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Abstract

A parallel implementation of coupled spin–lattice dynamics in the LAMMPS molecular dynamics package is presented. The
equations of motion for both spin only and coupled spin–lattice dynamics are first reviewed, including a detailed account of how
magneto-mechanical potentials can be used to perform a proper coupling between spin and lattice degrees of freedom. A symplectic
numerical integration algorithm is then presented which combines the Suzuki–Trotter decomposition for non-commuting variables
and conserves the geometric properties of the equations of motion. The numerical accuracy of the serial implementation was
assessed by verifying that it conserves the total energy and the norm of the total magnetization up to second order in the timestep
size. Finally, a very general parallel algorithm is proposed that allows large spin–lattice systems to be efficiently simulated on large
numbers of processors without degrading its mathematical accuracy. Its correctness as well as scaling efficiency were tested for
realistic coupled spin–lattice systems, confirming that the new parallel algorithm is both accurate and efficient.
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1. Introduction

Magnetization processes encapsulate several fundamental at-
tributes of ferromagnetic materials including inherent hystere-
sis and constitutive nonlinearities due to the cooperative domain
structure of these materials. However, magneto-mechanical
properties of the materials provide actuator and sensor capa-
bilities that enable design of contemporary and future smart
devices[1]. In general these effects are highly complex. As a
result, the design of devices such as transducers may require
manipulation of multiple distinct mechanisms acting in con-
cert. Magneto-mechanical effects or magneto-elasticity refers
to a family of mechanisms in which (i) an applied stress causes
magnetic moments to rotate, thus changing the magnetization
and (ii) an applied field causes the rotation of magnetic mo-
ments, thus generating strain in the material. While these ef-
fects are often viewed as limitations, many technological ap-
plications rely on them to achieve novel and unique functional-
ities. In both cases, their understanding is of fundamental im-
portance. Accurate numerical simulations of magneto-elasticity
fulfill two essential roles (i) enabling the underlying assump-
tions of competing theories to be objectively tested and (ii) pre-
dicting and interpreting experimental observations.

It is well known that the response of a magnetic material sub-
jected to an external field has its root in the collective interac-
tion of the electronic magnetic moments of the atoms. This is
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particularly true when the external field induces a mechanical
stress, because of the associated slow relaxation processes [2].
Interactions between spin and lattice systems can also occur
when the external stimulus is applied to the electronic system.
A salient example can be seen in the Beaurepaire’s experiments
[3]. By probing the magnetic and mechanical relaxations after
applying an electronic stimulus, the intimate couplings between
electrons, spins, and lattice (nuclear coordinates) were charac-
terized.

Fig. 1 shows characteristic timescales of spin, lattice, and
electron dynamics that have been experimentally measured and
reported.

Electron
τe ≈ 1 fs

Lattice
τl ≈ 1 ps

Spin
τs ≈ 1 ps

τe−l ≈ 1 ps

τe−s ≈ 0.1 ps τs−l ≈ 100 ps

Figure 1: Schematic overview of the three subsystems with their associated
characteristic relaxation times and coupling parameters.

Because the electronic relaxation time is much smaller than
all the other timescales, the electron subsystem can be consid-
ered to relax instantaneously to an equilibrium state in response
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to changes in the atom positions or the magnetic spin moments.
This allows us to focus on the coupled dynamics of spin and
lattice, and their associated relaxation processes.

To study spin–lattice relaxation processes in full detail,
an accurate technique is the Time–Dependent–Spin–Density–
functional theory (TD-SDFT) [4]. Within TD-SDFT, local ef-
fects including spin-relaxation and mechanical constants can be
studied with high accuracy, and magneto-mechanical potentials
can be evaluated [5, 6].

When collective, large–scale behaviors of atomic motions
are of interest, molecular dynamics simulation (MD) is an ex-
tremely powerful technique to solve the classical many-body
problem. This is particularly true when the long-time dynamics
of large systems are studied, which is often necessary to achieve
physical equilibrium. Consequently, for systems that obey the
ergodic hypothesis, the evolution of MD trajectories in phase
space is useful to determine macroscopic thermodynamic prop-
erties of the Hamiltonian system. The time averages of ergodic
systems generate accurate micro-canonical ensemble averages
[7].

However, the properties of magnetic materials emerge from
the combined effects of physical interactions operating on mul-
tiple lengthscales (i) extremely localized effects, such as the ex-
change interaction responsible for local alignment of electronic
magnetic moments (spins) on neighboring atoms, (ii) long-
range dipolar interactions between large assemblies of spins,
and (iii) long-range ordering of spins leading to magnetic do-
mains and domain–walls [8]. For these reasons, methods which
enable both the definition of local interactions and the possibil-
ity of simulating large systems are highly desirable. In this re-
gard, quantum local methods, like TD-SDFT (very accurate de-
scription of the dynamics of hundreds atoms for picoseconds),
and semi-classical methods, like molecular or spin dynamics
(less accurate, but enabling the simulation of millions of atoms
for nanoseconds) fill complementary roles.

To achieve a connection between the two methodologies,
Antropov et al. first proposed a transition from a general
quantum-mechanical formulation to classical equations of mo-
tion (EOM), first for spin–only systems [9] and then for cou-
pled spin–lattice dynamics [10]. This methodology starts from
general principles and introduces an adiabatic approach that
considers the orientation of the local magnetic moments to be
slowly varying relative to their magnitudes. Because the orien-
tation of the magnetization density is introduced as a collective
variable in density functional theory, the derived EOM for spin–
only systems can be combined with those of first-principles MD
to derive a consistent treatment of spin-lattice interactions.

For spin–only dynamics, lattices of fixed atoms are con-
structed, and precession EOM for each classical spin vector are
integrated. [11, 12]. This methodology, which is special case of
spin–lattice simulations, proved to be an efficient way to study
many magnetic phenomena, such as ultrafast magnetization re-
versal [13], or the configuration of topological spin structures
like skyrmions [14]. In addition, this approach can be used to
obtain statistical averages over a large number of spins [15] to
generate effective magnetization dynamics.

Without considering the full machinery of first-principles

methods and motivated by the fact that the characteristic time
scales for the motion of spin and lattice degrees of freedom
are very slow compared to those of the electron subsystem (see
Fig. 1), the dynamics of both spin and lattice variables can be
treated using effective, parametrized potentials. We refer to this
approach as SD–MD. In a sense, this allows a separation of the
spin and lattice variables from their electronic counterparts, and
derivation of coupled EOM for the spin–lattice system.

A few implementations of this SD–MD methodology have
been published. Ma et al. proposed the application of SD–
MD to the study of magnetostriction properties of iron [16, 17].
They were primarily concerned with demagnetization experi-
ments, phase transitions, and the impact of temperature on the
spin-lattice system. Because of this, they considered only the
exchange interaction and neglected anisotropic energy originat-
ing from the spin-orbit coupling.

Beaujouan et al. added both one-site and two-site anisotropic
energies and applied SD–MD to the study of cobalt nano-
systems, recovering magnetostriction properties [18]. More re-
cently, Perera et al. [19, 20] explored this coupling method to
investigate the mutual influence of phonons and magnons on
their respective frequency spectra and lifetimes in ferromag-
netic bcc iron.

