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Abstract. The modeling of ultrasonic Non Destructive Evaluation often plays an important part in the assessment of 

detection capabilities or as a help to interpret experiments. The ultrasonic modeling tool of the CIVA platform uses semi-

analytical approximations for fast computations. Kirchhoff and GTD are two classical approximations for the modeling 

of echoes from plane-like defects such as cracks, and they aim at taking into account two different types of physical 

phenomena. The Kirchhoff approximation is mainly suitable to predict specular reflections from the flaw surface, 

whereas GTD is dedicated to the modeling of edge diffraction. As a consequence, these two approximations have distinct 

and complementary validity domains. Choosing between them requires expertise and is problematic in some inspection 

configurations. The Physical Theory of Diffraction (PTD) was developed based on both Kirchhoff and GTD in order to 

combine their advantages and overcome their limitations. The theoretical basis for PTD and its integration in the CIVA 

modeling approach are discussed in this communication. Several results that validate this newly developed model and 

illustrate its advantages are presented. 
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INTRODUCTION 

The ultrasonic testing simulation module of the CIVA software offers ways of computing crack echoes, 

including semi-analytical models [1,2] and a hybrid model using finite element code (ATHENA code)[3]. In the 

CIVA 10 version, two semi-analytical models were available in the case of cracks: Kirchhoff and GTD [4]. They are 

based on different approximations and have complementary validity domains. Choosing between the two models 

required expertise. Moreover, in some inspection configurations, no model was entirely satisfactory. The PTD 

model, available in CIVA 11, aims at overcoming these limitations.  

In this communication, the hypotheses of the Kirchhoff and GTD models are described in terms of Crack 

Opening Displacement. This formalism is then used to explain the principle of the more complete PTD model, 

which relies on both Kirchhoff and GTD. PTD simulated results are finally compared to both Kirchhoff and GTD 

simulations and in addition to finite element simulations. 



CRACK SCATTERING MODELS 

The three semi-analytical models used in CIVA for the simulation of crack echoes are presented here, after 

defining the Crack Opening Displacement which will be used to shed light on the different approximations. 

Crack Opening Displacement 

The Crack Opening Displacement (COD) is defined as the difference between the displacements on the two sides 

of a planar crack. It is a determining factor in the scattering of a planar crack. One way to make it appear is to 

develop the expression for the scattering signal given by Auld [5] in the frequency domain: 

 

 𝛿Γ𝑏𝑎 =
1

4𝑃
∫ (𝑣1⃗⃗⃗⃗ ∙ 𝑇2 − 𝑣2⃗⃗⃗⃗ ∙ 𝑇1) ∙ 𝑛⃗̂ 𝑑𝑆
𝑆𝐹

, (1) 

 

where 𝛿Γ𝑏𝑎 is the difference in the measured signal due to the presence of the crack, P is the excitation power, 𝑣  

a particle velocity, 𝑇 a stress, 𝑆𝐹 the flaw surface and 𝑛⃗̂  the local outward normal to that surface. The index 1 

denotes the field obtained when the emitting probe emits and the flaw is absent. The index 2 denotes the field 

obtained when the receiving probe emits and the flaw is present. 

We assume that the surface of a planar crack behaves as a free surface. Therefore, the presence of the flaw 

implies that the stress projected on the normal to the surface is zero. This leads to the disappearance of the first term 

of equation (1). The COD appears in the remaining term when the contributions on the two sides on the crack are 

combined: the stress 𝑇1 in the absence of the crack is continuous and the normal 𝑛⃗̂  has opposed directions on each 

sides. It is then possible to make the COD appear: 

 

 𝛿Γ𝑏𝑎 = −
𝑖𝜔

4𝑃
∫ 𝐶𝑂𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ ∙ 𝑇1 ∙ 𝑛⃗̂ 𝑑𝑆
𝑆+

, (2) 

 

S+ is one of the sides of the crack, arbitrary chosen, ω is the angular frequency and the COD is defined here as 

the difference between the particle displacement on the side S+ and on the other side at the same location. 

