
HAL Id: cea-01855997
https://cea.hal.science/cea-01855997v2

Submitted on 14 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polyhedral Dataflow Programming: a Case Study
Romain Fontaine, Laure Gonnord, Lionel Morel

To cite this version:
Romain Fontaine, Laure Gonnord, Lionel Morel. Polyhedral Dataflow Programming: a Case Study.
SBAC-PAD 2018 - 30th International Symposium on Computer Architecture and High-Performance
Computing, Sep 2018, Lyon, France. pp.1-9. �cea-01855997v2�

https://cea.hal.science/cea-01855997v2
https://hal.archives-ouvertes.fr


Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

Polyhedral Dataflow Programming: a Case Study

Romain Fontaine
Univ Lyon, INSA Lyon, CITI

F-69621 Villeurbanne, France
Email: romain.fontaine@insa-lyon.fr

Laure Gonnord
Univ Lyon, Université Claude Bernard Lyon 1

CNRS, ENS de Lyon, Inria,
LIP, F-69342, LYON Cedex 07, France

Email: laure.gonnord@ens-lyon.fr

Lionel Morel
Univ Grenoble Alpes, CEA, List

F-38000 Grenoble, France
Email: lionel.morel@cea.fr

Abstract—Dataflow languages expose the application’s po-
tential parallelism naturally and have thus been studied and
developped for the past thirty years as a solution for harnessing
the increasing hardware parallelism. However, when generating
code for parallel processors, current dataflow compilers only
take into consideration the overall dataflow network of the
application. This leaves out the potential parallelism that could
be extracted from the internals of agents, typically when those
include loop nests, for instance, but also potential application
of intra-agent pipelining, or task spliting and rescheduling.

In this work, we study the benefits of jointly using poly-
hedral compilation with dataflow languages. More precisely,
we propose to expend the parallelization of dataflow programs
by taking into account the parallelism exposed by loop nests
describing the internal behavior of the program’s agents. This
approach is validated through the development of a prototype
toolchain based on an extended version of the ΣC language. We
demonstrate the benefit of this approach and the potentiality
of further improvements on relevant case studies.

Keywords-parallelism; dataflow programming; compilation;
runtime system; load-balancing.

I. INTRODUCTION

Multi-core processors are everywhere, from high-end
servers to user-oriented embedded systems like cellphones
or task-specific accelerators. Applications that need to take
advantage of the parallelism offered by these hardware
are now numerous and range from latency-sensitive com-
pression/decompression algorithms (eg video processing) to
compute-intensive ones like machine-learning algorithms.

Programming these applications and taking advantage of
the hardware parallelism is still a considerable challenge
from the programmer’s point-of-view. For some of these
applications, dataflow programming is a premier choice
because this programming style naturally fits the designer
abstraction model. As a plus, dataflow is amenable to quite
efficient parallelization because it naturally exposes task,
data and pipeline parallelism.

In a dataflow programming language, programmers de-
scribe their application as a set of side-effect-free actors or
agents that communicate solely through First-In-First-Out

Part of this work was carried out while Lionel Morel was with INSA
Lyon, Université de Lyon.

channels (FIFOs). Agents can be seen as independent pro-
cesses, ie sequential programs, that interact through reading
(resp. writing) data from (resp. to) their input (resp. output)
FIFOs. There exists a large panel of dataflow languages,
whose characteristics differ notably. One major point of
variability is the scheduling of agents and their communi-
cations. There is indeed a continuum from the synchronous
dataflow languages like Lustre [1] or Streamit [2], where
the scheduling is fully static, to general communicating
networks like KPNs [3] or RVC-Cal [4] where a dedicated
runtime is responsible for scheduling tasks dynamically,
when they can be executed.

So far, parallelization techniques for dataflow programs
have focused on taking advantage of the decomposition in
agents, potentially duplicating some agents to have several
instances that work on different data items in parallel [5].
In the presence of big agents, the programmer is left with
the splitting (or merging) of these agents by-hand if she
wants to further parallelize her program, or at least give
this opportunity to the runtime, which in general only sees
agents as non-malleable entities. In the presence of arrays
and loop-nests or, more generally, some kinds of regularity
in the agent’s code, we believe however that the programmer
would benefit from automatic parallelization techniques such
as those implemented within polyhedral compilation tools.
We propose to use such sequential code parallelization
techniques to parallelize the sequential code that describes
an agents’ behavior.

The work reported in this paper aims at demonstrating
the practical advantage of combining the dataflow paradigm
with the polyhedral optimization framework. We empirically
demonstrate this by building a proof-of-concept tooling
approach, using existing tools on existing languages. This
paper’s contributions are:

• A tentative approach combining dataflow programming
with polyhedral compilation in order to enhance pro-
gram parallelization by leveraging both inter-agent par-
allelism and intra-agent parallelism (ie regarding loop
nests inside agents).

• An implementation of this approach using a state-of-
the-art dataflow language as well as classical polyhedral
tools.



Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

• An evaluation of the approach on several example
benchmarks.

• A discussion about the costs and benefits of the ap-
proach.

The rest of the paper is organized as follows. Section II
introduces background on both dataflow programming lan-
guages (II-A), including the ΣC dataflow language, and the
polyhedral model (II-B). Section III explains our propo-
sition, namely conjointly parallelizing loop nests that are
found inside dataflow agents. Section IV describes our the
experimental setting, the toochain that supports the ΣC
language and the Pluto tool we use for automatic loop
parallelization. Section V describes our experiments. These
comprise three applications: a toy matrix multiplication, an
implementation of the Deriche algorithm for image edge
detection and a simple instance of artificial neural network
used for image classification. Finally, section VIII concludes
and draws perspectives to this work.

