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Frequency-dependent permeability tensor for unsaturated polycrystalline fer-

rites is derived through an effective medium approximation that combines

both domain-wall motion and rotation of domains in a single consistent scat-

tering framework. Thus derived permeability tensor is averaged on a distri-

bution function of the free energy that encodes paramagnetic states for an-

hysteretic loops. The initial permeability is computed and frequency spectra

are given by varying macroscopic remanent field.
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I. INTRODUCTION

The determination of the frequency-dependent permeability tensor of a mag-

netic unsaturated gyrotropic medium such as ferrites materials is a long stand-

ing problem1–3. It has been demonstrated useful to describe precisely this tensor

in frequency to obtain novel radiation and scattering characteristics of microstrip

antennas4. To the physical point of view in dense polycrystalline materials, the

frequency behavior of the permeability in the range from 100kHz to 20GHz is under-

stood as a superposition of magnetization changes due to domain-walls motion and

coherent rotations of magnetic domains1,5. However, Grimes6,7 has suggested that

the observed spectra may be also interpreted as multiple scattering of electromag-

netic waves in these polycrystalline materials by both random magnetic and dielectric

homogeneous spheres. Unfortunately this deduced interpretation has not been tested

when magnetic materials, subject to external dc uniform magnetic field present an

hysteresis behavior on the magnetization and changes the derived permeability. A

convergence of these two alternate mechanisms was first recognized by Schlömann8

who’s derived a relationship between the isotropic permeability in a completely de-

magnetized state by computing the scattering of magnetic fields in the static limit

by out-of-phase and concentrical cylinders of gyromagnetic single-domains. The ex-

tension of this idea to unsaturated magnetic states was conducted by Bouchaud

and Zérah9 but the bridge between the local remanent magnetization, included as

fractions of magnetic volumes of scatterers and the observed average distribution of

magnetization directions of domains in the tridimensional space reminded elusive.

To get into account the anisotropic nature of this scattering problem, Stroud10 was

pioneer to generalize an old effective-medium approximation (EMA) for the con-

ductivity tensor of a randomly inhomogeneous medium to treat materials consisting

of crystallites of arbitrary shape and conductivity tensors of arbitrary symmetry.
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Derivation of non diagonal permeability tensors for magnetized granular composites

has been then reported11 and several models for the calculation of complex perme-

ability of magnetic composite materials have been proposed12,13. By using the EMA,

even the influence of porosity induced by non-magnetic inclusions in magnetized het-

erogeneous materials has been computed14. However, even in the quasi-static limit

of frequency, the problem of taking into account dynamically the magnetic multiple-

scattering of both domain-walls and single domains simultaneously in a consistent,

anisotropic formulation is not achieved yet. This is the main purpose of this paper.

II. EFFECTIVE MEDIUM APPROXIMATION FOR

UNSATURATED FERRITES

Because electrical non-conducting media are considered, the ferrites are treated

as uniform from the dielectric point of view. The amplitude of an ac magnetic

field applied is sufficiently low to let first the transverse permeability tensor being

independent of it and to generate a small local transverse oscillating magnetic field

only.

Saturated ferrites exhibit anisotropic permeability described by the well known

Polder tensor15, resulting in the nonreciprocal behavior of microwaves into magne-

tized ferrite used for the design of circulators and isolators16. As any reference axis

may be chosen to project the third component of an arbitrary magnetization vec-

tor, the z-axis is then taken for that. So in a cartesian frame and for any arbitrary

direction, the magnetization vector is represented by only 2 angles, a polar one θ

and an azimutal one φ. Then in this arbitrary frame, the gyromagnetic permeability

tensor can be expressed in a general form17,18. Such saturated ferrite is thus char-

acterized by only three circular permeabilities which come from the response of the

magnetization to a rotating ac magnetic field. This corresponds to diagonalize the

3



general form of the gyromagnetic permeability tensor as first recognized by Tyras

a long time ago17. It is always possible to select a frame that puts the saturation

magnetization vector along the z-axis and in that case, one of the third component

of the permeability is equal to 1 and the ferrite is characterized by only 2 remaining

permeabilities.