The focus of this communication is the computation of crack echoes. The ultrasonic fields in the absence of the 

crack are known. In the applications presented here, they are calculated in CIVA software using a paraxial beam 

method [6]. In this framework, the modeling of crack scattering can be reduced to the calculation of the COD. In the 

next sections, the Kirchhoff and GTD models are described with an emphasis on the corresponding CODs.  

The Kirchhoff approximation 

The Kirchhoff approximation consists, for each point of the defect surface, in assuming that the surface is an 

infinite plane tangent to the actual surface. The ultrasonic field at this point is expressed as the sum of an incident 

plane wave and the plane waves reflected by the infinite plane. This approximation is also sometimes called the 

“tangent plane approximation”. The ultrasonic field is supposed to be zero on the non-insonified side of the crack, 

therefore the COD coincides with the displacement on the insonified side. 

Coefficients for different incident and diffracted waves and angles for the scattering of ultrasonic waves by 

cracks are given by Chapman [7]. The current CIVA implementation of Kirchhoff model computes the integral of 

equation (2) numerically based on the amplitudes of incident and reflected waves [8], instead of using expressions 

such as those of Chapman where the amplitudes of these waves are implicit. This approach has the advantage of 

being easily adapted to any material. 

The Kirchhoff expression of the echo in an integral form over the flaw surface allows a lot of flexibility in 

practical applications, as the variations of the fields over the surface or complex flaw geometries can easily be taken 

into account. 

The Kirchhoff approximation implies that the COD can be non-zero at the edge of a crack. This is non-physical, 

as the two sides of a crack join at the edge, therefore there cannot be any difference between their displacements at 

such locations. This leads to errors in the calculated diffraction when the contribution of the edge is significant. As a 

consequence, the Kirchhoff approximation will tend to be inaccurate in the calculation of edge diffraction. 



Conversely, it will tend to give reliable results for specular echoes, where the contributions of the crack surface 

dominate compared to the contributions of the edges. 

The Geometrical Theory of Diffraction  

The Geometrical Theory of Diffraction (GTD) is based on an exact solution for the COD of a semi-infinite 

crack. As a consequence, it is complementary to the Kirchhoff approximation: it is appropriate for modeling edge 

diffraction, but not for specular echoes.  

Notable early works on the application of GTD to elastodynamics have been done by Achenbach and Gautesen 

[9]. For the purpose of an interpretation in terms of COD, another way of obtaining coefficients [10] is more 

convenient. This later approach makes use of expressions similar to the integral of equation (2). For incident plane 

waves, the amplitude of 𝑇1 is an oscillating exponential and the integral can be treated as a spatial Fourier transform 

of the COD. This Fourier transform is calculated asymptotically using the stationary phase method. The asymptotic 

calculation is accurate for most wave directions, except for those near critical angle where it can cause errors and for 

those around specular and transmission directions.  

The main limitation of the GTD coefficients is their divergence around specular and transmission directions, 

which is related to the semi-infinite crack assumption. 

The Physical Theory of Diffraction 

There are several ways of overcoming the limitations of the Kirchhoff and GTD models. One is to improve the 

GTD model in order to correct its results in the specular and diffraction regions. This leads to methods such as the 

Uniform Asymptotic Theory (UAT) of diffraction [11-13]. These methods constitute an improvement over GTD but 

they are inconvenient for handling complex geometries and taking into account the variations of the fields over the 

surface of the flaw. 

The Physical Theory of Diffraction (PTD) is another way to overcome these limitations. It has been proposed 

under several forms by several authors: It was first developed in acoustics [14], and later in elastodynamics [15]. 