II. BACKGROUND

A. Data Flow Programming

First dataflow programming models were proposed in the
seminal works of G. Kahn [3] and J. Dennis [6]. The main
concept consists in decomposing the application one wants
to build as a set of independent processes (we will call them
agents in the rest of the paper) that communicate solely
through First-In-First-Out (FIFO) channels.

Since the mid 70s, models and languages following the
same philosophy have flourished. A main characteristic
that distinguishes these models is the ability to determine
statically (or not) how many data tokens are exchanged by
agents on the FIFO channels. When these quantities can be
determined at compile-time, these models are named static
(Boolean, static, cyclo-static, etc). This gives nice properties
to such programs, namely boundedness of memory usage
and static schedulability. When data rates are not fixed
statically, agents need to be scheduled at runtime. Such
languages are qualified as dynamic dataflow.

ΣC: Our experiments are applied to programs written
using the ΣC programming language [7]. ΣC implements the
Cyclo-Static Dataflow (CSDF) model [8] where data rates
of agents are known statically and can change periodically.

Throughout this paper, we use the example of the De-
riche algorithm [9], an optimal edge-detection algorithm for
discrete bi-dimensional images. Here we only describe the
structure of the program. Written in ΣC, the implementation
is composed of 6 agents that are connected as shown in
Figure 1. Each of these agents applies a transformation to
an image-size matrix. Links between agents represent FIFO
channels, which are the unique mean that can be used to
share data among agents.

An agent’s behavior is defined using a DSL in which one
describes:

DupInput

L1

L2

L3 (sum) Dup

L4

L5

L6 Out

Figure 1. Representation of the dependency graph in Deriche’s algorithm.

agent L1()
{
interface
{
in<float> input;
out<float> output;
spec{ input[HEIGHT]; output[HEIGHT] };

}

void start (void) exchange (input in[HEIGHT], output o[
HEIGHT])

{
float ym1 = 0, ym2 = 0, xm1 = 0;
for(int i = 0; i<HEIGHT;i++){
o[i] = a1 * in[i] + a2 * xm1 + b1 * ym1 + b2 * ym2;
xm1 = in[i];
ym2=ym1;
ym1=o[i];

}
}

}

Figure 2. ΣC implementation of the L1 agent.

• the interface of the agent (its input and output ports)
• a set (at least one) of functions that describe what

happens when the agent is activated.
The code given in Figure 2 defines the agent L1 to have

one input (resp. output) flow on which the agent, everytime
it is triggered, will read (resp. write) HEIGHT float values.
The start function is triggered at each of L1’s activations
and performs some computations to define the value to be
written on its output flow. Here, the computation consists in
a for loop iterating over all the elements read from (resp.
written to) input and output ports.

The compilation process implemented in the ΣC toolchain
is in charge of transforming these dataflow language con-
cepts into runtime concepts. Agent activities are translated
into sequential programs encapsulated into runtime threads.
Depending on the target architecture, FIFO communication
channels can be translated into efficient shared-memory
implementations or into distributed communication mech-
anisms. The ΣC runtime is then in charge of allocating
memory regions and scheduling the activities corresponding
to agents, either relying on an underlying operating system
or through dedicated scheduling policies.

B. Polyhedral model

The second building block of our approach is a com-
pilation and optimisation framework for imperative kernels
that perform intensive computations, namely, the polyhedral
model. This framework [10] provides exact dependence
analysis information where statement instances (i.e., state-
ments executed at different loop iterations) and array ele-
ments are distinguished. The exact dependence information



Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

obtained through this analysis and the use of linear program-
ming techniques to explore the space of legal schedules [11]
is what constitutes the base of the polyhedral model for loop
transformations.

j

i

for (i=0; i<N; i++)
for (j=i; j< ; j++)

S: A[j] = f(A[i], A[j]);

Figure 3. An example of polyhedral representation. Loop nests that fit
the polyhedral model can be viewed as mathematical (constraint-based)
objects, which can also be visualized geometrically. Dependencies here are
depicted as arrows from producers to consumers.

Figure 3 illustrates the polyhedral representation with an
example. The statement S is executed approximately N2

2
times during the execution of this loop. The triangular region
expressed as a set of constraints, called the domain of S,
represents this set of dynamic execution instances. Accesses
to array A from each of these statement instances can be
succinctly captured through affine functions of the loop
iterators. The dependences are also expressed as a function
between two statement instances. From this mathematical
description, the framework is capable of extracting a set of
valid schedules (i.e. new ways to execute loop statements),
compute tiled, parallel, pipelined versions of the same code,
depending on the optimization function (locality, maximum
parallelization, . . . ), and then generate their code.

The “traditional” use of polyhedral techniques in opti-
mizing compilers typically focuses on loop transformations
of polyhedral kernels. PLuTo [12] is a now widely used
push-button tool for automatically parallelizing polyhedral
loop nests that tries to optimize locality in addition to
parallelization. There is also significant work in data lay-
out optimization for polyhedral programs where analyses
are performed to minimize the program’s memory require-
ment [13]. Polyhedral techniques for loop transformations
are now adopted by many production level compilers, such
as GCC, IBM XL, and LLVM.