In this paper we describe a general implementation of the
SD–MD methodology in the LAMMPS molecular dynamics
package [21]. It integrates many of the previous published im-
provements, algorithms, and potentials within the spatial de-
composition framework of LAMMPS to enable large-scale par-
allel simulations. Section 2 presents the EOM for spin–only and
spin–lattice dynamics with magnetic and magneto-mechanics
potentials. Details of these potentials and their parametriza-
tion are given in Appendix A.1, Appendix A and Appendix B.
Non-adiabatic spin-lattice systems coupled to a thermal reser-
voir are handled using the Langevin approach, which is de-
scribed in Section 4. In order to preserve the phase space vol-
ume adiabatically during the dynamics, numerical solution of
the spin–lattice EOM requires particular care. Symplectic ge-
ometric methods based on the Suzuki–Trotter decomposition
of the discretized equations [22] were used to derive a particu-
lar algorithm that is presented in Section 3, along with results
demonstrating its accuracy. An efficient parallel implementa-
tion of this spin–lattice algorithm was developed following a
synchronous sub-lattice sectoring methodology [23]. Section 5
first details this algorithm, and then analyzes its accuracy and
parallel scalability.

2. Spin–lattice dynamics in the microcanonical ensemble

A microcanonical ensemble (NVE) defines the statistical en-
semble that is used to represent all the possible states of a closed
mechanical system with fixed total energy, composition, vol-
ume, and shape. The equations of motion including both whole
magnetics and mechanics degrees of freedom in ths NVE en-
semble are described below.
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2.1. Equations for atomistic spin dynamics

Following the approach of Antropov et al. [9, 10], a lattice of
atomic sites is considered. A classical spin vector Si is associ-
ated with each site labelled by i ∈ 1 . . .N, with Si = ~gisi where
gi is the Landé factor of the spin i, eventually calculated by first-
principles methods, and si is a unitary, non-dimensional vector.
Consequently the adiabatic motion in time of such atomic spin
vector si can be described by a classical model of Thomas’s pre-
cession [24, 25, 26]. By considering the fluctuation-dissipation
theorem, finite temperature effects produce friction-like damp-
ing on the classical precession motion. This comes from the
connection of a closed quantum system to external sources
[27, 28]. This can be taken into account phenomenologically
by the Landau–Lifshitz–Gilbert equation [29]

dsi

dt
=

1(
1 + λ2) (ωi − λωi × si) × si, (1)

with λ a purely transverse damping constant, and ωi the analog
of a spin force applied to the spin i, and defined as

ωi = −
1
~
∂Hmag

∂si
, (2)

with ~ = 6.582 × 10−7 eV.(rad.THz)−1 the reduced Planck
constant, and Hmag the spin Hamiltonian of the magnetic sys-
tem. In the formalism of the Nosé–Hoover thermostat, λ is not
a constant and may vary in time [9], or can even be determined
by first-principles methods [30]. Extension to chains of ther-
mostats can also be considered as a faster numerical way to
reach thermal equilibrium [31].

A simple expression for the Hamiltonian of N interacting
spins on a fixed lattice is given by:

Hmag (r, s) = −µBµ0

N∑
i=0

gisi · Hext −

N∑
i, j,i, j

J
(
ri j

)
si · s j (3)

with gi the Landé factor of the spin i, µ0 = 4π × 10−7

kg.m.A−2.s−2 the vacuum permeability, and µB = 9.275× 10−24

J.T−1 the Bohr’s magneton.
The first term in the RHS of Eq. (3), usually referred to as the

Zeeman term, is the interaction energy acquired by the spins
subject to an external magnetic uniform field Hext. This field
can be constant, or can also vary in time, for simulations of
electronic paramagnetic experiments.

The second term is the exchange interaction. It is responsible
for the local alignment of neighboring spins. The dependence
of the Heisenberg coupling constant J on the inter-atomic dis-
tance is a well known quantum result that reveals the Pauli ex-
clusion principle [32]. This also makes possible a natural con-
nection to Joule magnetostriction and plays a fundamental role
in the coupling between the spin and lattice degrees of free-
dom. The prefactors gi and g j, which connect two physical
magnetic moments, are generally absorbed into a redefinition
of J. Details about the parametrization of J as a function of the
inter-atomic distance ri j are given in Appendix A.1.

The exchange interaction mediates a natural coupling be-
tween the spin and lattice degrees of freedom due to the depen-
dence of J

(
ri j

)
on the interatomic distance. Because J is gen-

erally a radial function only, no anisotropic effect can be mod-
eled in this manner. This eliminates the most interesting and
technologically appealing magnetostriction properties of mate-
rials which are mostly direction dependent and come from the
magneto-crystalline anisotropy energy of materials. Because
the origin of the magneto-crystalline anisotropy energy is in the
spin-orbit coupling of atoms, it is necessary to take this interac-
tion into account to perform accurate and realistic spin–lattice
simulations.

Additional terms, responsible for all the quantum aspects
of spin are also of fundamental importance and often need to
be considered as well. This includes both the local and non-
local anisotropic interaction, responsible for the alignment of
the spins along preferred directions, the anti–symmetric pair
couplings known as the Dzyaloshinskii-Moriya’s interaction,
responsible for weak magnetism of canted spin spirals, and
the long–range dipolar interaction, responsible for macroscopic
magnetic textures in domains.

In this context, issues related to the treatment of spin–orbit
coupling were discussed recently by Perera et al. in Ref. [19].
In particular, they showed that the exchange interaction on its
own is not sufficient to simulate correctly the transfer of energy
from the lattice to the spins. As these energies are extremely
small compared to other electronic energies, their evaluation via
first-principles calculations would require very high accuracy
and thus such a model is difficult to achieve [33].

For this reason Beaujouan et al.[18] and later Perera et
al.[19] proposed specific approximations to simulate this spin-
orbit coupling. Beaujouan used short range pseudo-dipolar and
pseudo-quadrupolar functions, first introduced by Néel [34] and
discussed later by Bruno [35], for the simulation of bulk mag-
netostriction and surface anisotropy in cobalt. Forms are given
in Appendix A.2.

OnceHmag is formed as a functional of spin vectors, the time
dynamics of the ensemble of spins on a fixed lattice, labelled
by i, can be simulated by integrating the set of coupled EOM.

2.2. Equations for spin–lattice dynamics

For the EOM of the coupled spin–lattice system, we describe
the lattice (nuclear coordinates of atoms) with the classical vari-
ables of molecular dynamics. Each atom i in the system stores
a position vector ri and momentum vector pi, in addition to the
spin vector si.

This allows us to introduce a spin–lattice Hamiltonian

Hsl (r, p, s) = Hmag (r, s) +

N∑
i=1

|pi|
2

2mi
+

N∑
i, j=1

V
(
ri j

)
, (4)

where, on the first term is the spin Hamiltonian described in
Eq. 3. The second term is the kinetic energy of the particles,
and the last term is a mechanical potential, e.g. a pair potential,
binding the atoms together.
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In previous implementation of spin–lattice simulations, dif-
ferent choices have been made for this mechanical potential.
Ma et al. [16] and Dilina et al. [19] chose potentials derived for
large scale simulations of magnetic α-Fe by Dudarev and Derlet
[36]. Beaujouan et al. [18] used an Embedded-Atom Method
model (EAM) derived and parametrized for several metallic el-
ements including cobalt [37]. These spin-less potentials are
constructed in a way that avoids double-counting the ferromag-
netic contribution to the mechanical energy. Both of these po-
tentials correctly reproduce known magneto-elastic properties.
Appendix B discusses the consequences of the choice of such
potentials.

Once a spin-less mechanical potential is chosen, the EOM
can be derived from the spin–lattice Hamiltonian. Yang et al.
derived a generalized formulation of the Poisson bracket for
spin–lattice systems [38]. With f (t, ri, pi, si) and g (t, ri, pi, si)
two functions of time, position, momentum and spin:

{ f , g} =

N∑
i=1

[
∂ f
∂ri
·
∂g
∂pi
−
∂ f
∂pi
·
∂g
∂ri
−

si

~
·

(
∂ f
∂si
×
∂g
∂si

)]
. (5)

Its application to the spin–lattice Hamiltonian defined by
Eq. (4) leads to the following set of EOM for the spin–lattice
system:

dri

dt
= {ri,Hsl} =

pi

mi
(6)

d pi

dt
= {pi,Hsl}

=

N∑
j,i, j

−dV
(
ri j

)
dri j

+
dJ

(
ri j

)
dri j

si · s j

 ei j (7)

dsi

dt
= {si,Hsl} = ωi × si (8)

where ei j is the unit vector along ri j.
Eq. 6 is the standard equation for propagation of positions in

any MD simulation, and Eq. 8 is an undamped version of the
equation for propagation of the spins (see Eq. 1).