For an unsaturated polycristalline ferrite, the spectral value of the 3 eigenvalues

as a function of a given reduced remanent magnetization state m = Mz/Ms ≡ cos(θ)

pointing along the z-axis, is not so easily found. One may get this effective tensor as a

statistical average of the Polder tensor in a non-interacting magnetic grains picture.

This strategy was investigated19. Because the distribution of the magnetization

direction (the magnetic texture) has to be given, and can change as a function ofm, it

results that the non-interacting assumption is strictly satisfied for a system consisted

in an assembly of single-crystal spheres situated in a non-magnetic medium far from

one another, a condition rarely observed in dense soft ferrites20,21. No interaction

between domains and domain-walls can be considered in such picture and this also

neglects the influence of the shape of the magnetic domains and pores. So a two

steps mechanism is introduced. The magnetostatic interaction between domains has

to be treated first and then the resulting composite medium has to be statistically

averaged.

For any value of m, consider that the effective 3 × 3 permeability tensor µe can

be diagonalized and expressed in a circular frame by the following diagonal tensor

(see Appendix A for the notations):

µe =











µe + κe 0 0

0 µe − κe 0

0 0 µez











, (1)

where µe and κe are the diagonal and off-diagonal components of the permeability
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expressed in a cartesian frame17. µez is the permeability value which connects both

the magnetization and the ac field along the z-axis.

A. Two-phase model

By using the same argument to the scale of a magnetic ”grain”, let us consider

”up” and ”down” borderless single domain grains which differ only by the direction

of their magnetization vector and thus by a change of a sign. Their respective

permeability tensors are

µ1 =











µ+ κ 0 0

0 µ− κ 0

0 0 µz











and µ2 =











µ− κ 0 0

0 µ+ κ 0

0 0 µz











. (2)

Now, one consider that each borderless domain can be represented with Polder ex-

pressions in frequency. Such analytical expressions of µ, κ and µz are determined

from the solution of the Landau-Lifchitz equation in the small signal approximation

such as :

µ = 1 +
η − ıαΩ

(η − ıαΩ)2 − Ω2
, (3)

κ =
Ω

(η − ıαΩ)2 − Ω2
, (4)

µz = 1, (5)

with η = Hk/Ms the reduced anisotropy field assuming an uniaxial symmetry, Ω =

ω/γµ0Ms the reduced pulsation with γ the gyromagnetic ratio, Ms the saturation

magnetization, µ0 the permeability of free space and α is the damping constant.

If the domain structure (”up” and ”down”) is distributed such as one cannot dis-

tinguish any direction in the perpendicular plane to the magnetization on a macro-

scopic scale, then the permeability tensor must be diagonal with respect to such a
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rotating field8. To get that, one may consider domains in the shape of infinite circular

cylinders8. The demagnetizing tensor for a single cylinder embedded in a effective

anisotropic medium in the quasi-static approximation is then

Γ =













−
1

2µe

0 0

0 −
1

2µe

0

0 0 0













. (6)

Even when the medium is characterized by an anisotropic tensor, Eq.(A12) yields a

diagonal Γ tensor with Γ11 = Γ22 for both cylindrical and spherical crystallites. In

our situation, Γ is invariant through any cylindrical rotation around the z-axis and

preserves this structure in the rotating frame.

Now some EMA procedure has to be applied in order to get the effective quantities

(µe, κe, µez) as functions of (µ, κ, µz) and m. It is well known that the EMA depends

on the choice of the reference permeability22. Among these choices, the strong-

coupling interaction between domains is assumed and the symmetric self-consistent

situation is so retained. In our situation, this corresponds to let equation (A15) to

be zero. For each two-phase grain, the local magnetization of the composite medium

is m = (v1 − v2)/(v1 + v2) where v1 (resp. v2) is the volume occupied by the portion

of the grain where the magnetization is pointing in the z-direction (resp. opposite

to). Because the total volume is v1+ v2 = V , one can evaluate v1 = V (1+m)/2 and

v2 = V (1−m)/2. Thus Eq.(A15) reads

(1 +m)[1 − Γ(µ1 − µe)]
−1(µ1 − µe) + (1−m)[1− Γ(µ2 − µe)]