Recently, polyhedral techniques are being applied to many
different areas besides loop transformations. One natural
application of automatic parallelization techniques is in
verification of given parallelizations where the tools take par-
allelized programs as inputs, and use polyhedral analysis to
guarantee the absence of parallel bugs [14], [15]. Moreover,
a huge amount of research is done to extend the applicability
of polyhedral optimizations [16], such as hybrid techniques
that mix static compilation and dynamic tests [17]–[19].

The polyhedral model is becoming a standard to reason
about regular programs and to effectively perform kernel op-
timizations inside SCOPS (static control parts of a program,
where it is effectively applicable).

Our proposal, described next, is an integrated language
approach to use both task and instruction parallelism within
a unique setting.

III. GENERAL APPROACH

This section describes our arguments in favor of a new
integrated approach that would mix in the same language
dataflow idioms to express dataflow parallelism and “ la
polyhedral” model to express instruction parallelism.

The advantages of a dataflow approach are:
• Streaming algorithms [4], scientific workflows [20], and

many other applications, are already thought as agents
communicating data through FIFOs.

• From Kahn [3] proposition to the Tensorflow [21]
language, a wide variety of (more or less semantically
well-founded) languages share the common idea of
letting the programmer express as much parallelism
as he can, dataflow being one (or the main) of the
paradigm proposed.

• In some well-defined variants like the Static/Syn-
chronous DataFlow [22], the problem of statically
scheduling agents with a maximum parallelism is
shown to be decidable. It is the case of the ΣC language
we use in our experiment.

• In some other variants, the user benefits from clever
runtime supports.

But this is theory. All these approaches compile separately
(and agnostically) the code inside the agents, thus they may
miss some opportunities for static compilation as well as
static or dynamic scheduling, like:

• the intrinsic parallelism of a given agent;
• the organization of data inside a given agent.
With this information made explicit, the dataflow compiler

and scheduler would take the decision of splitting agents,
pipelining or merging them, in order to exploit all the
intrinsic parallelism of a given application. We can even
imagine being able to express and schedule several applica-
tions running on the same parallel machine [23].

However, up to now, the developer was in charge of writ-
ing “well-optimized” agents. This approach is clearly error-
prone, and lack flexibility. Moreover, the agents’ code then
begins to be overspecialized and not portable anymore. We
propose to solve this issue by letting the programmer write
the application she has in mind, and have the compilation
chain harness the application’s potential parallelism.

This integrated approach gives opportunities to the devel-
oper to express her knowledge of the application she designs.
However the theoretical counterpart would not be trivial as
it involves being able to express and compute hierarchical
schedules so that the actual aggressive compilations done
statically do not interfere with the task scheduling of agents,
whether scheduled statically or at runtime. Indeed, there is
a huge design space from explicitly expressing all parallel



Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

agent L2()
{
interface
{

in<float> input;
out<float> output;
spec{ input[HEIGHT]; output[HEIGHT] }; }

void start (void) exchange (input in[HEIGHT], output o[
HEIGHT])

{
float yp1 = 0, yp2 = 0, xp1 = 0, xp2 = 0;
for(int i = HEIGHT-1; i>=0;i--){

o[i] = (a3 * xp1 + a1 * xp2 + b1 * yp1 + b2 * yp2) ;
xp2 = xp1;
xp1 = in[i];
yp2 = yp1;
yp1 = o[i]; }

} }

agent L3()
{
interface
{

in<float> input[2];
out<float> output;
spec{ input[][HEIGHT]; output[HEIGHT] }; }

void start (void) exchange (input[] in[HEIGHT], output o
[HEIGHT])

{
for(int i = 0; i<HEIGHT;i++){

o[i]=in[0][i]+in[1][i]; }
} }

Figure 4. ΣC implementation of agents L2 and L3.

statements as tasks and schedule them independently (with a
possibly unreasonable cost) to individual two-steps schedul-
ing of tasks, then sub-tasks (which may be simpler to design
but may lose inter-tasks optimization opportunities).

Our long term objective is to go towards such a formal
framework to express, compile and run dataflow applications
with intrinsic instruction or pipeline parallelism.

Motivating example: As a motivational example, let’s
look again at the Deriche image transformation application,
shown in Figure 1.

This program is intended to deal with images in a
pipelined fashion. When L1 and L2 have finished manip-
ulating a first image, the combination phase of their result
(agent L3) can start while L1 and L2 are fed with data
corresponding to a new image. This program is naturally
described in a dataflow manner. More importantly, the
succession of phases L1, L2, etc. follows the mathematical
description (see [9]).

One of the limitations of dataflow programming as it is
done today is that the dataflow compiler sees each agent as a
separate compilation unit. It is therefore unable to optimize
code across agent’s boundaries. As an example, consider the
agent L1 of Figure 2. Figure 4 gives the code of agents L2
and L3.

