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Financial portfolio optimization is a challenging task. One of the major di±culties is manag-
ing the uncertainty arising from di®erent aspects of the process. This paper suggests a

solution based on �-neighborhoods that, combined with a time-stamped resampling mechanism,

increases the robustness of the solutions. The approach is tested on four of the most popular

evolutionary multiobjective algorithms over a long period of time. This results in a signi¯cant
enhancement in the reliability of the estimated e±cient frontier.
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1. Introduction

The selection of appropriate mix of assets in ¯nancial portfolios is one of the key

problems faced by money managers. The search for good strategies that consistently

*Corresponding author.
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lead to the best combinations to meet the needs of investor has driven an extremely

large amount of research. This line of investigation is still very active and involves

both researchers and practitioners from di®erent disciplines.

Since the seminal work of Markowitz,1 the problem of portfolio optimization has

been mainly aimed at the identi¯cation of sets of assets that balance two key char-

acteristics, risk and return. While the initial e®orts to tackle this ¯nancial multi-

objective problem2 relied mostly on classic quadratic programming, the use of

heuristics3 is getting progressively more traction due to their °exibility when it comes

to modeling additional objectives4 and real-world constraints.5 Among them, Mul-

tiobjective Evolutionary Algorithms (MOEAs)6 seem to be specially well suited for

the task.

Regardless of the optimization approach chosen, the process of constructing good

portfolios is subject to uncertainty at di®erent levels.7,8 Among them, we will men-

tion two important ones: the quality of the estimates for key optimization para-

meters,9 and the uncertainty coming from the implementation of the trading strategy

chosen to build the portfolio. The e®orts to keep problems like these under control

has led to the sub¯eld of robust ¯nancial portfolio optimization.10 Within it, the bulk

of the literature is focused in the ¯rst one, so we intend to make a contribution that

tackles the second one and is compatible with optimization strategies based on

MOEAs.

When asset managers provide orders to the trading desk to buy and sell to-

wards a target allocation, there are implementation costs that relate to the timing

of the order. It is normal that the execution is not immediate due to liquidity

constraints, the need to hide intentions, etc. If the execution of the instructions is

not simultaneous, the result is likely to be intermediate portfolios that are very

similar to the initial or the target portfolio, but slightly di®erent. If those small

di®erences in the solution space translate into large divergences in the risk-return

pro¯le, it is likely that the decision maker considers them undesirable (and vice-

versa). This paper shows how adding an additional objective based on �-neigh-

borhoods allows the improvement in this aspect, making the solutions more

robust, while, at the same time, it either has very little cost, or adds value in terms

of the conception of robustness based on sensitivity to deviation in the values of

the parameters. In addition to this, the approach is also compatible with a wide

range of MOEAs.

In order to illustrate these features, we will show the performance of this approach

combined with another one that controls for errors in parameter estimation on a

large set of historical data using four di®erent core MOEAs. The sample was already

used to present the resampled strategy, time-stamped resampling, as a stand-alone

method,11 and those results will be partially used as benchmark. The core algorithms

that will be tested are among the most widely studied MOEAs in the domain,

speci¯cally Nondominated Sorting Genetic Algorithm II (NSGA-II), Strength

Pareto Evolutionary Algorithm 2 (SPEA2), Speed-Constrained Multiobjective PSO

algorithm (SMPSO), and Generalized Di®erential Evolution 3 (GDE3). NSGA-II12
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is one of the most popular MOEAS. This MOEA, together with SPEA2,13 the sec-

ond algorithm that we use, has been reported in the literature14 to o®er good per-

formance in portfolio optimization. We will complete the set with a di®erential

evolution strategy, GDE3,15 and a multiobjective algorithm based on particle swarm

optimization.16

The rest of the paper is organized as follows. First, we review recent literature on

MOEAs in portfolio optimization. Then, we make a formal introduction to the ¯-

nancial portfolio optimization problem and describe in detail our approach, outlined

above, to obtain robust solutions. This will be followed by a section devoted to the

experimental validation. Finally, there will be a section dedicated to summary and

conclusions.