−1(µ2 − µe) = 0. (7)

By substituting matrices (1), (2) and (6) into equation (7), µe, κe, µez are connected

with µ, κ, µz and m as

µ2
e = µ2 µ2 − κ2

µ2 −m2κ2
(8)
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κe = mκ
µe

µ
(9)

µez = µz (10)

Remarkably when m = ±1, µe = µ, κe = κ and µez = 1, which implies that the

Polder tensor is recovered to the saturation limit. Equation (8) and (9) agree with

equations (3a) and (3b) of reference9 which state that for any cylindrically symmetric

but otherwise arbitrary configuration, this EMA procedure does not depend upon the

details of the domain configuration8,23. Equation (9) also agrees with several works1–3

which relies linearly the static magnetization along the z-axis with the value of the

off-diagonal permeability, at least for small values of m.

As a consequence, it is worth noting that for an effective two-components medium

and any diagonal surface tensor Γ, the demagnetized situation m = 0 always gives

κe = 0 and the following implicit equation for µe :

κeµe
2Γ22(µe, µez) + (1− 2µΓ22(µe, µez))µe + Γ22(µe, µez)(µ

2 − κ2)− µ = 0, (11)

depends only on the single component Γ22 = Γ11. This result is a generalization of

Eq.(8) to any geometry and anisotropic embedded medium resulting in a diagonal

surface tensor. By inserting Eq.(6) into Eq.(11), the equation (8) is recovered.

B. Three-phase model

Neglecting any magnetic after-effect or magnetic viscosity24, the permeability

spectra are described by two types of magnetizing processes: gyration of domains

and domain-wall motion25 which are generally analyzed separately26. In order to

take into account the lower frequency response of the previously introduced biphasic

medium, the permeability response for a domain-wall has to be consistently added.

Its spectral response is commonly assumed to be modeled by an isotropic expres-

sion of permeability27–31 that follows from a stiff and dampened 180o domain-wall
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motion25 :

µdw = 1 +
χdwη

2
dw

η2dw − Ω2 − ıαdwηdwΩ
. (12)

Here ηdw = Hdw/Ms is the reduced domain-wall resonance field, αdw is a damping

factor and χdw represents its static susceptibility. To allow the spectral representation

of such permeability to be reduced to two parameters only, its frequency permeability

may be approximated as a single uniaxial magnetic domain distribution in the case

of small damping and if χdw ≈ 1/ηdw. In order to let the static susceptibility of

the domain-wall to be higher than the value of a magnetic domain, it is assumed

that ηdw returns a smaller value of the anisotropy field in the domain-wall than the

anisotropy field η characterizing a domain.

The goal is to treat on the same footing the dynamics of interacting domains and

domain-wall motion for a given unsaturated value of magnetization m. An EMA

is thus constructed with a three components system. ”Up” and ”down” domains

are considered supplemented by a domain-wall, each component embedded in an

anisotropic effective medium with a cylindrical geometry. The homogenization pro-

cedure is depicted for a composite medium made up of uniaxial anisotropy particles

on Fig. (1). This gives the following implicit equation for µe

3
∑

i=1

vi

[

1− Γi(µi − µe)
]−1

(µi − µe) = 0, (13)

where µ1 and µ2 are the permeability tensors of domains and µ3 ≡ µdw1. Here vi

are the volume fraction of each component. As a consequence of the cylindrical

geometry, the same surface matrix Eq.(6) is taken into account for all the embedded

media. The fraction volumes have to be normalized according to limm→±1 v3 = 0

and one assumes

v1 ≡
1 +m

2(1 + a(1−m2))
, v2 ≡

1−m

2(1 + a(1−m2))
, v3 ≡

a(1−m2)

1 + a(1−m2)
, (14)
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«Up» domain «Down» domain Domain-Wall

Effective medium

0 = v1 +v2 +v3

Figure 1. Schematization of the homogenization procedure for a composite medium made

up of uniaxial anisotropy domains and domain-wall.