Each of these agents contains a loop iterating on its input
data to produce its output data, Intuitively, we would like the
compiler to consider these loop nests as a potential source of
optimization. It could then decide to 1) fuse actors L1, L2
and L3 as well as 2) apply loop-based parallelization.This

agent L123()
{
interface
{
in<float> input;
out<float> output;
spec{ input[HEIGHT]; output[HEIGHT] }; }

float inter[2][HEIGHT];

void start (void) exchange (input in[HEIGHT], output o[
HEIGHT])

{
// Some declarations and init have been cut here
if (HEIGHT >= 1) {
for (t2=0;t2<=HEIGHT-1;t2++) {
inter[1][HEIGHT-t2-1] = (a3 * xp1 + a1 * xp2 + b1

* yp1 + b2 * yp2) ;;
yp2 = yp1;;
yp1 = inter[1][HEIGHT-t2-1];;
xp2 = xp1;;
xp1 = in[HEIGHT-t2-1];;
inter[0][t2] = a1 * in[t2] + a2 * xm1 + b1 * ym1 +

b2 * ym2;;
ym2 = ym1;;
ym1 = inter[0][t2];;
xm1 = in[t2];; }

lbp=0 ; ubp=floord(HEIGHT-1,32);
#pragma omp parallel for private(lbv,ubv,t3,t4)

for (t2=lbp;t2<=ubp;t2++) {
lbv=32*t2;
ubv=min(HEIGHT-1,32*t2+31);

#pragma ivdep
#pragma vector always

for (t3=lbv;t3<=ubv;t3++) {
o[t3]=inter[0][t3]+inter[1][t3]; }

}
}

} }

Figure 5. ΣC Ideal implementation of an actor L123 resulting in the
fusion of agents L1, L2, L3 as well as loop based parallel optimizations.

would produce an agent L123 such as the one of Figure 5
where for instance a parallel loop has been identified. Of
course, this is one possible transformation and our ideal
compiler would have many possibilities to choose from.

Proposed approach: This paper is a first proposition
of a combination of the polyhedral model framework with
a production dataflow language, namely ΣC. Through the
implementation of three non trivial case studies, we explore
the relationships between dataflow, pipeline and instruction
parallelisms, how they interfere at compile time and at
runtime.

This relationship is non trivial to predict, since the polyhe-
dral model is able to capture a potentially infinite parallelism
that neither the ΣC compiler, or runtime, is capable to
reason on. The scheduling of a “parallel” agent has to
make a compromise between the number of resulting “sub
agents” and the intrinsic cost of having too many agents to
orchestrate at runtime. Moreover, the benefit of the potential
parallelism may be lost if there is too many FIFOs that
increase memory pressure.

In essence, what we state in this paper is that the
polyhedral model and the dataflow paradigm are going
toward two different directions that will be reconciliated
only if we express all their capabilities in a unique formal
framework. This paper is a first experimental step to validate



Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

ΣC source code

Σ′C source code

Tiled, parallel
Σ′C code

Optimized
ΣC source code

ΣC binaries

Array Delinearization
+ Scope Definition

(Manual)

Polyhedral
Optimisation

(Pluto)
Array
Linearization
(Manual)

Compilation
(ΣC compiler)

Figure 6. The complete toolchain.

the potentiality of the approach.

IV. IMPLEMENTATION

To experiment on the idea of combining polyhedral loop
parallelization with agent-level parallelism, we have com-
bined the ΣC language and the ΣC toolchain together with
the Pluto optimizing tool.

The complete workflow is depicted in Figure 6. This
workflow has been applied identically on all our running
examples. First we have written the original ΣC program,
defining agents, some with loop nests as required by the ap-
plication’s implementation choices. As the ΣC language only
allows one-dimensional arrays, we then have delinearized
this version (this could have been done automatically with a
technique adapted from [24], for instance) and added Pluto
annotations on loop nests for which we have identified a
potential benefit.

The loop nests are then fed to Pluto individually. For
each nest, Pluto returns a semantically-equivalent loop nest
along with OpenMP annotations. The original loop nest is
then replaced by the new one in the ΣC agent. The ΣC
program is then compiled to C and then through GCC to an
executable program. We compare the performance of this
program with that of the one obtained by compiling the
original ΣC program. The annotation needed by Pluto to
operate on loop nests is straightforward, consisting, as shown
in Figure 8 of simply adding scop/endscop pragmas
around the loop nests that need to be parallelized.

V. EXPERIMENTS

A. Use cases

We demonstrate our proposal on three non-trivial example
programs.

The first one is the Deriche edge detection implemen-
tation already described in Section II-A. This application
comprises several agents among which six include loop nests
on which polyhedral compilation can be applied.

Our second program is an instance of an artificial neural
network (ANN) program that can be used to classify images.
ANNs are composed of layers that are pipelined . Each layer
comprises a static number of perceptrons that produces a

Input #1

Input #2

Input #3

Input #4

Layer 1
W1

Layer 2
W2

Input
vector

Output
vector

Figure 7. Graphical representation of layers

agent Layer(const int columns, const int rows,
const double w[rows][columns], const int activ_idx){

interface
{
in<double> input;
out<double> output;
spec{input[rows];output[columns]};

}
// ...

#pragma scop
for(int i = 0; i<columns;i++){
for(int j = 0; j<rows;j++){

out[i]+=in[j]*w[j][i];
}

}
#pragma endscop
fns_activ[activ_idx](columns, out);

}

Figure 8. Example of a layer agent.

single dataflow output while reading a number of input flows
coming from the preceding layer. The architecture of such
an ANN is depicted in Figure 7.

Figure 8 shows the ΣC implementation of a layer agent
that gathers the activity of column perceptrons. Each per-
ception j of a given layer computes a linear combination
of its input in[j] with its weight configuration w[..][j]. All
the computations are gathered into a unique loop nest of
depth 2. At the end, a non linear function (fns_activ) is
applied to the output vector.