The propagation of momenta in Eq. 7, includes not only the
mechanical force (derivative of the interatomic potential), but
also a magnetic force varying with the inter-atomic distance
and spin configurations, here including only the exchange in-
teractions. Extensions to other magnetic interactions are given
in refs.[18, 19]. It is also interesting to note that these equa-
tions correspond to those derived from a quantum formalism
by Antropov et al. in Ref. [10]. The spin–lattice dynamics is
thus determined by the numerical integration of this set of cou-
pled differential equations for each atom i in the system, a total
of 9 × N equations for a system of N atoms.

3. Integration algorithm

The set of EOM detailed in Section 2 define the coupled spin-
lattice dynamics in the microcanonical ensemble. In order to

generate numerical solutions to these equations, they must be
approximated by equivalent discretized equations. In order to
preserve the geometric properties of the underlying Hamilto-
nian equations, the discretized equations must preserve certain
fundamental properties. The most important of these are micro-
reversibility in time, the symplectic character and conservation
of the phase space volume[39].

For notational simplicity, we gather the spin, position and
momentum variables into a single vector X(t):

X(t) =

 r(t)
p(t)
s(t)

 (9)

With this definition in hand, one can write Eqs. 6, 7 and 8
formally as a single first-order differential equation :

dX(t)
dt

= L̂X(t) (10)

where L̂ is a Liouville operator of the spin–lattice system.
This can be viewed itself as a sum of Liouville operators L̂r, L̂p

and L̂s, acting on each variable separately

L̂ =

N∑
i=1

(
dri

dt
·
∂

∂ri
+

d pi

dt
·
∂

∂pi
+

dsi

dt
·
∂

∂si

)
≡ L̂r + L̂p + L̂s (11)

Integration of the vector X(t) from a time t to t + ∆t can be
interpreted formally as the application of the exponential of the
Liouville operator L̂ on the vector X(t)

X(t + ∆t) = e(L̂r+L̂p+L̂s)∆t X(t) (12)

However, the individual operators that form L̂ do not neces-
sarily commute with each other. A convenient way to generate
an algorithm that deals with these non-commuting operations
is to recognize this system as a Magnus expansion [22] and to
apply a Suzuki–Trotter (ST) decomposition to the exponential
of L̂

e(L̂p+L̂r+L̂s)∆t = eL̂p
∆t
2 eL̂s

∆t
2 eL̂r∆t eL̂s

∆t
2 eL̂p

∆t
2 + O

(
∆t3

)
(13)

which is accurate to O
(
∆t3

)
in the timestep.

Many other similar decompositions can be obtained by per-
muting the three operators. They are all formally equivalent
in that they are all accurate to O

(
∆t3

)
. However, they do not

produce the same overall numerical accuracy [18]. The decom-
position of Eq. 13 is particularly effective because the timestep
necessary for integration of the spin system is generally an or-
der of magnitude smaller than the one commonly used for clas-
sical molecular dynamics of atomic systems. As accuracy is our
main objective, we do not put the spin operator in the middle of
the ST decomposition; individual updates are thus performed
with 2x smaller timesteps. In addition, if there is no spin in the
system, then L̂s = 0̂ and exp(L̂s∆t) = 1̂ and the resulting combi-
nation produces the well known Verlet leapfrog algorithm [40],
in the form of velocity-Verlet integration scheme.
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Finally, putting L̂r at the center of the ST decomposition en-
sures that the mechanical forces need only be calculated once
per timestep, which greatly simplifies the practical implemen-
tation of the method, particularly for the parallel algorithm (see
Section 5).

Because the equations of motion for the spins are first-order
differential equations directly depending on the neighboring
spin orientations (due to the strong short–range interactions),
the individual spin rotations in 3-dimensional space do not com-
mute with each other. Therefore, propagating a spin before one
of its neighbors, or the opposite way around will give different
results. Thus the global spin operator L̂s must be further de-
composed into a sum of operators L̂si , each one being the time
integration operator of a given spin i. One has the following ST
decomposition for the exponential of L̂s:

eL̂s
∆t
2 = eL̂s1

∆t
4 . . . eL̂sN

∆t
2 · · · eL̂s1

∆t
4 + O

(
∆t3

)
=

N∏
i=1

eL̂si
∆t
4

1∏
i=N

eL̂si
∆t
4 + O

(
∆t3

)
(14)

In practice, this rule means that the magnetic force ωi acting
on the spin i has to be computed immediately before updating
the value of the spin i. Indeed, the updated values of the neigh-
boring spins of the spin i have to be taken into account in the
calculation of ωi [41].

Also, as discussed in Section 2, the spin–spin interaction

coefficients depend now on the inter–atomic distances. Be-
cause the atoms positions are updated between the two spin
updates, the inter–atomic distances change, and thus the coef-
ficients have to be computed again. This is one of the main
disadvantages of the global decomposition detailed by Eq. 13,
compared to a decomposition for which the propagation opera-
tor of the spins eL̂s∆t/2 would be the central operator. However,
as already mentioned, the applied decomposition was mainly
chosen for accuracy reasons, and it also allows us to compute
the mechanical force once per timestep.

The fact that the precession vector ωi has to be computed
before updating the spin i, and requires knowledge of the con-
figuration of all neighboring spins requires that spin updates be
performed in a sequential manner. This prevents the straightfor-
ward application of parallel algorithms that rely on concurrent
updates. In Section 5, we present a synchronous sublattice or
sectoring algorithm that does not suffer from these limitations.
It enables efficient simulation of spin-lattice systems with non-
uniform or disordered spatial structure on large parallel com-
puters, while preserving the properties of the ST decomposi-
tion.

Eqs. 1 and 8 exhibit a model of precession that preserves the
norm of each individual spin over time. Consequently, its corre-
sponding numerical time evolution operator must preserve this
property to a given accuracy as well. From geometrical consid-
erations, Omelyan et al. [41] derived the following expression
for the single-spin propagation operators :

si(t + ∆t) = eL̂si ∆t si(t) =

{
si(t) + ∆t (ωi(t) × si(t)) +

∆t2

4

[
2ωi(t) (ωi(t) · si(t)) − ‖ωi(t)‖2si(t)

]} / (
1 +

∆t2

4
‖ωi(t)‖2

)
+ O

(
∆t3

)
(15)

This expression uses low-order approximants for trigonomet-
ric functions that exactly satisfy cos2(‖ωi‖∆t) + sin2(‖ωi‖∆t) =

1, unlike the usual Padé approximants. As a result, the single-
spin propagator preserves the same O

(
∆t3

)
accuracy as the rest

of the discretization scheme. Moreover, the number of nu-
merical operations needed to evaluate this time increment is
lower than the corresponding calls to the trigonometric func-
tions, which significantly speeds up the procedure and elimi-
nates the need of a norm rescaling that usually breaks the sym-
plectic character and time reversal properties [42].

Once the spin vector is computed, both the position and mo-
mentum are updated via the Verlet method already developed
in LAMMPS [21], and fully coupled spin–lattice simulations
can now be performed. To evaluate the numerical efficiency
of this algorithm, the average total energy and the norm of the
magnetization must be measured as a function of the timestep.
[41]. Representative numerical simulations were constructed
with an fcc crystal of 500 cobalt atoms. The individual mag-
netizations were assigned random initial orientations selected
from an equilibrium distribution corresponding to a tempera-

ture of 300 K, consistent with the Curie-Langevin law. The
system was then evolved for 1 ps using the NVE time integra-
tion algorithm described above using three different timestep
sizes. The total energy and total magnetization of the system
are shown in Fig. 2.

