger type for
every token in the document and because the vast
majority of tokens are not triggers, we observe
that more than 90% of the tokens are assigned the
“OTHER" label. We suspect that this imbalance
might hinder the training. In (Marino, 2016), the
author introduces a taxonomic curriculum transfer
scheme. In a classification problem where there
exists different granularities of labels, taxonomic
curriculum learning consists in first training a neu-
ral network on the coarse-grained classification task



Figure 2: Illustration of the taxonomic curriculum transfer learning scheme. In our case, the coarse-grained labels are
either the "isTrigger" binary labels or the 9 TYPE labels and the fine-grained ones are the final 39 type labels

to learn common low-level features and then using
this network parameters to initialize a new network,
trained on more fine-grained labels, as shown in Fig-
ure 2. This process can be repeated multiple times
along the taxonomy. The author shows that this
type of training scheme can be useful when there
are fewer fine-grained examples than coarse-grained
examples. In a similar manner, we want to study
if heavily unbalanced fine-grained labels (type) can
benefit from more balanced coarse-grained labels.

To study the influence of this imbalance, we have
considered three alternative training schemes:

CNNfromScratch Our baseline consists in directly
learning the 39 fine-grained classes (38 types
+ the OTHER class) of the final task (run
lvic_event1).

CNNfromTY PE We first train a CNNTY PE to pre-
dict 10 coarse-grained classes (9 TYPE + the
OTHER class), then use it to initialize the weights
of a new CNNfromTY PE which is retrained on the
39 classes (run lvic_event2).

CNNfromDetect We infer a binary label "isTrigger"
for every token, set to True if the token is a trig-

ger of any type and to False otherwise. We then
train a binary classifier CNNdetect to predict this
coarse-grained label and finally use it to initial-
ize the weights of a new CNNfromDetect which is
retrained on the 39 fine-grained type labels (run
lvic_event3).

The Rich ERE annotations include 38 event sub-
types but the evaluation restricts to a subset of 18
subtypes. We learn to predict 39 classes (the 38 sub-
types in Rich ERE plus the “OTHER" class) but we
only retain predictions for the 18 target subtypes for
the evaluation.

Realis classification For the realis task, we use the
same architecture and the same training scheme as
for CNNfromScratch, this time using the realis la-
bels. For the evaluation, we predicted the realis label
for every token in the dataset but only returned the
realis label when we predicted a trigger during the
previous step.

4 Parameters and Resources

We adopt the same parameters for all networks.
More precisely, we use 150 filters for each window



size in {2,3,4,5} with a tanh non linearity for the
convolution step. We use the 300 dimension em-
beddings pre-trained on Google News provided with
word2vec and optimize them during training. The
POS embeddings have 50 dimensions. Our neural
networks are trained using stochastic gradient de-
scent, the batch size is set to 50 and we use the Ada-
grad optimizer with gradient clipping (the threshold
is set to 3). We determine the number of epochs for
training through early stopping during development,
averaged across 10 runs. For the final model, we
include the development set to our training set and
train it with the same number of epochs.

As mentioned before, this architecture is inspired
by the 2016 best system (Nguyen et al., 2016b). The
main differences are:

• we remove the dropout on the dense layer and
add dropout on the input layer, with a dropout
rate ρ = 0.8;

• we use classical convolution instead of non-
consecutive convolution;

• we initialize our word embeddings with Google
News CBOW embeddings instead of the con-
catenated CBOW;

• we use Adagrad instead of Adadelta.
We did not adopt the non-consecutive convolu-

tion because the traditional convolution layer is less
computationally intensive and yielded better results
on last year evaluation dataset as shown in Table 3.
Concerning the other differences, we also report the
results of some preliminary experiments on develop-
ment data in the next section.

5 Evaluation

We submitted three runs to the Event Nugget eval-
uation, based on the same architecture but differing
according to the training scheme used, as detailed in
Section 3. lvic_event1 is our baseline. lvic_event2
and lvic_event3 refer to the networks whose weights
were initialized from training respectively on event
type and trigger detection. The realis prediction is
the same for all runs.

5.1 Datasets

We relied on four datasets for the development and
the test of our systems:

• dataset A: the union of DEFT_RICH_

ERE_R2_V2 (LDC2015E68), DEFT_RICH_
ERE_V2 (LDC2015E29) and TAC 2015
training data (from LDC2017E02), containing
events from the 38 Rich ERE subtypes;

• dataset B: TAC 2015 evaluation data (from
LDC2017E02) containing events from the 38
Rich ERE subtypes;

• dataset C: TAC 2016 evaluation data (from
LDC2017E02) containing events from the
same 19 subtypes evaluated this year;

• dataset D: TAC 2017 evaluation data containing
events from 19 subtypes.

All scores reported in this section are micro-f1
scores generated by the official TAC 2017 scorer,
unless stated otherwise.