This network corresponds to the decision phase of the
ANN only. The training of our ANN was performed with
another program that exports the weights and the settings
of the trained network. This is out of the scope of this
paper, but suffice it to say that this training program has
been implemented in Python, using the Keras library [25].
The specification of the network (weights and settings) is
written by the python training program to a plain-text file.
This file is then parsed, at compile time, by the root graph
of the ΣC program. It specifies the number of layers, and
for each layer, its size, its weight matrix, and the activation
function to use. Hence, the whole structure (level of task
parallelism, depth) of the ΣC program is configurable by
the learning phase.

Finally, we implemented a block-based matrix multipli-



Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

StreamReaderA RowsToBlocks Split

StreamReaderB

InB[1] InB[2] InB[3]

InA[1]
out

InA[2]

InA[3]

Grid subgraph

Split

BlocksToRows StreamWriter

Figure 9. General structure of the matrix multiply ΣC program, exposing
pipeline parallelism.

Figure 10. Structure of the Grid agent, exposing data parallelism.

cation whose general structure is depicted in Figure 9. The
multiplication is based on a grid of multiply-accumulate
agents, see Figure 10. At the highest level of the agent
hierarchy, extra agents are needed to organize one of the
matrix as blocks to be fed to these multiply-accumulate
agents (agents RowsToBlocks and BlocksToRows).
The whole structure of this dataflow program introduces
significant potential parallelism. The level of parallelism (ie
the number of agents) depends on 1) the size of the A, B
and C matrices and 2) the number of blocks the matrices
are split into to feed the Multiply-Accumulate agents.

B. Experimental setting

Our experimental results were obtained using two dif-
ferent configurations. The first one, tagged desktop in the
rest of the paper, is a laptop with an Intel Core i7-7700U
processor, providing 4 cores. The second platform, tagged
cluster, is a Dell PowerEdge R430, with two Intel Xeon
E5-2620 v4 CPUs, for a total of 16 cores and 32 threads.
This machine was made available through the Grid5000
experiment platform. Both versions where running Fedora
24 (linux kernel version 4.5)

ΣC programs are compiled with a version of the ΣC
compiler kindly provided to us by Kalray SA1. Several
agent-to-thread mapping and agent scheduling strategies are
available. In our experiment, we use the thread option
which generates one POSIX thread for each agent in the
application. From the original ΣC programs, the compiler
generates C programs, which are then compiled using GCC
6.3.1. Loop nests are parallelized by Pluto (version 0.11.42)
which generates semantically equivalent forms annotated
with OpenMP pragmas. GCC is then configured with the
-fopenmp option and uses version 4.5.

1http://www.kalrayinc.com/
2http://pluto-compiler.sourceforge.net/

MatMult Deriche ANN
0

1

2

3

4

1 1 1

1
.3 1

.6

1
.1

3
.5

1
.9 2
.1

MatMult Deriche ANN
0

1

2

3

4

S
p

ee
d
u
p

(n
o
rm

a
li
ze

d
to

Σ
C

v
er

si
o
n
)

ΣC ΣC+tiling ΣC+tiling+//

Figure 11. Speed-ups, on the cluster platform.

Concerning applications, we have made the following
implementation and experimentation choices. To further
study the capabilities offered by our approach, these choices
should be extended to consider larger data and more agents
as well, where applicable. In the case of the Matrix Mul-
tiplication, we have only manipulated matrices of size
1000*1000 elements. The multiply-accumulate grid consists
of only 4 agents. This seemed a reasonable trade-off to limit
the amount of data exchanged by agents on FIFO channels.
The downside is that it limits the potential parallelism of
the application. Concerning the Deriche case study, images
used where of size 7786*3000 (ie 23 MPx). The number
of agents is fixed by the global design choice and does not
depend on data sizes, as it is the case for MatMult. Also,
we have implemented a second version of Deriche, where
agents L1, L2 and L3 have been manually replaced by agent
L123 of fig. 5. Finally, ANN was used to classify 1000
images of 784 pixels each. The network considered contains
3 dense layers of 784 neurons each and an output layer of
10 neurons. This topology has been chosen in order to have
several layer agents pipelined as it allows to take advantage
of pipeline parallelism.

VI. RESULTS

Figure 11 depicts a comparison of performance results for
our three programs running on the full Cluster environment
(16 physical cores, 32 threads). Figure 12 shows a similar
comparison for the Desktop environment (2 physical cores,
4 threads).

For each program, we use as baseline the timing perfor-
mance of the initial ΣC program where agents have been
implemented following the “dataflow informal semantics of
the algorithm” (each agent implements a functionality). We
then selected one or two agents as candidates for automatic
optimization with tiling, and also compare with automatic
parallelization of the same agent(s) with Pluto. Results are
reported for execution on 4 cores on the desktop platform
and 16 cores on the cluster platform.

The most notable result is that with little effort, essentially
consisting in adding straightforward Pluto annotations to
loop nests, the user can obtain non-negligible performance
improvement on the execution time of her dataflow pro-
grams.

http://www.kalrayinc.com/
http://pluto-compiler.sourceforge.net/


Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

MatMult Deriche ANN
0

1

2
1 1 1

1
.5

1
.1 1
.21
.3

1
.2

0
.8

MatMult Deriche ANN
0

1

2

S
p

ee
d
u
p

(n
o
rm

a
li
ze

d
to

Σ
C

v
er

si
o
n
)

ΣC ΣC+tiling ΣC+tiling+//

Figure 12. Speed-ups, on the desktop platform.