Because the system is closed, it cannot adiabatically ex-
change energy with a surrounding reservoir and both quantities
are very well conserved. Typical spin dynamics simulations use
a timestep of ∆t = 10−4 ps. The current algorithm remains rea-
sonably accurate up to a timestep size of ∆t = 10−2 ps. This
demonstrates the strong stability of the integration algorithm.

The influence of the timestep on the fluctuations in these
quantities can be examined more precisely by calculating the
mean relative absolute deviations averaged over the trajectory.
For example, in the case of total energy per atom

∆E(∆t) =
1

Nstep

Nstep∑
k=1

∣∣∣∣∣Ek(∆t) − 〈E〉(∆t)
〈E〉(∆t)

∣∣∣∣∣ , (16)

where Ek is the total energy per atom at timestep k and 〈E〉 is
the time average of the total energy per atom.
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Figure 2: NVE SD–MD simulations of a block of 500 fcc cobalt atoms with
periodic boundary conditions, with initial conditions corresponding to a tem-
perature of 300 K. The graphs plot the energy per atom and the norm of the
total magnetization |M| for timesteps sizes of 10−3 ps (black), 5 · 10−4 ps (red),
and 10−4 ps (blue). The two insets plot the mean relative absolute deviations of
the energy ∆E and magnetization ∆|M| according to Eq. 16 as a function of the
timestep size ∆t. The black dashed lines in the insets represent O

(
∆t2

)
scaling

behavior.

The same formula can be applied to the norm of the total
magnetization. The dependence of both of these quantities on
the timestep size is shown in the two insets of Fig. 2. The de-
viations increase as O

(
∆t2

)
. This behavior is consistent with

the O
(
∆t3

)
accuracy of the ST decomposition, which describes

propagation over a single step. For N consecutive steps, the
accuracy of the decomposition algorithm is given by O

(
N∆t3

)
,

with N = ttotal/∆t. Thus, the accuracy for a fixed time inter-
val is O

(
∆t2

)
, as seen in Fig. 2. For timestep size greater than

∆t = 10−2 ps, the scaling law starts to break down, indicating
the the limit of numerical stability is being approached.

4. Spin–lattice dynamics in a canonical ensemble (NVT)

Now we connect the spin–lattice system to an external en-
ergy reservoir and stabilize the exchanges of energy with a
given thermostat. In MD, many approaches have been already
explored [43, 44, 45] and we focus on a Langevin strategy
[46]. This is a widely used thermostat for atomic systems as
well as coarse-grained models, e.g. dissipative particle dynam-
ics [47] (see [48] for a review). In the Langevin approach,
both random forces and damping terms are used in accord with
the fluctuation-dissipation theorem. However, the presence of
damping terms will lead to a contraction of the phase space vol-
ume, producing non-Hamiltonian dynamics. Yet, even in these
cases, it has been shown that if some phase-space related mea-
sures are not preserved, pathological situations can be observed,
and lead to incorrect distributions [49].

4.1. Connecting spins to a random bath
Néel first [50] and Brown later [51] demonstrated that a suffi-

ciently fine ferromagnetic particle consists of a single magnetic

structure in which thermal agitation causes continual changes
in the orientation of the moment. Such thermal fluctuations in
the magnetization are well described by following the Langevin
approach [9, 10, 52]. In this approach, the spin system is con-
nected to a single thermal bath modeled by an infinite number
of degrees of freedom. The properties of such bath are given
by η, a random vector, whose components follow a Gaussian
probability law given by the first and second moment

〈η(t)〉 = 0
〈ηα(t)ηβ(t′)〉 = 2DS δαβδ(t − t′) (17)

where α and β are the vector components.
In order to preserve the norm of each individual spin, this

random fluctuation is added in a multiplicative manner to Eq. 1
via a random torque [53], that leads to the following stochastic
Landau-Lifshitz-Gilbert equation :

dsi

dt
=

1(
1 + λ2) ((

ωi + η
)
× si + λ si × (ωi × si)

)
. (18)

From Eq. 18, one can derive a Fokker-Planck (FP) equation
[52]. The resolution at equilibrium of the FP equation allows
a fluctuation–dissipation relation to be derived that assigns a
proportion of the amplitude of the noise DS to the given external
thermostat T [53], such that

DS =
2πλkBT

~
, (19)

with kB = the Boltzmann constant.
A subtle detail about stochastic differential equations is a

proper choice of a stochastic prescription that allows an eval-
uation of the ill-defined random vector :

I (∆t) =

∫ t+∆t

t
η(t′) × si(t′)dt′, (20)

by defining a point within the interval [t, t + ∆t] at which
this integral is approximated consistently. Numerous papers
have discussed various choices of the prescription for stochas-
tic magnetization dynamics performed with the stochastic LLG
equation [52, 54, 55]. We use the mid–point Stratonovich ap-
proach that preserves the norm of individual spins and has time
micro-reversibility.

4.2. Measuring lattice and spin temperatures

In non-equilibrium spin-lattice systems, it is convenient to
use a single thermostat to control the flow of entropy produc-
tion between the system and a thermal reservoir [56]. Such a
thermostat has to be related to a microcanonical quantity de-
fined in a statistical ensemble that measures the temperature.
Because the temperature of an equilibrium system is calculated
from the mean kinetic energy of its particles, the transient ki-
netic energy for spins is not an obvious quantity. An immediate
consequence is how to measure the temperature TS that controls
the thermostatting of the magnetic degrees of freedom [10].
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At equilibrium, the instantaneous lattice temperature is usu-
ally defined as the kinetic temperature of the atoms:

TL =
2

3 N kB

N∑
i=1

|pi|
2

2mi
. (21)

This expression of the kinetic temperature is known to rely on
some approximations, such as the equivalence of ensembles and
the ergodicity assumption [57]. Other dynamical approaches
for measuring the temperature in Hamiltonian systems within
a microcanonical ensemble have been derived, and proved to
be accurate [58, 59]. However, we will assume that the kinetic
expression given by eq. 21 is sufficient for the purpose of this
work.

Transcripting Rugh’s the geometrical approach to spin sys-
tems [57], and when the thermodynamic limit is considered,
Nurdin et al. [60] give a spin temperature as

TS =
~

2kB

∑N
i=1 |si × ωi|

2∑N
i=1 si · ωi

(22)

Another approach was later derived by Ma et al. [61]. Re-
lying on the fluctuation-dissipation theorem, it gave an analog
definition of the temperature of a spin ensemble.

In refs. [18, 19], the definition given by eq. 22 has proven to
be efficient for the thermalization of the spin subsystem and its
relaxation toward thermal equilibrium during spin–lattice sim-
ulations. Besides, this definition of TS has the same domain of
validity as the kinetic temperature expressions for TL defined
above. Thus, we chose to use the definition of the spin temper-
ature defined by Nurdin et al..

4.3. Thermalizing the spin–lattice system
For the simulation of relaxation processes, the connecton of

the lattice system to a thermal bath is also performed using the
Langevin approach. Eq. 8 is replaced by Eq. 18, and a new
random force and a damping term are added to Eq. 7. This
yields the following equations that model stochastic magnetic
molecular dynamics:

dri

dt
=

pi

mi
(23)

d pi

dt
=

N∑
j,i, j

−dV
(
ri j

)
dri j

+
dJ

(
ri j

)
dri j

si · s j

 ei j

−
γL

mi
pi + f (t) (24)

dsi

dt
=

1(
1 + λ2) ((

ωi + η(t)
)
× si + λ si × (ωi × si)

)
(25)

In Eq. 24, γL is a damping parameter, and f its corresponding
fluctuating force drawn from a Gaussian distribution with

〈 f (t)〉 = 0 (26)
〈 fα(t) fβ(t′)〉 = DL δαβ δ(t − t′) (27)

where α and β are coordinates, and DL is the amplitude of
the random variables. DL can be parametrized according to the

fluctuation–dissipation relation, and then depends on the tem-
perature of the thermal bath coupled to the lattice, and on the
damping coefficient γL according to the Einstein relationship
[39]. The probability distribution of the noise vector η follows
Eqs. 17 and 19 respectively.