where a describes some proportion of domain-walls in the whole system. When a = 0

the previous two-phase situation is recovered and the limit case a → ∞ provides

µe = µdw. Because Γ33 is here zero, the zz-component of equation (13) gives exactly

µez and reads

µez =
µz + aµdw(1−m2)

1 + a(1−m2)
. (15)

One shows that µez = µz when a = 0 or m = ±1 as expected. In the demagnetized

state m = 0, µez is the volume addition of both the permeability of the domain

and domain-wall by reason of the superposition of the z-component of the magnetic

induction in all media. When κe = 0, µe is the solution of a single equation in (13)

9



which is written directly in a third-order polynomial form

µe
3+

µdw(1− a) + 2aµ

1 + a
µe

2−
(µ2 − κ2)(1− a) + 2aµdwµ

1 + a
µe−µdw(µ

2−κ2) = 0. (16)

The 3-body composite medium appears isotropic but the value of µe depends sur-

prisingly on the off-diagonal κ term. Among all the three complex-valued solutions

of equation (16), the unique root with the positive imaginary part is followed con-

tinuously in frequency to get the physical picture of a lossy material.

For m 6= 0, the xx and yy-components of equation (13) expand as











(1 +m)
µ− κ− µe + κe

µe + µ− κ+ κe

+ (1−m)
µ+ κ− µe + κe

µe + µ+ κ + κe

+ (1−m2)
2a (µdw − µe + κe)

µe + µdw + κe

= 0

(1 +m)
µ+ κ− µe − κe

µe + µ+ κ− κe

+ (1−m)
µ− κ− µe − κe

µe + µ− κ− κe

+ (1−m2)
2a (µdw − µe − κe)

µe + µdw − κe

= 0

(17)

and have to be solved simultaneously to get µe and κe. These equations are identical

by interchanging κ ↔ −κ and κe ↔ −κe which guaranties an exhibition of the

quantities κ2, κ2
e and κκe. A bi-dimensional root-finding numerical algorithm in the

complex plane using a variant of the Newton procedure is developed to get the couple

(µe, κe) for any values of m, a, µ, κ and µdw. As for the two-phase situation, Eqs.(15)

and (17) show that if m = ±1 then µe = µ, κe = κ and µez = 1. This is also true

by construction of the three-phase model. This implies that µe goes to the spectral

Polder tensor to the saturation limit.

C. Anhysteretic texture

The presence of a large amount of such composite media not necessarily dis-

tributed at random, has to be assessed by a space dependent fluctuation in the

magnetization direction to represent its magnetic texture. The statistical average

of any function U(θ, φ) of the direction angles θ and φ is defined as the following
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weighted normalized integral19:

〈U〉 ≡

∫ 2π

0

dφ

∫ π

0

dθ sin θf(θ, φ)U(θ, φ), (18)

where f(θ, φ) is a normalized texture function that distribute the angles on the unit-

sphere at equilibrium and is a function of external parameters such as applied dc

magnetic field, constrains etc.

When a full demagnetized state is desired at the macroscopic level, then the

average remanent field 〈m〉 should remain zero but on a statistical distribution of

the local direction of the magnetization. It is particularly true for the uniform angular

distribution. It is noted that even if κe 6= 0, one could also realized 〈κe〉 = 0 for any

angular distribution f(θ, φ) of the composite medium by satisfying

〈κe〉 =

∫ 2π

0

dφ

∫ π

0

dθ sin θf(θ, φ)

(

µez − µe

2
sin2 θ sin 2φ+ κe cos θ

)

= 0, (19)

which is true when f is uniform. This means that if desired, a locally anisotropic

composite medium which behaves statically isotropic may be constructed, once their

composite media are properly distributed.