Performance are improved by tiling alone and can be
further slightly more improved by using both tiling and
OpenMP parallelization. Again, using these options is
straightforward. We can then surely hope to obtain more
interesting results by pursuing our goal of tightly com-
bining polyhedral compilation with dataflow programming
languages.

Two performance retreats can be observed, for MatMult
and ANN, when using OpenMP on the desktop platform.
This is explained by the fact that when using tiling all 4
cores of machines are already fully busy. So when trying
to parallelize more by creating more threads at runtime, the
OpenMP runtime tends to overload the system’s scheduler:
global performance suffers from the negative impact of too
many thread context switches.

Finally, we show in figure 13 the speed-up (in %) that
is gained by applying the transformations suggested in
section III over the Deriche usecase. The fusion of agents
L1, L2 and L3 presented in figure 4 leads to a gain in
performance of at least 11% when using tiling on the code
of the resulting agent. The gain is limited to a few percents
when using both tiling and automatic parallelization. At the
time of writing, this still needs to be further investigated in
order to understand why both optimizations conflict in this
manner. We also need to pursue experiments on cluster-like
machines.

1 2 3 4
0

10

20

30

1
7
.4

1
8
.5

1
2
.4

6
.3

2
4
.6

1
1
.6

1
6
.7

1
1
.7

1
6
.1

5
.4

2
.9

1
.5

1 2 3 4
0

10

20

30

Number of cores used.

S
p

ee
d
u
p

(%
,

n
o
rm

a
li
ze

d
to

u
n
-f

u
se

d
v
er

si
o
n
) ΣC ΣC+tiling ΣC+tiling+//

Figure 13. Speed-ups (in %) due to agent fusion.

VII. RELATED WORK

We already cited some of our inspirations in Section III.
In this section we develop other related works.

In the polyhedral model community, the dataflow
paradigm is more of an intermediate representation than
an actual programming feature. The polyhedral process net-
works (PPN) [26], communicating regular processes (CRP)
[27], and data-aware process networks (DPN) [28] are
generated from a unique sequential program that is fully
polyhedral, or at least, where SCOPs have been correctly
identified. Further optimizations are made, like hierarchic
polyhedral scheduling for CRPs, or efficient implementation
of communicating buffers for DPNs [29]. The Compaan
compiler [30] transforms applications in the field of signal
and image processing (thus inherently dataflow applica-
tions [31], written in Matlab) to PPNs, from which they
can automatically derive an hardware description for FPGA
platforms. Although there is a significant amount of research
for deriving efficient control for PPNs with particular con-
straints coming from the hardware [32], all this process
remains polyhedral. Like the synchronous proposition of
[33], we believe that these polyhedral works should be
carefully integrated in our setting in order to gain benefit
of both task and instruction parallelism; however we do not
want to restrict the input language to a particular subclass
of statically optimizable kernels, like in [34].

The approach described in [35] tries to conciliate what
the authors call “macro dataflow” and the polyhedral model
in order to benefit from the optimization facilities of the
state-of-the-art polyhedral frameworks. This paper is the
most related to ours, and is as far as we know the only
other attempt at combining explicit agents and polyhedral
kernels. Contrarily to our proposition to use an existing
language (ΣC) and its ecosystem, they propose to use a more
restrictive language (DFGL) to define the “macro” dataflow
part as well as kernels, for which they propose a polyhedral
compilation (“intra-step” optimization). The coordination of
the “inter-step” parallelism is left to the underlying runtime
system. The expressivity of the language actually compiled
remains however in the classical polyhedral domain, since
the scheduling problem is resolved by encoding the whole
graph (macro and micro parts) as polyhedral dependencies
that are solved (and scheduled) classically. We believe that
a more general language approach should at least be able to
have the same polyhedral expressivity, but be general enough
to express non-regular behaviors inside and outside agents.

Finally, the authors of [36] propose an execution model
for single program multiple data (SPMD) on GPUs, based
on a polyhedral model based formulation. They propose
a way to extract “thread parallelism” from actual (non
fully polyhedral) applications. This approach is more a
runtime approach than a language approach, and is specific
to GPUs. In [37], the authors propose a polyhedral-based
precompilation phase for their runtime system DAGuE, in
order to expose data exchange information that is further
used by the runtime. Our approach is more ”friendly” to the
compiler since the SigmaC language makes some of these



Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

communications explicit. However both approaches share
with us the idea of the integration of polyhedral techniques
inside more pragmatic compilers and runtime that target full
applications.

VIII. CONCLUSION

We have proposed an approach for parallelizing ΣC
programs that takes advantage of the language’s constructs
to deal with task, pipeline and data parallelism and uses
polyhedral compilation techniques to further parallelize loop
nests inside the application’s agents. The approach is val-
idated with a set of non-trivial case studies. These case-
studies show, that the use of polyhedral compilation to
parallelize the internals of some agents increases programs’
performance by a factor between 1.3 and 3.5, depending
on the application and the parallelization technique used
on loop nests. We also show in one example case that
the combination of agent fusion and loop optimization can
improve performance by 11 %.

These results have been obtained with a simple experi-
mental approach only using off-the-shelve tools. These result
encourage us to pursue research on combining expertise
from dataflow programming languages and polyhedral com-
pilation. Our long term objective is to go towards a formal
framework to express, compile and run dataflow applications
with intrinsic instruction or pipeline parallelism.