Extensions to more than two out-of-equilibrium dynamics
(here referring to spin and lattice dynamics) are possible and
several authors linked the damping coefficients to spin–electron
and lattice–electron relaxation processes [62]. This allowed us-
ing the model presented above to simulate spin–lattice–electron
relaxation processes that occur in ultrafast magnetic switching
experiments.

However there are concerns about the choice of the noise cor-
relation functions. In this study, we decided to remain within
the framework of the Markov hypothesis, and focus on uncor-
related white-noise only. When the characteristic timescales of
the dynamics reach values as small as those of the simulated
relaxation processes, the Markov hypothesis may break down
and a colored-noise, such as an Ornstein–Uhlenbeck process,
becomes a better approximation of the exchange of causal in-
formation between the system and its reservoir. Recent studies
have focused on evaluating the influence of such memory ef-
fects on the magnetization dynamics [63, 64, 65, 66], and sug-
gest non-trivial magnetization dynamics beyond the second or-
der cumulant of the spin variables. These points will be ad-
dressed in a separate study.

In order to evaluate the efficiency of the two-thermostat
model presented here, two different simulations were per-
formed. A cell of 500 cobalt atoms on an fcc lattice, coupled by
three interactions (the magnetic exchange interaction, a spin-
orbit coupling, and a mechanical EAM potential [31, 67]) is
considered.

For the first simulation, a Langevin thermostat was applied
only to the spins, according to Eq. 25. The simulation started
from a fixed lattice equilibrium configuration, corresponding
to TL = 0K and an initial spin configuration sampled from a
TS = 300K magnetic equilibrium state.

The second simulation was exactly the opposite: the
Langevin thermostat was applied only to the motion of the lat-
tice atoms, according to Eq. 24. The simulation started in a con-
figuration with all the spins aligned along their effective fields,
which corresponds to TS = 0K, and with atom velocities sam-
pled from a TL = 300K equilibrium lattice state. Fig. 3 plots
the time evolution of TL and TS for the two simulations.

In each case, the thermostatted degrees of freedom stayed at
the target temperature for the duration of the simulation. And
the non-thermostated degrees of freedom relaxed from their ini-
tial temperature to the thermostatted temperature due to the
spin–lattice coupling of the dynamics. In both cases the re-
laxation time was a few 100 ps, which is consistent with the
spin–lattice coupling time shown in Fig. 1. This illustrates how
proper choice of damping coefficients can produce physically
correct responses for magnetic exchange, spin-orbit, and me-
chanical coupling interactions.

To better understand how the magnetic and mechanical en-
ergy couple to each other, a larger NVE simulation was per-
formed with 1372 cobalt atoms initially on an fcc lattice. The
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Figure 3: Measure of the spin TS and lattice TL temperatures during two NVT
simulations of 500 cobalt atoms. For both graphs, the black dashed lines plot
the target temperature TT , and the green and red curves plot the lattice and
spin temperatures, TL and TS , respectively. In the upper graph, the Langevin
thermostat was applied to the spins only, according to Eq. 25, with a target
TT =300K, and the transverse magnetic damping set to λ = 0.01. In the lower
graph, the thermostat was applied only to the atomic motion, according to
Eq. 24 with TT =300K and a lattice damping parameter of γL = 10 s−1.

initial spin configuration was random so that the spin system is
in a paramagnetic state at a very high temperature. The atomic
velocities (lattice temperature) were initialized to 200K. The
potential energy of the atoms was initially at a minimum due
to the perfect lattice configuration. As the simulation evolved
energy re-partitioned between these 3 components (kinetic en-
ergy, potential energies of atoms and spins) but the total en-
ergy remained constant with no perceptible fluctuations (at this
scale) as seen in the upper graph of Fig. 4. The lower graph of
Fig. 4 plots the evovling spin and lattice temperatures, which
equilibrated to the same value, indicating the efficacy of the
spin–lattice coupling.

5. Parallel implementation of the spin–lattice algorithm

5.1. Synchronous sub-lattice algoritm

To exploit the power of parallel processing, we developed a
spatially-decomposed version of the serial SD–MD algorithm
described in Section 3, analogous to that used for molecular
dynamics simulations in LAMMPS. Like the serial algorithm,
it is essential that the parallel algorithm accurately conserve en-
ergy and the norm of the total magnetization. As explained in
Section 3, this requires that the spin propagation operators be
applied in a manner that preserves symplecticity. This in turn
requires that the magnetic force ωi acting on each spin si be
calculated when each spin is updated. Due to short-range spin-
spin interactions, the computation of this force depends on the
spin orientations of the neighbors of atom i. In other words,
before updating each spin, the current value of its neighboring
spins must be known.

The parallel issue arises when two neighbor spins si and
s j (and their associated atoms) reside on different processors.
How do we ensure that when the second spin is updated, it uses

Figure 4: NVE simulation of a periodic block of 1372 cobalt atoms. Spin direc-
tions are initially random. Initial particle velocities were drawn from a Maxwell
distribution at 200K. The upper graph plots 3 contributions to the total energy
which remained constant: kinetic energy of the atoms and potential energies
of the atoms and spins (magnetic energy). The lower graph plots the atomic
(lattice) and spin temperatures, corresponding to Eqs. 21 and 22 respectively,
which equilibrated to the same value.

the previously updated value of the first spin? This clearly re-
quires some inter-processor communication of spin information
during the update operation, but the cost of the communication
needs to be minimized to ensure an efficient algorithm. Like-
wise we must ensure two neighbor spins on different processors
are not updated simultaneously (one of them with outdated in-
formation). Otherwise the accuracy of the integration scheme
will be degraded..

Inspired by the lattice-dependent ST decomposition pro-
posed by Krech et al. [68], Ma et al. [69] developed a multi-
threading algorithm for spin dynamics that partitions the single-
spin evolution operators into groups whose member spins do
not interact. This allows all spins in different groups to be up-
dated concurrently by separate execution threads. The multi-
threading implementation delivers good speedup on a single
multicore CPU. As currently implemented, distributed-memory
parallel execution is not supported, although the method could
be extended to use spatial decomposition parallel algorithms.
The biggest limitation of the method is the lack of general-
ity. Partitioning into non-interacting groups is achieved using
a lattice-coloring or checkerboarding scheme that can only be
applied to perfectly regular lattices in which each spin interacts
with a fixed stencil of interacting neighbor spins. Moreover, as
the number of neighbors in the interaction stencil increases, the
number of groups required to achieve a correct ST decomposi-
tion also increases, adding to the complexity of the algorithm.

We have implemented a different method called sector-
ing which is based on the synchronous sub-lattice algorithm
[23, 70] used to achieve spatial parallelism in kinetic Monte
Carlo simulations. In contrast to checkerboarding, sectoring is
very general, requiring only that spin-spin interactions vanish
beyond a finite cutoff distance. As long as this requirement
is met, sectoring can be used for dynamic simulations of arbi-

8



trary systems of atomic spins, including perfectly regular lat-
tices, thermally vibrating lattices, spatially disordered systems,
and even systems undergoing diffusive dynamics in which the
set of neighbors of each spin can change over time.