For an uniform distribution of composite domains (2- or 3-boby) in the demagne-

tized state, one has 〈κe〉 = 0 and

〈µe〉 =

∫ 2π

0

dφ

∫ π

0

dθ sin θ
1

4π

(

µe + (µez − µe) sin
2 θ cos2 φ

)

=
2µe + µez

3
, (20)

〈µez〉 =

∫ 2π

0

dφ

∫ π

0

dθ sin θ
1

4π
(µez − (µez − µe) sin

2 θ) =
2µe + µez

3
, (21)

for biphasic cylindrical inclusions uniformly distributed into space and embedded

in a gyrotropic effective medium. So the statistical average effective tensor of a

demagnetized ferrite is

〈µe〉(m = 0) =
1

3
Tr(µe)1, (22)

which is the result found by Schlömann8.
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For an unsaturated medium when m increases in the z-direction, the distribu-

tion of the local magnetization angles cannot be uniform and is distributed around

the z-axis. Moreover whatever the value of m may take, 〈κe〉 = 0 for an uniform

distribution, which is in contradiction to experiments.

This problem can be circumvent by recalling that the probability that the local

magnetization occupies an infinitesimal solid angle in a given direction is therefore

strongly dependent on the magnetic free energy in this direction. Let

〈m〉 =

∫ 2π

0

dφ

∫ π

0

dθ sin θf(θ, φ) cos θ, (23)

the statistical average of the remanent magnetization. So when all the collective me-

dia are in the paramagnetic state driven by the exterior constant induction field µ0H

pointing in the z-direction, the function f is then given by an equilibrium Boltzmann

distribution f(θ, φ) = X exp(X cos(θ))/4π sinh(X) where X = AsMsµ0H which nat-

urally breaks the space isotropy when H 6= 032. The local magnetic moments of

the composite medium do not follow nor instantly nor spatially, the direction of

the external induction by coherent rotations but instead in defocusing their local

magnetization about the average direction. The free energy is scaled by the Arm-

strong’s parameter As which narrows statistically the distribution f when both the

nature and degree of disorder are known. An estimation of this parameter is given

by equating linearly 〈m〉 to H for small value of X and one has in our case

As ≈ 3
〈µez〉 − 1

µ0M2
s

, (24)

a result also found previously33.

Now the statistical average of µe has to be derived. By regrouping all the terms,

one can link exactly 〈µe〉, 〈κe〉 and 〈µez〉 with 〈m〉 to read

〈µe〉 = µe +
〈m〉

L−1(〈m〉)
(µez − µe) (25)
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〈κe〉 = 〈m〉κe (26)

〈µez〉 = µez −
2〈m〉

L−1(〈m〉)
(µez − µe) (27)

where L(x) = coth(x)−1/x is the Langevin function and L−1(x) is its inverse function

such as L−1◦L(x) = L◦L−1(x) = x. These three equations constitute the central re-

sult of this paper. One recognizes that 〈m〉 = L(Asµ0MsH) is the well known param-

agnetic result. Moreover the external field is modulated by the Armstrong parameter

and its contribution to rotate the average magnetization depends on the susceptibility

of the material. In a general situation, both µe and κe have to be evaluated by consid-

ering a direct map between the local remanent state m of the composite medium and

the macroscopic remanent magnetization 〈m〉 in a some sort of mean-field approx-

imation, i.e. m = 〈m〉. For practical applications, an approximation of the inverse

Langevin function is taken34 and one has 〈m〉/L−1(〈m〉) ≈ (1−〈m〉2)/(3−〈m〉2) for

all values of 〈m〉. One observes that Tr(〈µe〉) = Tr(µe) is an invariant quantity what-

ever the value of 〈m〉 may take. Moreover when 〈m〉 = 0 then 〈m〉/L−1(〈m〉) = 1/3,

〈µe〉 = (2µe + µez)/3, 〈µez〉 = (2µe + µez)/3 and 〈κe〉 = 0 as expected. This is

provided by the fact that limH→0 f(θ, φ) = 1/4π.