2. Related Literature Overview

The literature exploring applications of MOEAs on portfolio optimization is

ample. Innovation on algorithms17 and modeling has resulted in a constant

buildup of evidence supporting the case for their use in the domain. Besides the

references covered in the survey by Metaxiotis and Liagkouras,18 among recent

contributions, we could mention another one by the same authors19 that presents

a new version of the polynomial mutation operation applicable to the cardinality

constrained portfolio optimization problem. Lwim et al.20 studied the performance

of a learning-guided multiobjective evolutionary algorithm, MODEwAwL,

versus four well-known MOEAs for portfolio optimization with four real-world

constraints.

More recently, Babaei et al.21 proposed a multiobjective particle swarm optimi-

zation (MOPSO) on a multiobjective mixed integer programming formulation of the

problem, and Yue et al.22 introduced an evolutionary algorithm for multiobjective

fuzzy portfolio selection aimed at maintaining the diversity of portfolios.

The interest in robust portfolio optimization using MOEAs is more recent and, as

we mentioned before, has been specially focused on ways to control uncertainty

related to the true values of key parameters. Within the Markowitz framework, the

output of the optimization process relies heavily on the quality of the estimates for

the expected asset returns and their variance–covariance matrices. Unfortunately,

major predictability issues for ¯nancial asset returns often result expected optimal

solutions that often turn out to lie far from the real ones.

Some authors have done some descriptive work regarding the sensitivity of

NSGA-II to the presence of outliers in the dataset23 but, when it comes to

searching for potential solutions, the main strategies put forward to by researchers

using evolutionary computation adapt the idea of resampling. Resampling is a

strategy found in the ¯nancial literature for some time.24 The core idea is gener-

ating sets of solutions for a number of scenarios, and then aggregating the output

to obtain a set of portfolios that is not specialized on a single forecast for the
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returns and the variance–covariance matrix. The aggregation solutions for dif-

ferent sets parameter values could either be simple or based on clustering algo-

rithms, as Idzorek suggests.25

The mentioned approach traditionally combines sets of portfolios obtained using

quadratic programming, but the idea of testing di®erent scenarios has been adapted

to evolutionary computation. In this case, the strategies a®ect the way the algo-

rithms operate to include the resampling process in the optimization loop. This way,

the solution is found in a single go. Hassan and Clack26 used this idea to create

trading strategies based on genetic programming, but we have to wait until García
et al.27 to ¯nd an application tailored speci¯cally to the single-period portfolio op-

timization problem. These authors use multiple scenarios to compute the ¯tness of

intermediate solutions using SPEA2. This strategy was subsequently improved

adding a time-stamped mechanism, and generalized to other MOEAs.11

The problem of limiting exposure to deviations from the target portfolio due to

trading strategies is an open aspect of the robust portfolio optimization problem.

Given that we know in advance that the portfolios resulting from either a regular or

even a resampled optimization process, like those already mentioned, carry a degree

of uncertainty, we suggest prioritizing those solutions that are less sensitive to minor

speci¯cation errors. The process samples the space around any candidate portfolio

and favors those that, in addition to o®ering good relative risk and return, are

located in stable sections of the solution space.

As it will be discussed in detail later, the driver of the suggested strategy is a

stability indicator based on �-neighborhoods. This component captures dispersion in

terms of the two mentioned basic objectives resulting from the application of small

perturbations to intermediate solutions. This technique is often regarded as a way to

control problems that may arise from slight reading errors from sensors, small

deviations in expected completion times in scheduling tasks, robust design, etc. Its

generic nature makes it adaptable to many di®erent contexts. The basic idea is

controlling the impact of unexpected deviations in the solution space. In order to do

that, the algorithm de¯nes a neighborhood around the potential solution, samples it

and analyzes the structure of samples in the objective space.

Within the framework of robust optimization,28 the use of �-neighborhoods to

enhance the reliability of the solutions provided by the evolutionary algorithms is not

new. Deb and Gupta29 discuss their application in their general discussion of ro-

bustness in multiobjective optimization, and Gaspar-Cunha and Covas30 go deeper

into the speci¯cs of this particular approach. Having said that, to the best of our

knowledge, the application to limit implementation risks in portfolio optimization,

such as the one described in the sections that follow, is novel.