We plan to investigate the following directions:
• A language approach: propose new stream programing

models where all kinds of parallelisms are expressed
explicitly, and where all activities from code design to
compilation and scheduling can be cleanly expressed.

• An experimental approach: explore various areas of
applications from classical dataflow examples like radio
signal and video processing to more recent applications
in deep learning algorithmic. This will enable us to
identify some potential (intra and extra) agents’ op-
timization patterns that could be leveraged into new
languages idioms.

ACKNOWLEDGMENT

We are grateful to people at Kalray for allowing us to
experiment with their ΣC compiler. Some of the experiments
presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by In-
ria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).

This work was also partially funded by the French Na-
tional Agency of Research in the CODAS Project (ANR-17-
CE23-0004-01).

REFERENCES

[1] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data flow programming language lustre,” Pro-
ceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, Sep
1991.

[2] W. Thies, “Language and compiler support for stream pro-
grams,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2009.

[3] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information processing. North-Holland,
1974.

[4] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet,
J.-F. Nezan, and O. Deforges, “Reconfigurable video
coding on multicore,” Signal Processing Magazine, IEEE,
vol. 26, no. 6, pp. 113–123, 2009. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5230810

[5] M. I. Gordon, “Compiler techniques for scalable performance
of stream programs on multicore architectures,” Ph.D. dis-
sertation, Massachusetts Institute of Technology. Dept. of
Electrical Engineering and Computer Science, 2010.

[6] J. B. Dennis, “First version of a data flow procedure lan-
guage,” in Symposium on Programming, 1974, pp. 362–376.

[7] P. Aubry, P.-E. Beaucamps, F. Blanc, B. Bodin, S. Carpov,
L. Cudennec, V. David, P. Dore, P. Dubrulle, B. D. d.
Dinechin et al., “Extended cyclostatic dataflow program
compilation and execution for an integrated manycore
processor,” Procedia Computer Science, vol. 18, pp. 1624–
1633, 2013. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1877050913004730

[8] G. Bilsen, M. Engels, R. Lauwereins, and J. Peper-
straete, “Cyclo-static dataflow,” Signal Processing, IEEE
Transactions on, vol. 44, no. 2, pp. 397–408, 1996.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=485935

[9] R. Deriche, “Using canny’s criteria to derive a recursively
implemented optimal edge detector,” International Journal
of Computer Vision, vol. 1, no. 2, pp. 167–187, Jun 1987.
[Online]. Available: https://doi.org/10.1007/BF00123164

[10] P. Feautrier, “Dataflow analysis of array and scalar ref-
erences,” International Journal of Parallel Programming,
vol. 20, no. 1, pp. 23–53, 1991.

[11] ——, “Some efficient solutions to the affine scheduling
problem, II, multi-dimensional time,” International Journal
of Parallel Programming, vol. 21, no. 6, pp. 389–420, Dec.
1992.

[12] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sa-
dayappan, “A practical automatic polyhedral parallelizer and
locality optimizer,” in Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’08, 2008, pp. 101–113.

[13] A. Darte, R. Schreiber, and G. Villard, “Lattice-based memory
allocation,” IEEE Transactions on Computers, vol. 54, no. 10,
pp. 1242–1257, 2005.

[14] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien,
P. Quinton, and D. Wonnacott, “ompVerify: Polyhedral anal-
ysis for the OpenMP programmer,” in Proceedings of the 7th
International Workshop on OpenMP, ser. IWOMP ’11, Jun.
2011, pp. 37–53.

https://www.grid5000.fr
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230810
http://www.sciencedirect.com/science/article/pii/S1877050913004730
http://www.sciencedirect.com/science/article/pii/S1877050913004730
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=485935
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=485935
https://doi.org/10.1007/BF00123164


Author Version of « Polyhedral DataFlow Programming, a Case Study », Romain Fontaine, Laure 
Gonnord, Lionel Morel, accepted in SPAC-PAD, 2018.

[15] T. Yuki, P. Feautrier, S. Rajopadhye, and V. Saraswat, “Array
dataflow analysis for polyhedral X10 programs,” in Proceed-
ings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’13, Feb.
2013, pp. 23–34.

[16] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and
C. Bastoul, “The polyhedral model is more widely applicable
than you think,” in Proceedings of the 19th Joint European
Conference on Theory and Practice of Software, International
Conference on Compiler Construction, ser. CC’10/ETAPS’10,
2010, pp. 283–303.

[17] S. Rus, L. Rauchwerger, and J. Hoeflinger, “Hybrid analysis:
Static and dynamic memory reference analysis,” International
Journal of Parallel Programming, vol. 31, no. 4, pp. 251–283,
2003.

[18] S. Rus, G. He, C. Alias, and L. Rauchwerger, “Region array
SSA,” in Proceedings of the 15th International Conference
on Parallel Architectures and Compilation Techniques, ser.
PACT ’06, 2006.

[19] A. Jimborean, P. Clauss, J.-F. Dollinger, V. Loechner, and
M. Juan Manuel, “Dynamic and speculative polyhedral paral-
lelization using compiler-generated skeletons,” International
Journal of Parallel Programming, vol. 42, no. 4, pp. 529–545,
Aug. 2014.

[20] J. Travis and J. Kring, LabVIEW for everyone: graphical
programming made easy and fun. Prentice-Hall, 2007.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensor-
flow: A system for large-scale machine learning.” in OSDI,
vol. 16, 2016, pp. 265–283.