In the previous description of the effective permeability tensor, the magnetization

ratio 〈m〉 is a fixed parameter that states the magnetization along the z-axis. How-

ever the effective anisotropy field, which is characterized by the value of η is assumed

to be independent of such a state. When the material is probed by increasing an

external dc field H , a continuous variation of 〈m〉 occurs. Neglecting any supplemen-

tary demagnetizing fields coming from the geometry enforced on the domains and

domain-walls, the effective gyromagnetic resonance frequency of the magnetic do-

main shifts linearly with the amplitude of H during this process. This experimental

phenomenon has to be reproduced and to take it into account, the local effective field

inside each uniform media has to be carried out from a magnetization law. Several
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strategies have been derived to get an anhysteretic or hysteric magnetization law,

from coherent rotation mechanism14,35 to more elaborated models36,37. As a first step,

for each branches along the hysteresis loop, a local equilibrium function f(θ, φ) has

to be evaluated to derive the hysteretic unsaturated spectral permeabilities. Even

in the anhysteretic situation, one has at least to replace in the calculation of the

local permeability tensor of domains and domain-wall, the anisotropy field by an

effective field that rotates statically the magnetic moments from the easy axis of the

corresponding medium. This is done in our case by adding H/Ms to the anisotropy

constants, hence expressed as a function of 〈m〉 only one has

η → η +
L−1(〈m〉)

3(〈µez〉 − 1)
, (28)

ηdw → ηdw +
L−1(〈m〉)

3(〈µez〉 − 1)
. (29)

By reason of the dependance of 〈µez〉 in the anisotropy fields, equation (27) has to

be solved self-consistently. This procedure is initiated first by considering known the

case 〈m〉 = 0 as a guess of 〈µez(Ω = 0)〉 and secondly, that an infinitesimal increment

of 〈m〉 does not affect the previous value of 〈µez(Ω = 0)〉 hence found. This procedure

generates the desired permeability as a function of 〈m〉 by consecutive steps such as

〈µez(Ω = 0, 〈m〉+ δ〈m〉)〉 ≈ 〈µez(Ω = 0, 〈m〉)〉.

III. RESULTS

Soft NiZn ferrites have been synthesized and the effective permeability component

in a coaxial wave guide at the APC7 standard have been acquired38. These ferrites

have been demagnetized by proper thermal treatment above the Curie temperature.

It has been verified by measuring hysteresis loops along and perpendicular direction

to the hollow of the cylinder that the average remanent field 〈m〉 does not exceed

14



10−3. This spectral measurement reported on figure (2) allows to fit model param-

eters from equation (25), which are collected on table I. The fitted values (η, α)

100 k 1 M 10 M 100 M 1 G 10 G
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300
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600
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)

100 k 1 M 10 M 100 M 1 G 10 G
frequency (Hz)

0

50
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200
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300

(b
)

Figure 2. (Color online) Experimental real part (a) and imaginary part (b) of the effective

permeability 〈µe〉 measured in a coaxial wave guide at the APC7 standard for a demagne-

tized sintered NiZn ferrite (points). The black curve comes from the calculated effective

permeability described in the text using parameters found into table I.

for domains are in agreement with reference9. The ratio between domain-wall and

domain frequencies is ranged from (2−5)10−2 in MgFe ferrites25 which is compatible

with our fitted values. It has been reported a strong dependance on composition38,

porosity39, grain size5,40 and applied stresses41 in the low frequency regime, where

15



a η α ηdw αdw

5.0E-1 6.6E-3 2.4E-1 4.0E-4 9.6E-1

Table I. Parameters of the described model for demagnetized NiZn ferrites

domain-wall motion is the supposed dominant mechanism. However, the reported

dependancies may be interpreted more as a consequence of the EMA that mimic

the effective permeability tensor than a change of the intrinsic values of the param-

eters of the magnetic inclusions. For example, the static effective permeability of a

demagnetized medium is given by

〈µ′

e(0)〉 =
1 + aµdw + (µ− µdw)(1− a) +

√

((µ− µdw)(1− a))2 + 4(1 + a)2µµdw

3(1 + a)
(30)

where µ = 1 + 1/η, µdw = 1 + 1/ηdw are the corresponding static permeabilities.