3. Financial Portfolio Optimization Problem

Financial portfolios can be de¯ned as a collection of investments or assets held by an

institution or a private individual. The Modern Portfolio Theory was originated in
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the article published by Harry Markowitz, in 1952.1 It explains how to use the

diversi¯cation to optimize the Portfolio. In general, the portfolio optimization

problem is the choice of an optimum set of assets to include in the portfolio and the

distribution of investor's wealth among them. Markowitz31 assumed that solving the

problem requires the simultaneous satisfaction of maximizing the expected portfolio

return EðRpÞ and minimizing the portfolio risk. Despite the fact that there are

di®erent ways to model risk,32 this work will follow the canonical variance metric �2
p.

Therefore, we will be solving a multiobjective optimization problem with two output

objective functions that can be formally de¯ned as:

. Minimize the risk (variance) of the portfolio:

�2
p ¼

Xn
i¼1

Xn
j¼1

wiwj�ij : ð1Þ

. Maximize the expected return of the portfolio:

EðRpÞ ¼
Xn
i¼1

wi�i: ð2Þ

. Subject to:

Xn
i¼1

wi ¼ 1; ð3Þ

0 � wi � 1; i ¼ 1; . . . ; n; ð4Þ
where n is the number of available assets, �i the expected return of the asset i, �ij the

covariance between asset i and j, and wi are the decision variables giving the com-

position of the portfolio. The constraints referenced in Eqs. (3) and (4) require the

full investment of funds and prevent the investor from shorting any asset, respec-

tively. In a quantitative way, the risk is represented with the standard deviation �p.

The solution to the problem should also consider some real world constraints

such as

. Cardinality constraint: it is possible to de¯ne the maximum Cmax and minimum

Cmin number of assets in which it is possible to invest (wi 6¼ 0):

Cmin � �ðwi 6¼ 0Þ � Cmax ð5Þ
. Values limit constraint: each weight wi must have a value in the interval [liminf ,

limsup], where

0:0 � liminf � wi � limsup � 1:0: ð6Þ

All of these equations are solved by a set of points that constitute the e±cient

frontier of the problem. The points will de¯ne a curve in the risk-return space that

represents, out of all possible portfolios, the subset that has the minimum amount of

risk given a certain expected return (and viceversa).
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4. Robust Approach

As we mentioned in the introduction, portfolio optimization faces a major challenge:

the process depends on forecasts for two sets of parameters that are very likely to be

inaccurate. The virtual impossibility of getting perfect estimates for future returns

and the variance–covariance matrix results in a large potential for major deviations

both between the expected and actual behavior of selected portfolios, and the real

e±cient frontier.

In this paper, we introduce a way to mitigate the problem, an extended formu-

lation of the mean-variance model that includes a third stability objective based on

�-neighborhoods. There are previous e®orts based on the perturbation of the men-

tioned key parameters like time-stamped resampling (R+T)11 which have proved to

be e®ective. That approach generates sets of likely scenarios and ¯lters out those

portfolios that are too sensitive to deviations in expected returns and variance–

covariance matrix. The algorithm also considers the age of candidate portfolios, and

favors those solutions that have performed better for a longer time, the time-stamped

component of the approach. The strategy that we suggest, perfectly complementary,

focuses its attention on a di®erent aspect. In this case, the key is the structure of the

landscape. The core idea is biasing the search towards areas of the solution space

where small perturbations in the candidate solution do not lead to major di®erences

in terms of risk and return.

The mechanism used to foster the robustness of the solution relies on a previous

idea already found on robust optimization in other domains, �-neighborhoods.29 Each

portfolio p will be assessed based on the traditional features, return EðRpÞ and risk

�2
p, plus a new one Robp. The computation of the last ¯gure requires the generation of

H neighboring portfolios, p1; . . . ; pH , which are created using the Latin hypercube

(LH) approach.33 LH works by dividing the domain of each asset of p (around [��; �])

into H equal grids, thus dividing the �-neighborhood into Hn hyperboxes. The

greater the value of �, larger the size of the sampled neighborhood. That is, �

determines the scale of the perturbation made to the composition portfolios. Once

the hyperboxes are selected, a random point within each hyperbox is chosen and used

to compute the return EðRpi Þ and risk �2
pi of portfolio pi . The average Mahalanobis

distance34 between p and pi is considered as a new objective function to be mini-

mized, since these distances measures the dispersion of the returns and risks of the set

of portfolios, i.e., the larger the Mahalanobis distance, the larger the dispersion, and