The sectoring method can be thought of as an extension
to the spatial-decomposition MD algorithm used in LAMMPS
and other MD codes, where the system is partitioned into sub-
domains, one per processor. Each processor owns and time-
integrates the atoms in its subdomain. It also stores information
about nearby ghost atoms, up to a cutoff distance away, which
are owned by neighboring processors. This information is ac-
quired by inter-processor communication, when needed.

The sectoring idea is to further divide each subdomain into
smaller regions by bisecting the subdomain once in each phys-
ical dimension (4 sectors in 2d, 8 in 3d). If the spatial extent of
all sectors in any dimension is larger than the interaction cutoff

distance, then spins in the same sector on two different proces-
sors do not interact. The processors can thus concurrently up-
date all the spins in one sector without the need to communicate
spin information to/from other processors, while still adhering
to the ST decomposition of Eq. 14. Formally, we can rewrite
the ST decomposition as

eL̂s
∆t
2 =

K∏
k=1


Nk∏
j=1

eL̂s j
∆t
4


1∏

k=K


1∏

j=Nk

eL̂s j
∆t
4

 + O
(
∆t3

)
, (28)

where K is the number of sectors, Nk is the number of spins in
sector k, and s j is the jth spin in the sector.
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Figure 5: Schematic of the SD–MD sectoring algorithm for a two–dimensional
spin–lattice model. The system is divided into four subdomains (bold squares),
each owned by a different processor. Each subdomain is further divided into
four sectors (numbered squares). Spins in sector 1 (shaded) for two different
processors do not interact and can thus be updated concurrently without inter-
processor communication.

Fig. 5 illustrates this idea for a two-dimensional system run-
ning on 4 processors, with each processor subdomain further
divided into 4 sectors. Spins in sector 1 of a particular proces-
sor do not interact with spins in sector 1 of any other processor.
Thus all the processors can update their sector 1 spins at the
same time. After the sector 1 updates, new spin values must be
communicated between processors before sector 2 spins can be
updated.

Fig. 6 is a schematic of the necessary communication for the
same 2d system. Each processor sends the current values of

spins associated with the ghost atoms that border sector 1. The
thickness of the border region is equal to the spin-spin interac-
tion cutoff distance.

Note that Fig. 6 shows the minimal communication require-
ments. For simplicity and convenience, our current imple-
mentation makes use of standard communication functions in
LAMMPS. All the ghost spins adjacent to the subdomain are
updated, not only those adjacent to sector 1. This simplifies the
implementation at the expense of a certain amount of unneces-
sary updating of spins that have not changed value. However, in
either case, the cost of computation scales as O((N/P)2/3), with
N the number of atoms and P the number of MPI processes, dif-
fering only in the prefactor[71]. In applications where the com-
munication cost is large relative to computation, extra overall
performance could be achieved by limiting the interprocessor
communication to only those sites adjacent to sector 1.

This pattern of communicating ghost spins then updating a
sector is repeated four times, once for each sector (8 times in
3 dimensions). The entire process is then repeated in reverse
sector order, at which point all of the spins have been updated
by a half timestep, according to Eq. 28. Overall, spins in each
sector are sequentially updated four times per timestep. To ac-
curately integrate the spin dynamics, it is important that a fixed
ordering of spins be used for all four updates. We achieve this
by assigning atoms to sectors once at the start of the timestep
based on their current positions.

1

3

2

4

1 2 1

1

3

Figure 6: Schematic of the communication required before a processor can
update spins in sector 1. This is a zoomed-in view of the bottom left portion of
Fig. 5. The current values of all spins within the dashed square must be known
before the processor updates spins in sector 1 (shaded). Most of these values are
already known, because the spins are owned by the processor. But ghost spins in
the blue regions are owned by neighboring processors, Those other processors
must the send the current values to this processor. Similarly, this processor must
send the current values of its spins in the red regions to neighboring processors.
Once these communication operations have been completed, all the processors
can concurrently advance their spins in sector 1.

5.2. Accuracy of the parallel algorithm

Note that by construction, the parallel algorithm faithfully re-
produces the ST decomposition rule that each spin is updated
using current information for all its neighbor spins. It differs
from the serial algorithm only in the order in which the global
set of spins are updated. This order will also differ depending
on the number of processors used to run a simulation. Two sim-
ulations with different ordering will not evolve identically in a
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numerical sense, but they should be produce identical in a sta-
tistical sense, since both are “correct”. We tested this using the
same fcc cobalt model used for testing the accuracy of the serial
algorithm (Fig. 2). To allow for multiple processors, the size of
the periodic simulation cell was increased from 17.7 Å (500
atoms) to 28.32 Å (2048 atoms). For a 2 × 2 × 2 grid of 8 pro-
cessors, the width of each sector is 7.08 Å, which is larger than
the cutoff distance of 6.5 Å used by the EAM potential, and
the one of 4.0 Å of the magnetic interactions. Starting with the
same configuration initialized at 300 K, we ran serial and paral-
lel NVE SD–MD simulations for 1 ps using a 10−4ps timestep.
Fig. 7 plots the conservation of total energy and magnetization
for the serial algorithm as well as the parallel algorithm running
on 4 and 8 MPI processes.

Figure 7: NVE SD–MD simulation of a block of 2048 fcc cobalt atoms using
the sectoring parallel algorithm. The upper graph plots the energy E(t) minus
the initial energy E0 as a function of simulation time. The lower graph plots
the norm of the total magnetization |M| minus the initial value |M|0. The black
curves are for the serial algorithm, and the red and green curves (or dots for the
upper graph) are for the parallel algorithm.

The upper graph of Fig. 7 shows the serial and parallel al-
gorithms generate trajectories with tiny energy fluctuations that
are indistinguishable from each other (the red and black curves
overlay), especially relative to the size of the step-to-step vari-
ations in energy due to the numerical integration. The lower
graph of Fig. 7 shows there there are tiny differences between
the simulations in the total magnetization value at a particular
timestep. This is expected, because the spins are updated in a
different order in each simulation, leading to trajectories that
diverge in a numerical sense. However the overall step-to-step
variation in the magnetization is the same for all three simu-
lations, indicating the parallel algorithm is generating a spin
trajectory that is statistically equivalent to that of the serial sim-
ulation.

5.3. Scaling results
We now evaluate the scaling efficiency of the parallel spin–

lattice algorithm as implemented in LAMMPS, for both strong
and weak scaling. All simulations were performed on a cluster
at Sandia consisting of dual-socket Intel Xeon E5-2695 (Broad-
well) CPUs with 36 cores per node, and an Intel Omnipath in-
terconnect. To ensure each processor owns the same number of

spins, only 32 cores per node were used for each of the calcu-
lations, though this is not required for general runs.

Both strong and weak scaling tests were performed. In both
cases, the parallel efficiency was evaluated by computing a nor-
malized simulation rate (SR), defined as the number of atoms -
steps per CPU second and per node:

SR =
Steps × Atoms

Nodes × Seconds
(29)

and plotted as a function of the number of nodes.
Strong scaling was tested by increasing the number of nodes

for a fixed number of atoms. Ideally, the computation time
should be cut in half each time the number of nodes is doubled,
so that SR should remain constant.

Each NVE SD–MD simulation combined a mechanical EAM
potential with two magnetic interactions, the exchange energy
and a Néel anisotropy (see Appendix A.1 and Appendix A.2
for more details). The magnetic potentials were parametrized
according to Ref. [18]; the EAM potential is described in
Ref. [67]. Two different problem sizes were run, the smaller
with 256,000 (256K) atoms (a cubic box of 403 fcc unit cells, 4
atoms/cell) and the larger with 2,048,000 (2M) atoms (2x larger
in each dimension). The SR defined in Eq. 29 was averaged
over a 50 timestep run. To assess the cost and efficiency of the
SD–MD algorithm, the same simulations were run with only
the EAM potential (no spin variables and without the sectoring
algorithm). Fig. 8 shows the results.