5.2 Evaluation of our systems on the TAC 2017
dataset

Table 1 presents our official results on the 2017
test set while training on all other corpora. The
best results are obtained with our baseline system,
which tends to invalidate our hypothesis that a pre-
liminary training with more balanced coarse-grained
classes could help the system in identifying com-
mon generic features. However, we can note that
our baseline clearly outperforms the median score
for each task and is close to the best scores, espe-
cially for the realis and the realis+type task. The
two other reported scores are from the first and third
best models on the final task. Both these systems use
ensembling methods, which are known to increase
performance in almost any situation. On the other
hand, our system ranks second while only using a
single model.

Table 2 is a breakdown of our performance
in event subtype classification, providing the in-
termediate TYPE score and the performance of
CNNTY PE and CNNdetect, the networks trained to
initialize lvic_event2 and lvic_event3 respectively.
The pre-training step seems to have a negative im-
pact on the performance of the final system: the
performance of lvic_event1 for plain and TYPE is
higher than the performance of the network specif-
ically trained for these tasks. Similarly, CNNTY PE

performs better than CNNdetect on the detection
(plain) task. This could indicate that no generic
feature can properly discriminate triggers from non
triggers among the tokens. In fact, there might be as



Run plain t(ype) r(ealis) t+r

lvic_event1 59.95 50.14 47.48 39.28
lvic_event2 59.57 49.66 47.21 38.96
lvic_event3 58.32 49.22 46.23 38.59

1st ranked model 59.16 48.6 48.33 39.73
3rd ranked model 67.27 56.19 47.42 39.24
Median 56.92 47.95 41.69 33.77

Table 1: Results of our three runs on D (TAC 2017 eval-
uation data) trained on A+B+C. "median" report the me-
dian scores for all participants on each subtask indepen-
dently. The two other scores reported are the best and
third systems, ranked on the final t+r score

Run plain TYPE type

lvic_event1 59.95 57.29 50.14
lvic_event2 59.57 56.79 49.66
lvic_event3 58.32 55.64 49.22

CNNTY PE 59.27 55.47 –
CNNdetect 54.09 – –

Table 2: Breakdown of the results of our various systems
on the TAC 2017 test set

much difference among the mentions of the differ-
ent event subtypes than between these mentions and
the mentions of the negative class. The same obser-
vation can be done about the differences inside and
between TYPE. Globally, it means that the plain de-
tection task and the TYPE classification task are both
complementary to the type final task and should be
treated as joint tasks.

Event Argument (EA) is also a possible joint task
likely to provide complementary information. First,
we assume that detecting and classifying arguments
would probably lead to more discriminative features
for the Event Nugget task. Furthermore, the Rich
ERE annotation scheme can assign multiple labels to
the same mention while our system only assigns one
label to every token. For example, in the sentence
below, “purchases" is the trigger of three pairs of
event types: for each year underlined in the example,
there are both a Transfer-Ownership and a Transfer-
Money event that differ only by a “thing" argument

played by “firearm".

About 19.6 million background checks
were carried out for firearm purchases in
2012, a 19-percent rise from 2011 and
more than in any year since 1998, accord-
ing to the FBI.

In order to fully extract triggers in this sentence,
we would need to identify that all the mentioned
years play a role in the events. Performing the EN
and EA tasks jointly is necessary in such a case and
would allow us to generate multiple event triggers of
the same type based on the different years. However,
we would still miss the co-occurring event types. To
solve this problem, we would also need to introduce
multi-label prediction to make the neural network
able to learn co-occurrences between event types.
The most common co-occurring pairs of event types
are Transfer-Ownership/Transfer-Money, Conflict-
Attack/Life-Injure and Conflict-Attack/Life-Die.

Thus, dealing with multi-label prediction for the
event type and taking into account the arguments of
the event could lead to better performances on this
dataset. In fact, naively duplicating every mention
about a Life-Die event with a Conflict-Attack event
mention leads to a 0.18 improvement of the final
"type + realis" score.

5.3 Comparison to the 2016 systems

In order to compare our system to the TAC 2016 best
systems, we trained our best system (lvic_event1) on
corpora A and B only and tested it on the TAC 2016
evaluation dataset (C). We report the performance
of last year’s 3 best systems (Mitamura et al., 2016)
and our system in Table 3. It is interesting to note
that our neural network model outperforms the best
TAC 2016 systems while it is a simpler version of
the top 1 system, which made use of more sophisti-
cated embeddings than ours, that is to say Concate-
nated Continuous Bag-Of-Word (CCBOW) and Non
Consecutive convolutional neural network (NCNN).

The difference in the dropout place and the choice
about pre-trained embeddings are based on prelimi-
nary experiments presented here. The systems were
trained on the corpus A and we report the f1-mesure
of our system on the corpus B without the official
scorer. Note that the experiments about embeddings



Run plain t(ype) r(ealis) t+r

lvic_event1 57.15 47.36 45.99 37.89
Top 1 in 2016 53.84 44.37 42.68 35.24
Top 2 in 2016 54.59 46.99 39.78 33.58
Top 3 in 2016 49.39 44.47 36.96 33.1

Table 3: Results of our three runs on C (TAC 2016 eval-
uation data), with training on A+B

embedding type type

GoogleNews 58.8
Structured-SkipGram 58.4
Cwindow 55.3
CBOW 55.9
fastText 56.9

Table 4: Study of the influence of different pre-trained
embeddings, evaluated on corpus B and trained on cor-
pus A

are anterior to the dropout experiment, which ex-
plains the non-matching scores.