[22] E. A. Lee and D. G. Messerschmitt, “Static scheduling
of synchronous data flow programs for digital signal
processing,” IEEE Trans. Comput., vol. 36, no. 1, pp. 24–35,
Jan. 1987. [Online]. Available: http://dx.doi.org/10.1109/TC.
1987.5009446

[23] L. Morel, M. Selva, K. Marquet, C. Saysset, and
T. Risset, “CalMAR - a Multi-Application Dataflow
Runtime (short paper),” in Thirteenth ACM International
Conference on Embedded Software 2017, EMSOFT’17,
Seoul, South Korea, Oct. 2017. [Online]. Available:
https://hal.inria.fr/hal-01631691

[24] T. Grosser, S. Pop, R. J., and S. Sadayappan, “On recovering
multi-dimensional arrays in Polly,” in IMPACT 2015 - 5th In-
ternational Workshop on Polyhedral Compilation Techniques
IMPACT 2015, Amsterdam, The Netherlands, Jan. 2015, p. 9.

[25] F. Branchaud-Charron and F. R. Taehoon Lee, “Keras:
The Python Deep Learning library.” [Online]. Available:
https://keras.io/

[26] S. Verdoolaege, Polyhedral Process Networks. New York,
NY: Springer New York, 2013, pp. 1335–1375. [Online].
Available: https://doi.org/10.1007/978-1-4614-6859-2 41

[27] P. Feautrier, “Scalable and structured scheduling,”
International Journal of Parallel Programming, vol. 34,
no. 5, pp. 459–487, Oct 2006. [Online]. Available:
https://doi.org/10.1007/s10766-006-0011-4

[28] C. Alias and A. Plesco, “Data-aware Process Networks,”
Inria - Research Centre Grenoble – Rhône-Alpes, Research
Report RR-8735, Jun. 2015. [Online]. Available: https:
//hal.inria.fr/hal-01158726

[29] C. Alias, “Improving Communication Patterns in Polyhedral
Process Networks,” INRIA Grenoble - Rhône-Alpes,
Research Report RR-9131, Dec. 2017. [Online]. Available:
https://hal.inria.fr/hal-01665155

[30] B. Kenhuis, E. Rijpkema, and E. F. Deprettere, “Compaan:
deriving process networks from Matlab for embededd signal
processing archictures,” in 8th International Workshop on
hardware/Software Codesign, ser. CODES’2000, May 2000.

[31] J. T. Zhai, H. Nikolov, and T. Stefanov, “Modeling adaptive
streaming applications with parameterized polyhedral process
networks,” in 2011 48th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), June 2011, pp. 116–121.

[32] S. Derrien, A. Turjan, C. Zissulescu, and E. F.
Deprettere, “Deriving efficient control in Process
Networks with Compaan/Laura,” International Journal
of Embedded Systems, 2008. [Online]. Available:
https://doi.org/10.1504/IJES.2008.020298

[33] K. Didier, A. Cohen, A. Gauffriau, A. Graillat, and D. Potop-
Butucaru, “Sheep in wolf’s clothing: Implementation models
for data-flow multi-threaded software,” Inria Paris, Research
Report RR-9057, Apr. 2017. [Online]. Available: https:
//hal.inria.fr/hal-01509314

[34] A. Cohen, A. Darte, and P. Feautrier, “Static Analysis of
OpenStream Programs,” CNRS ; Inria ; ENS Lyon, Research
Report RR-8764, Jan. 2016, corresponding publication
at IMPACT’16 (http://impact.gforge.inria.fr/impact2016).
[Online]. Available: https://hal.inria.fr/hal-01184408

[35] A. Sbı̂rlea, J. Shirako, L.-N. Pouchet, and V. Sarkar, “Poly-
hedral optimizations for a data-flow graph language,” in
Languages and Compilers for Parallel Computing, X. Shen,
F. Mueller, and J. Tuck, Eds. Cham: Springer International
Publishing, 2016, pp. 57–72.

[36] A. Balevic and B. Kienhuis, “A data parallel view
on polyhedral process networks,” in Proceedings of the
14th International Workshop on Software and Compilers
for Embedded Systems, ser. SCOPES ’11. New York,
NY, USA: ACM, 2011, pp. 38–47. [Online]. Available:
http://doi.acm.org/10.1145/1988932.1988939

[37] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, and J. Don-
garra, “From serial loops to parallel execution on distributed
systems,” in Euro-Par 2012 Parallel Processing, C. Kakla-
manis, T. Papatheodorou, and P. G. Spirakis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 246–257.

http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1109/TC.1987.5009446
https://hal.inria.fr/hal-01631691
https://keras.io/
https://doi.org/10.1007/978-1-4614-6859-2_41
https://doi.org/10.1007/s10766-006-0011-4
https://hal.inria.fr/hal-01158726
https://hal.inria.fr/hal-01158726
https://hal.inria.fr/hal-01665155
https://doi.org/10.1504/IJES.2008.020298
https://hal.inria.fr/hal-01509314
https://hal.inria.fr/hal-01509314
https://hal.inria.fr/hal-01184408
http://doi.acm.org/10.1145/1988932.1988939

	Introduction
	Background
	Data Flow Programming
	Polyhedral model

	General Approach
	Implementation
	Experiments
	Use cases
	Experimental setting

	Results
	Related work
	Conclusion
	References