Figure 8: Strong-scaling performance of the parallel SD–MD algorithm (red)
compared to standard MD (blue) for two fixed size problems. The smaller
system (circles) has 256,000 atoms, the larger (squares) has 2,048,000 atoms.
Perfect scaling would be horizontal lines.

Fig. 8 indicates the overall computational cost of including
magnetic spin interactions, including the 8x increase in inter-
processor communication to perform the sectoring algorithm,
is about 4-5x that of a standard MD simulation with EAM po-
tentials.

For perfect strong scaling, the SR should remain constant as
the number of nodes increases. As the smaller system is run on
more nodes, the relative cost of interprocessor communication
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grows as the atoms/node ratio shrinks, and the SR decreases
slowly. The effect is less pronounced for the larger problem.
Note that for the smaller problem, the maximum node count
was 16 nodes (32 × 16 = 512 MPI tasks) to satisfy the require-
ment that the sector width be at least equal to the spin-spin in-
teraction cutoff distance (4 Å). Also note that the higher com-
putational cost of the SD–MD model results in somewhat better
strong scaling efficiencies relative to standard MD.

Weak scaling was tested by increasing the size of the sys-
tem as the number of nodes was increased, so that the number
of atoms per node (and thus the size of each processor sub-
domain) was held fixed.

The same magnetic and EAM interaction models were used
as for the strong scaling runs. Two different sized systems with
32,000 (32K) (corresponding to 1,000 atoms per processor),
and 256,000 (256K) atoms/node (corresponding to 8,000 atoms
per processor) were simulated.

Fig. 9 shows the results for a number of nodes ranging from
1 to 64 (corresponding to 2,048 processes).

Figure 9: Performance of the parallel SD–MD algorithm compared to the stan-
dard MD algorithm for scaled size problems (weak scaling). In both cases, the
interaction models are the same as that used in Fig. 8. The simulation rate (SR
in Eq. 29) is plotted as a function of the number of nodes. SD–MD and MD
results are colored red and blue, respectively. The smaller scaled systems (cir-
cles) consisted of 32,000 atoms/node and the larger scaled systems (squares)
consisted of 256,000 atoms/node.

For ideal weak scaling, the value of SR should remain con-
stant as the number of nodes increases, because the amount of
work per process remains constant. Fig. 9 shows that SR in-
deed decreases very little, confirming the efficiency of our SD–
MD algorithm. Also, we observe that our SD–MD algorithm is
again approximately 4 to 5 times slower than the standard NVE
MD calculation with LAMMPS, with the same EAM mechani-
cal potential.

6. Conclusion

A parallel implementation of coupled magnetic and molecu-
lar dynamics was presented. This implementation of SD–MD

is available as a new package in LAMMPS. It allows both cou-
pled and uncoupled simulations to be performed, i.e. magnetic
spins on a fixed lattice of atoms or on mobile atoms. Both the
serial and parallel versions implement statistically equivalent
symplectic Suzuki-Trotter decompositions of the spin propaga-
tion operators, differing only in the order they choose to update
spins.

The accuracy of the serial version of the coupled algorithm
was analyzed in both the microcanonical (NVE) and canoni-
cal (NVT) statistical ensembles. In the NVE case, care was
taken to verify that both the total internal energy and the norm
of the magnetization were conserved up to second order in the
timestep size. For NVT simulations testing coupled spin–lattice
relaxation, Langevin thermostats were applied to either the spin
subsystem or the lattice subsystem.

A parallel implementation of the integration algorithm based
on the sectoring or synchronous sublattice method was de-
scribed in detail. The statistical equivalence of the parallel al-
gorithm to the serial algorithm was verified by monitoring the
conservation of total energy and the norm of the magnetization
as the number of parallel processors varied. The parallel perfor-
mance of the LAMMPS implementation was assessed, both for
fixed size problems (strong scaling) and scaled size problems
(weak scaling). In both cases, good performance was observed
for all cases with more than 500 atoms per processor. Our new
SD–MD algorithm with coupled magnetic spin and atomic lat-
tice dynamics was shown to be only 4 to 5 times slower than an
analogous NVE MD LAMMPS run treating only the motion of
the atomic lattice.

This sectoring method has the advantage of being very gen-
eral, working for both perfectly ordered particle configurations
and disordered systems, so long as the width of each processor
domain is at least twice the cutoff distance for the short-range
spin-spin interactions.

Because the new methods were implemented within the
open-source LAMMPS MD code, they are now available to the
scientific community, enabling a wide variety of coupled spin–
lattice simulations to be easily performed and tested in detail,
as well as new models and algorithms to be implemented. Ap-
plications of this method to the simulation of magnetoelastic
effects in magnetic alloys will be presented in subsequent pub-
lications.
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Appendix A. Definition of the spin Hamiltonian

In the equations of motion (eq.24), the mechanical force
coming from the spins can be computed from the partial deriva-
tion of a spin Hamiltonian. This Hamiltonian represents the
total energy of the magnetic systems. Its general form can be
separated according to the following expression :

H = Hz +Hex +Han +HNéel +Hdm +Hme +Hdi, (A.1)

with Hz and Hex the Zeeman and the exchange interactions
defined in Section 2, the magnetic anisotropy (2 terms), the
Dzyaloshinskii-Moriya, the magneto-electric, and the dipolar
interaction. The subsections of this appendix give a definition
of these interactions.

Appendix A.1. Parametrization of the exchange interaction
Because of the celebrated Bohr-van Leuween theorem [72],

the flow of permanent magnetic moments cannot be the origin
of the magnetism found in actual materials and more surpris-
ingly, magnetism is an inherently quantum mechanical effect.
It is the interplay of electronic properties which appear un-
related to magnetism, the Pauli principle in combination with
the Coulomb repulsion as well as the hopping of electrons that
leads to an effective coupling between the magnetic moments in
a solid [73]. This mechanism does not have a classical analogue
and is responsible for both the volume of matter and ferromag-
netism.

In SD-MD, an effective parametrization of this exchange in-
teraction comes with two consequences : First, it is assuming
that its intensity is rapidly decreasing with very few oscillations
of its sign, so that a rigid cutoff radius Rc can be safely intro-
duced. For the computation of the exchange interaction with a
given spin i, only spins j such that ri j < Rc have to be taken into
account. Second, the value of its intensity can be approximated
by a simple continuous isotropic function J

(
ri j

)
. For 3d atoms,

this function is based on the Bethe–Slater curve [74, 75], and
is parametrized via three coefficients, α in eV, δ in Å, and γ a
non-dimensional constant. One has :

J
(
ri j

)
= 4α

( ri j

δ

)2
(
1 − γ

( ri j

δ

)2
)

e−
( ri j
δ

)2

Θ(Rc − ri j), (A.2)

with Θ(Rc − ri j) the Heaviside step function.
As examples, Fig. A.10 plots the interpolation by the func-

tion presented in Eq. A.2 of different exchange data. On one
side, the three first sets are related to pure ferromagnetic metals
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Figure A.10: Examples of exchange curves for bcc-Fe in blue, fcc-Ni in red,
fcc-Co in green, and bismuth ferrite oxide (BFO) in purple. The dotted line
labeled Rc represents a cutoff radius taking into account the three first neighbor
shells.

such as Iron, Nickel and Cobalt, and come from ab initio cal-
culations performed within the non-relativistic spin-polarized
Green-function technique [76], in general agreement with scat-
tering experiments. On the other side, the fourth set is for anti-
ferromagnetic BiFeO3 (BFO) and was measured by inelastic
neutron scattering technique [77]. The values of the coefficients
α, γ and δ to use for each of these four materials are gathered
in table A.1.