Embeddings Concerning the embeddings, we
compare the 300 dimension CBOW embed-
dings pre-trained on GoogleNews provided with
word2vec1 to the 300 dimension fastText (Bo-
janowski et al., 2017) embeddings pre-trained on
Wikipedia2. We also trained on the Gigaword corpus
400 dimension embeddings for the CBOW model
and 400 dimension embeddings according to the two
models described in (Ling et al., 2015): Structured-
Skipgram and Cwindow. All these embeddings were
built with the best parameters found by (Baroni et
al., 2014; Levy et al., 2015). The Cwindow em-
beddings, as a concatenated version of the CBOW
model trained on the Gigaword corpus, seem the-
oretically comparable to the embeddings used in
(Nguyen et al., 2016b) and introduced in (Nguyen
et al., 2016a). However, it is unclear whether the
two implementations are similar or not. We present

1https://code.google.com/archive/p/
word2vec/

2https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.md

dropout input dropout last layer type

False False 57.43
False True 56.79
True False 60.98
True True 57.36

Table 5: Study of the influence of different dropout con-
figurations, evaluated on corpus B and trained on cor-
pus A

in Table 4 the performance reached by our net-
work with these different embeddings as initializa-
tion. The embeddings were adapted during training.
It is clear from Table 4 that the GoogleNews ver-
sion gives the best performance while (Nguyen et
al., 2016a) relied on embeddings built from the Gi-
gaword corpus.

Dropout configuration Because of the high vari-
ation of results between runs, we investigated possi-
ble ways to stabilize the network and found out that
adding a dropout to the input layer and removing it
from the last layer not only reduced the variance but
also reached higher performance, as shown by Ta-
ble 5.

5.4 Comparison between 2016 and 2017
evaluation set

We can also see by comparing the results in Table 3
to those in Table 1 that for each subtask, our sys-
tem performs better on the 2017 test set than on the
2016 development set. The 2016 results shown in
Table 3 are produced by our development systems
while the performance on the 2017 dataset (Table 1)
are produced by our final systems. Since the final
systems are trained on more data, by including our

Run plain t(ype) r(ealis) t+r

lvic_event1 59.24 48.86 47.12 38.39
lvic_event2 58.47 48.20 46.40 37.90
lvic_event3 56.40 47.01 44.82 36.90

Table 6: Results of our three runs on D (TAC 2017 evalu-
ation data) with TAC 2016 evaluation data (C) not added
to the training dataset



Corpus plain t(ype) r(ealis) t+r

A+B 57.15 47.36 45.99 37.89
A+B+D 57.01 47.70 45.77 38.11

Table 7: Influence of the addition of D to the training set
while testing on C (TAC 2016 evaluation data)

previous validation set in the training set, this could
partly explain the performance gap. In order to vali-
date this hypothesis, we present in Table 6 the results
obtained on the 2017 test set without including the
2016 evaluation data in the training set. While we
see that the performance is indeed decreased (which
confirms the impact of the added training data), the
results are still better than the results from the 2016
test set. This suggests that the 2017 test set may be
a bit easier than the 2016 test set.

To further explore the difference between the two
datasets and confirm this hypothesis, Table 7 pro-
vides the reciprocal results, i.e. training lvic_event1
on dataset A, B and D and evaluating on C. Similarly
to the runs we submitted, we first train a network on
A+B and use D as a development set to determine
the number of epochs to train the final system. Ta-
ble 7 confirms that adding training data has a small
impact on results compared to the difficulty of the
test dataset.

Finally, we investigate whether the transfer from
the coarse-grained task to the fine-grained one is
easier in this case, where the training and test data
have the same number of classes. To answer the
question, we provide in Table 8 the breakdown of
our different networks trained on A and evaluated on
B, with both datasets annotated for the 38 Rich ERE
types. Once again, we reach the same global conclu-
sion as previously even if in that case, CNNTY PE

performs similarly to lvic_event1 and even slightly
better for TYPE.

6 Conclusion

In this article, we presented an overview of the CEA
LIST system for the KBP 2017 Event Nugget task.
Although our system is a simpler version of the con-
volutional neural network that ranked first last year,
our best model still ranks second on the plain, re-
alis and the type+realis subtasks and third on the

Run plain TYPE type

lvic_event1 68.86 66.72 60.98
lvic_event2 68.41 66.41 60.81
lvic_event3 66.63 64.84 60.32

CNNTY PE 68.86 66.93 –
CNNdetect 63.67 – –

Table 8: Analysis of our various training schemes on TAC
2015 test (corpus B) set while training on corpus A

type subtask. Our preliminary experiments show
that a careful tuning of our convolutional neural net-
work can lead to significant improvements, espe-
cially concerning the application of dropout. We
trained and evaluated our model exclusively for En-
glish but it can be easily adapted to other languages
since it mainly relies on word embeddings, the influ-
ence of syntactic parsing being small.
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