The work presented here is based on another elastodynamic form proposed in [16]. It allows combining all the 

advantages of the Kirchhoff (suitable for specular and echoes, convenient for complex geometries and field 

variations) and GTD (suitable for diffraction echoes) models. The PTD echo of a 2D planar crack can be 

decomposed in the following way: 

 

 𝐸𝑐ℎ𝑜𝑃𝑇𝐷 = 𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐺𝑇𝐷
𝐸𝑑𝑔𝑒1

–𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐾𝑖𝑟𝑐ℎℎ𝑜𝑓𝑓
𝐸𝑑𝑔𝑒1

+ 𝐸𝑐ℎ𝑜𝐾𝑖𝑟𝑐ℎℎ𝑜𝑓𝑓 +

𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐺𝑇𝐷
𝐸𝑑𝑔𝑒2

–𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐾𝑖𝑟𝑐ℎℎ𝑜𝑓𝑓
𝐸𝑑𝑔𝑒2

 , (3) 

 

where EchoKirchhoff and DiffractionGTD are the outputs of the Kirchhoff and GTD model. DiffractionKirchhoff is a 

correction term that ensures the consistency of the model. This term corresponds to the diffraction by a semi-infinite 

crack simulated in the Kirchhoff approximation: it can be obtained by applying the same asymptotic approach as for 

the GTD model, except the exact COD is replaced by the Kirchhoff approximated COD. 

DiffractionKirchhoff has two notable properties. Around specular directions, it diverges in the same way as the GTD 

coefficient. For observation directions for which edge diffraction is predominant, it agrees with standard Kirchhoff 

coefficient. As a result, in expression (3), the two DiffractionKirchhoff terms will cancel EchoKirchhoff in diffraction 

directions and they will cancel the singularities of the two DiffractionGTD terms in specular directions. PTD therefore 

agrees with GTD for diffraction echoes and with Kirchhoff for specular echoes. 

An interpretation in terms of COD clarifies the way PTD combines Kirchhoff and GTD models. As the echoes 

are proportional to the COD, the echo decomposition of equation (3) translates into a COD decomposition: 

 

 

 𝐶𝑂𝐷𝑃𝑇𝐷 = 𝐶𝑂𝐷𝐺𝑇𝐷
𝐸𝑑𝑔𝑒1

–𝐶𝑂𝐷𝐾𝑖𝑟𝑐ℎℎ𝑜𝑓𝑓
𝐸𝑑𝑔𝑒1

+ 𝐶𝑂𝐷𝐾𝑖𝑟𝑐ℎℎ𝑜𝑓𝑓 + 𝐶𝑂𝐷𝐺𝑇𝐷
𝐸𝑑𝑔𝑒2

– 𝐶𝑂𝐷𝐾𝑖𝑟𝑐ℎℎ𝑜𝑓𝑓
𝐸𝑑𝑔𝑒2

, (4) 

 

where the COD associated to an edge is the COD of a semi-infinite crack starting at the corresponding edge. 

The case of a 2D crack in normal incidence (figure 1) will be considered as an illustration.  

 



 

FIGURE 1. Simplified case for the illustrations of the COD. The crack size has been taken as unity. 
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(c) 

 
(d) 

 
(e) 
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FIGURE 2. CODs corresponding to different components of the PTD model. COD is expressed as multiples of the displacement 

of the incident longitudinal wave. The unit distance is the size of the crack. The location of the crack is represented by a thick 

black line. (a): Kirchhoff model, (b): Kirchhoff diffraction for the left edge, (c): Kirchhoff diffraction for the right edge, (d): GTD 

for the left edge, (e): GTD for the right edge, (f): Total PTD. 
 

In this simplified case, the COD corresponding to the Kirchhoff approximation (figure 2(a)) is uniform along the 

crack. As expected with this approximation, it has an unrealistic discontinuity at the edges of the crack, where the 

COD should be zero. Figure 2(b) and 2(c) shows the COD corresponding to the Kirchhoff approximation for a semi-

infinite crack starting at the left edge. Figure 2(d) and 2(e) show the exact solution for the COD corresponding to a 

semi-infinite crack starting at the left edge [17]: it illustrates the exact solution for the COD, which is implied but 

not explicitly given in the GTD model. Figure 2(f) is the COD corresponding to the sum of the 5 previous CODs, as 

expressed in equation (4). It illustrates how the corrective terms cancel the undesirable effects of each model: the 

discontinuity due to Kirchhoff disappears, and so do the semi-infinite contributions of GTD. Only small residual 

oscillations due to GTD remain.  