It contains an equal contribution of the domain-walls and uniform spin rotation in

contradiction to the classical interpretation given by Snoek25 which links the initial

permeability to domain-wall susceptibility only. This formula also contains the frac-

tion of the domain-walls a as a continuous parameter. For large value of a, the initial

permeability is well described by the permeability of the domain-wall in agreement

with the classical interpretation. On the other side, when a → 0 this is the static

part of the domain permeability that drives the initial permeability. The classical

interpretation has already been questioned42 and the assumption of a perfect addi-

tion of the two types of magnetic processes as described in reference43, reveals itself

puzzling with a varying remanent field.

The behavior of the effective diagonal and off-diagonal permeability with an in-

creasing value of the remanent magnetization 〈m〉 is now investigated. For the same

parameters in the table I, the spectra are depicted on figure 3. The magnetic behav-

ior of these spectra is strongly similar to those measured from reference28, once given
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Figure 3. (Color online) Spectral real (straight line) and imaginary (dotted line) part

of the effective permeability 〈µe〉 (sub-figure a), effective off-diagonal susceptibility 〈κe〉

(sub-figure b) and effective zz permeability 〈µez〉 (sub-figure c) as a function of several

macroscopic remanent magnetization values 〈m〉.

the magnetization law that connects 〈m〉 to the external uniform magnetic field H .

Because the domain-wall permeability tensor does not carry any off-diagonal expres-

sion, the resulting effective off-diagonal permeability is small at very low frequency

and simply dominated by the susceptibly coming from the domains. This is in agree-

ment with first direct observation of domain rotation in ferrites44 and by accurate

measurements given by Green et al.45.
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IV. CONCLUSION

Effective permeability tensor for unsaturated polycrystalline ferrites are derived

through an EMA and combines domain-wall motion and rotation of domains in a

single consistent framework. The dispersion of the local magnetization axis that

encodes the polycrystalline character is taken into account by averaging the free

energy to restore the magnetic anhysteretic behavior. The initial permeability is

given as a mixture formula of magnetic inclusions and fraction of domain-wall which

gives a picture of the low-frequency permeability spectra as a magnetic scattering

in geometrically arrangement of domains and domain-walls instead of varying mate-

rial properties. It is envisioned that this theory can be extended to treat multiple

scattering of electromagnetic fields in such cylindrical geometry to include multiply

peaked spectra observed in several uniform, polycrystalline materials.
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Appendix A: EMA formalism

The double overbars indicate a tensor notation of rank 2, such as the i-th an j-th

component of a tensor A is [A]ij ≡ Aij . A medium of volume V , bounded by a

surface S is characterized by a permeability tensor µ as a function of frequency and

whose values are random in position. It is random in a sense that the configuration

average of µ(~r), denoted 〈µ〉, is independent of ~r. It is also implicitly supposed

that this configuration average is equivalent to a volume average, which is the zero
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wave-vector of the spatial Fourier transform of µ(~r), such as 〈µ〉 ≡ V −1
∫

V
µ(~r)d~r.

The measurable permeability tensor µe is the constant of proportionality between

applied magnetic field ~H0 such as 〈 ~H〉 ≡ ~H0 and the average induction 〈 ~B〉 ≡ µe〈 ~H〉.

Consider that the discussion is restricted to the quasi-static limit when d/λ ≪ 1;

d is a typical dimension of the scatterer and λ is the wavelength of the incident

oscillating magnetic field for that only the lowest order of scattering wave mode is

evaluated for high-resistive ferrite46. In this limit, the magnetic field equations can

be approximated by magneto-static equations only

~∇ · (µ(~r) ~H(~r)) = 0

~∇× ~H(~r) = ~0
(A1)

which are combined up to a given gauge, to find a magnetic potential φ(~r) inside the

medium satisfying

~∇ · (µ(~r)~∇φ(~r)) = 0. (A2)

Now a magnetic tensor µ0 is considered to depend on the magnetic field in the average

medium. In the quasi-static limit, the boundary conditions of a uniform applied field

are imposed and µ0 does not exhibit any spatial variations. The local permeability

tensor, thus decomposed as µ(~r) = µ0+ δµ(~r), leads to the following boundary-value

problem
~∇ · (µ0

~∇φ(~r)) = −~∇ · (δµ(~r)~∇φ(~r)) in V,

φ(~r) = − ~H0 · ~r on S.
(A3)