α (meV) γ δ (Å)
Bcc-Fe 25.498 0.281 1.999
Fcc-Ni 9.73 1.08 · 10−4 1.233
Fcc-Co 22.213 8.08 · 10−6 1.485
BFO -15.75 0 1.965

Table A.1: Coefficients fitting the ab initio and experimental results (with the
model presented in Eq. A.2) for bcc-Fe, fcc-Ni, fcc-Co and bismuth ferrite
oxide (BFO).

Appendix A.2. Spin orbit coupling
The spin-orbit coupling is of fundamental importance when

SD-MD simulations are at stake. This is, for example, the
case with magnetocrystalline anisotropy, or the Dzyaloshinskii-
Moriya interaction [75]. Even if its non-relativistic origin cor-
responds to energies that are orders of magnitude lower than
the exchange interaction, many technological application rely
on effective interactions arising from that spin-orbit coupling
[78].

Depending on the crystalline lattice of the material under
study, different forms of local magnetic anisotropies can arise.
A first simple phenomenological model accounting for the one-
site magnetocrystalline anisotropy consists of shaping the angu-
lar dependence of the corresponding energy surface with spher-
ical harmonics.

As an example, for uniaxial anisotropy, one has:

Han = −

N∑
i=1

Kan(ri) (si · ni)2 , (A.3)

with ni the direction of the anisotropy axis for the spin i, and
Kan(ri) its anisotropic constant (in eV), which depends eventu-
ally to the position of the spin i. With this form of interaction,
and depending on the sign of Kan(ri), the result can be either an
easy axis or an easy plane for the magnetization (easy axis if
Kan(ri) > 0, easy plane for Kan(ri) < 0).

However, in most magnetic crystals, the magnetocrystalline
anisotropy takes more complex forms (like cubic anisotropy for
example). Besides, this anisotropy model does not exhibit a
clear dependence on the lattice parameters.

Another, more sophisticated model aimed at taking into ac-
count the magnetocrystalline anisotropy is the two-site non-
local Néel anisotropy [34]. Limited to the pseudo-dipolar term
only, one has:

HNéel = −

N∑
i, j=1,i, j

g1(ri j)
(
(ei j · si)(ei j · s j) −

1
3

si · s j

)
,

with g1(r) a fast decreasing function of r. Terms like∑N
i, j=1,i, j g1(ri j)si · s j can be viewed as special case of exchange

interaction and can be omitted, by considering a well-suited re-
definition of J(ri j). In our implementation, g1(r) was chosen to
be the same function of three parameters as for the exchange
interaction (see eq. A.2).

It is also well known that the combination of the exchange
interaction and the spin-orbit coupling can give rise to non-
collinear spin states. First an object of theoretical work, this
canted ferromagnetism (the ground state presents spins that are
not perfectly aligned, but slightly tilted with one another) has
since become a promising effect for many potential applications
[79, 80].

The most common way to simulate this effect is to cou-
ple the exchange interaction (see Section. 2.1 and Appendix
A.1) to another interaction, referred to as the anti–symmetric
Dzyaloshinskii-Moriya interaction [81, 82]. This interaction
takes the following form:

Hdm =

N∑
i, j=1,i, j

D(ri j) ·
(
si × s j

)
, (A.4)

with D(ri j) the Dzyaloshinskii-Moriya vector, which defines
both the intensity (in eV) and the direction for the effect. In
particular, the Dzyaloshinskii-Moriya interaction is known to
be a key mechanism in the stabilization of magnetic skyrmions
[83].

Appendix A.3. Magneto–electric interaction

In some materials, like BFO, magnetism coexists and inter-
plays with dielectric permanent polarization at the atomic scale.
According to Katsura et al. [84] and Mostovoy [85], the effects
of this interplay can be taken into account within SD-MD via
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an anti–symmetric spin–spin effective interaction, as a particu-
lar case of the Dzyaloshinskii-Moriya vector, such as:

Hme =

N∑
i, j=1,i, j

(
E × ei j

)
·
(
si × s j

)
, (A.5)

with E giving the direction and the intensity of a screened
dielectric atomic polarization (in eV). This polarization can also
be induced by an external electric field of sufficient intensity.

Appendix A.4. Dipolar interaction

With larger atomic systems, the long-range dipolar interac-
tion is responsible for the stabilization of domain walls and the
nucleation of magnetic domains. As such, it is often referred to
as a demagnetizing field.

Its general non-local expression is

Hdi = −
µ0µ

2
B

4π

N∑
i, j=1,i, j

gig j

r3
i j

(
(si · ei j)(s j · ei j) −

1
3

(si · si)
)
,

(A.6)
with gi and g j the Landé factors for spins i and j respectively,

ri j = r j − ri, and ei j = ri j/|ri j|.
Despite its simple formula, its computational cost is one of

the main limiting factors for large magnetic simulations. In-
deed, due to its long-range nature, the dipolar interaction does
not have a finite cutoff distance, and therefore scales computa-
tionally as N2, with N the number of atoms in the system.

To compute the dipolar effective field and force, two solu-
tions have been considered. The first one takes advantage of the
properties of the Suzuki–Trotter decomposition to avoid com-
puting the dipolar interaction at each timestep. In MD simu-
lations, this solution is often considered when thermostats or
barostats have very different characteristic time scales, and is
referred to as the r-RESPA algorithm [86]. A second one relies
on an assumption of periodicity in space to use the well known
technique of Ewald sums [40]. For now, neither of these solu-
tions are implemented for the SD-MD package in LAMMPS,
but are being actively tested. Note that because the intensity of
the dipolar interaction is usually much smaller than other con-
sidered magnetic interactions, in magnetic systems below the
paramagnetic limit that are small enough to avoid the nucle-
ation of domain walls, this effect can be safely omitted.

Appendix B. Parametrization of a mechanical potential

In MD, the standard approach to simulate properties of met-
als is to consider a mechanical interaction between the magnetic

atoms using a empirial many-body potential such as the embed-
ded atom method (EAM) [87].

Dudarev et al followed this strategy and developed a very
specific semi-empirical many-body interatomic potential suit-
able for large scale molecular dynamics simulations of mag-
netic α-iron [36]. The functional form of the embedding portion
of that potential is derived using a combination of the Stoner
and the Ginzburg–Landau models, and reveals the spontaneous
magnetization of atoms by a broken symmetry of the solutions
of the Ginzburg–Landau model. Even if this strategy provides a
link between magnetism and interatomic forces, the anisotropy
effect through the spin-orbit coupling does not emerge natu-
rally. This is not the strategy we have followed in this paper
because we consider the magnitude of each atom’s magnetic
moment to be fixed during the simulation. Only its direction
changes over time. However, there is no conceptual difficulty
with implementing the more detailed potential in LAMMPS.

Because EAM potentials are either fitted to experimental or
ab initio data, the influence of the magnetic interactions is al-
ready silently included. In the framework of ab initio derived
EAM potentials, this can be seen in the special case of collinear
magnetism. Thus the standard approach is to effectively sub-
tract the magnetic interactions from the mechanical potential,
as :

H
e f f
mech(ri) = Hmech(ri) −H

ground
mag (ri), (B.1)

with He f f
mech(ri) the mechanical potential that needs comput-

ing, Hmech(ri) the EAM potential fitted before the magnetic
energy subtraction, and Hground

mag (ri) the magnetic ground-state
energy value. For example in a ferromagnet, because the ex-
change energy is by far the most intense value, the associated
ground state is given by the following sum, with j the neighbor-
ing atoms of the atom i:

H
ground
mag (ri) =

Neigh∑
j=1

J(ri j) |si| |s j|. (B.2)

Future work will study how the combination of both experi-
mental and ab initio results can be used to derive better empiri-
cal magneto-mechanical potentials.
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