For more complex crack geometries or for non-homogeneous fields, the treatment of the edges is similar as in 

the simple case: the crack is still assumed to be semi-infinite, whereas the field is assumed to be constant and to 

have the same value as at the edge everywhere. However, the surface integral of the Kirchhoff approximation is 

done by taking into account both the specific geometry of the crack and the spatial variations of the field.  

In the CIVA implementation of this method, the surface and the edges of the crack are both meshed. The surface 

mesh is used for the computation the CODKirchhoff term in equation (4), and the edge mesh the DiffractionGTD-

DiffractionKirchhoff terms. Figure 3 illustrates how defects can be meshed. 
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FIGURE 3. Examples of crack meshes for the calculation of echoes in the PTD approximation. Red dots are the mesh points for 

the Kirchhoff model, blue crosses are the mesh points for the edge diffraction. (a): rectangular crack, (b): circular crack. 

COMPARISON OF RESULTS OBTAINED WITH THE DIFFERENTS MODELS  

In this section, simulated echoes obtained for a crack seen from different incident angles in a pulse-echo 

configuration are shown. They will illustrate how PTD behaves compared to Kirchhoff and to GTD for different 

directions, and compared to a finite elements result. 

Comparison echo calculated with the three models 

 
 

 

(a) 
 

(b) 
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(d) 

FIGURE 4. Two measurement pulse-echo configurations and echo signals for a 5mm crack in a cylinder inspected using 

compressional waves, in a 2D configuration. (a): normal incidence configuration, (b): normal incidence echoes, (c):  45° 

incidence configuration, (d): 45° incidence echoes. For (b) and (d), the solid black lines are the PTD results, the red dashed lines 

(larges dashes) are the Kirchhoff results and the blue dashed lines (small dashes) are the GTD results. 

 

The echoes of figure 4 (b) correspond to specular reflection. As expected, PTD agrees with Kirchhoff and not 

with GTD. It should be noted that for practical use in CIVA, the divergence of the GTD coefficients is attenuated by 

preventing the coefficient to rise too much around specular directions. It explains why the GTD result is low. An 

unaltered GTD model would yield an echo with extremely high amplitude, and would still not agree with PTD. 

The echoes of figure 4 (d) correspond to edge diffraction. As expected, PTD agrees with GTD and not with 

Kirchhoff. 



Comparison of echoes obtained using the PTD model and a finite elements approach 

 

 

FIGURE 5. Variations of the echo amplitude in the pulse-echo configuration of Figure 4 for a wider range of incident angles. 

The horizontal axis is the angle (in degrees) corresponding to the incidence on the crack, 90° being the normal incidence. 

 

The results of figure 5 have been obtained by computing the echo in the configuration of figure 4 for a wider 

range of probe positions around the cylinder. Computations have been performed using the CIVA implementation of 

the PTD model and the CIVA-Athena finite element module [3]. A satisfactory agreement is obtained for all angles, 

regardless of whether the predominant phenomenon is edge diffraction or specular reflection. Significant 

differences, such as those of figure 4, would have been obtained for diffraction angles between PTD and Kirchhoff 

and for specular angles between PTD and GTD. 

CONCLUSION 

The PTD model combines the Kirchhoff and GTD models to cover the validity domain of both of them. The 

interpretation in terms of Crack Opening Displacement presented in this paper provides insight in the hypothesis of 

the model and could be used as a framework for new model developments.  

PTD has been implemented in the CIVA 11 software as a way to improve the simulation of crack echoes. It 

makes the results more accurate in cases where Kirchhoff or GTD were not sufficient, and removes the need for the 

user to select the appropriate echo model. Limitations remain in cases that could not be treated by Kirchhoff or by 

GTD (namely, scattering at critical angles or echoes of very small cracks) and are of interest for additional 

developments. 
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