With the introduction of the two-points Green’s function g(~r, ~r′) defined by

~∇ · (µ0
~∇g(~r, ~r′)) = −δ(~r − ~r′) in V,

g(~r, ~r′) = 0 ~r′ on S,
(A4)

the potential φ(~r) admits a formal solution as

φ(~r) = − ~H0 · ~r −

∫

V

g(~r, ~r′)~∇′ · (δµ(~r′)~∇′φ(~r′))d~r′ (A5)
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and the magnetic field ~H(~r) = −~∇φ(~r), deriving of it, is given by

~H(~r) = ~H0 −
∫

V
(δµ(~r′) ~H(~r′))~∇g(~r, ~r′)d~r′,

= ~H0 +
∫

V
G(~r, ~r′)(δµ(~r′) ~H(~r′))d~r′,

(A6)

with

Gαβ(~r, ~r′) =
∂2g(~r, ~r′)

∂r′α∂rβ
. (A7)

By combining these equations, the problem thus reduces to the task of computing a

susceptibility tensor 〈χ〉 such as δµ(~r) ~H(~r) = χ(~r) ~H0 and

χ(~r) = δµ(~r)

(

1 +

∫

V

G(~r, ~r′)χ(~r′)d~r′
)

, (A8)

which finally gives

µe = µ0 + 〈χ(~r)〉. (A9)

If ~r lies in a medium labeled i, of volume vi, equation (A8) decomposes itself as

χ(~r) = δµi

(

1 +

∫

vi

G(~r, ~r′)χ(~r′)d~r′ +

∫

V−vi

G(~r, ~r′)χ(~r′)d~r′
)

,

with δµi ≡ µi − µ0, and µi is the permeability tensor of the medium i, assumed

spatially uniform and known. The last integral is approximated by

∫

V−vi

G(~r, ~r′)χ(~r′)d~r′ ≈

∫

V−vi

G(~r, ~r′)〈χ(~r′)〉d~r′ (A10)

once neglecting higher order correlation terms. This last expression closes the integral

equation for χ(~r). To see this, this last integral is substituted, integrated by parts

and by imposing the boundary condition one obtains

χi =
(

1− δµiΓi

)−1

δµi

(

1− Γi〈χ〉
)

(A11)

where χi stands for χ(~r) for ~r ∈ vi. Here Γi is a surface integral, also called depolar-

ization matrix and contains g(~r, ~r′) which goes over to the free-space Green’s function,
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satisfying the differential equation (A4) and the boundary condition g(~r, ~r′) → 0 as

‖~r − ~r′‖ → ∞. By reason of the translational invariance, it becomes a function of

~r−~r′ to finally reduces to a constant in space variables. For example, the field inside

ellipsoids is uniform and χ(~r) becomes independent of the position. In such case,

each cartesian component of this matrix is given by

Γαβ
i = −

∮

S′

∂g(~r − ~r′)

∂rα
n′

βd
2~r′, (A12)

where n′

β is the component of the unit normal outward from the surface S ′. By

taking the average of χi, one has

µe = µ0 + 〈(1− δµΓ)−1〉−1〈(1− δµΓ)−1δµ〉 (A13)

where

〈(1− δµΓ)−1〉 ≡ lim
V→∞

∑

i

vi(1− δµiΓi)
−1 (A14)

〈(1− δµΓ)−1δµ〉 ≡ lim
V→∞

∑

i

vi(1− δµiΓi)
−1δµi (A15)

Now, a two-phase medium of magnetic objects labeled by i = 1, 2, each fully charac-

terized by their respective position and field independent permeability tensors µi is

considered. If µ1, µ2, µe and Γ1,2 = Γ are all hermitian matrices, and if µ1 = µ0, one

shows that equation (A13) is equivalent to the Clausius-Mossotti-Maxwell-Garnett

expression47

(1− (µe − µ1)Γ)
−1(µe − µ1) = f(1− (µ2 − µ1)Γ)

−1(µ2 − µ1) (A16)

with f is the volume fraction of object 2.
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