thus, the more sensitive is the solution to small perturbations. The choice of

Mahalanobis distance is justi¯ed by some desirable properties like independence of

scale or the fact that it takes into account correlation structures to evaluate simi-

larity. This reduces the di®erences in risk and return to a single number. More

formally, the new objective function is

Robp ¼
1

H

XH
i¼1

mdðp; piÞ; ð7Þ
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where mdðp; piÞ is the Mahalanobis distance in terms of risk and return between

portfolios p and pi. If we de¯ne the pair (EðRpi Þ, �2
pi ) as x , (EðRpÞ, �2

p) as y , and �

as the variance-covariance matrix, the distance would be computed using the

expression

mdðx ; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � yÞT��1ðx � yÞ

q
: ð8Þ

As we just mentioned, high values of Robp indicate of low stability in the

neighborhood of p and, therefore, are something to be avoided. That is the reason

why the new objective should be minimized.

The fronts resulting from the experimentation consist of portfolios that are not

dominated according to the three objectives driving the evolution process. That

means that the process results in surface that could be used by the decision maker to

choose the right portfolio for his needs.

Given that these three-objective solutions are not readily comparable with the

ones resulting from the standard two-objective formulation, we make a projection to

the risk-return space. The sets of portfolios will be split in subsets according to the

new objective, that we will refer to a �-sensitivity, that we just described. This will

allow us to analyze the connection between the values of the third objective, and the

sensitivity to uncertainty regarding the real values of the optimization parameters.

The process is as follows: at the end of the execution, the ¯nal solution set is

ranked by the �-sensitivity objective, Robp, and split in three sets. The ¯rst of these,

the third of the individuals with the lowest values, will be classi¯ed as \High sta-

bility". The second will be labeled \Medium stability" and ¯nally the last one, the set

of portfolios located in the least stable portion of the solution space, will be con-

sidered \Low stability". This is illustrated in Fig.1, where we represent a set of
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Fig. 1. Solutions grouped by �-sensitivity objective.
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portfolios broken in the mentioned categories according to the dispersion metric

obtained sampling its neighborhood.

The processing stage ends with the identi¯cation of nondominated portfolios in

terms of risk and return objectives. As we observe in Fig. 2, once we discard domi-

nated solutions, we obtain three subfronts whose quality can be evaluated at a later

stage and compared to the solution provided by any other optimization method.

It is worth noting that Figs. 1 and 2 only intend to illustrate the process. The

actual experimental results that we describe in the next section produce charts where

the three fronts are so close, that they almost overlap. Only by enlarging signi¯cantly

small sections of the front we could observe the depicted structure. The second

di®erence that we should remark is that, even though the three fronts cover a similar

range of risk-return combinations, medium and high sensitivity fronts tend to con-

centrate more solutions in the low-risk (variance) section of the e±cient frontier.

This is specially the case in the latter.

5. Experimentation

In this section, we report the experimentation perform made to test the approach

described in the previous section. Given that the model extension is compatible with

both complementary solutions R+T and a wide range of MOEAs, we performed a set

of experiments designed to assess the contribution of the third objective under dif-

ferent setups on a real-world problem. The problem chosen is robust portfolio opti-

mization for strategic asset allocation. In this case, the investor requires robust

approximations to the e±cient frontier resulting from the combination of eight in-

vestment categories represented by a broad indices. The details regarding the setup
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will be provided in sections devoted to the introduction of the dataset, core algo-

rithms, adaptations to the problem and parametrization and ¯nally, evaluation

metrics.

5.1. Dataset

The experiments were performed using a sample of 240monthly returns for eight

broad ¯nancial indexes representing eight asset classes. As we mentioned in the

introduction, this sample was already used in Ref. 11. The series of monthly returns

covers the time period from January 1990 to December 2009 and the source for the

data is commercial provider Datastream. The list of indexes is provided in Table 1.

In order to make sure that the algorithms face a wide range of historical situations

and, therefore, that we get proper validation for the approach, we test it in 120

di®erent single-period market scenarios based on real data. In order to create these

single-period portfolio optimization problem instances, we will use a sliding window.

It is important to emphasize that this use di®ers from the usual single testing ground

for dynamic multiperiod approaches. In this paper, the rolling window is just a tool

to create in systematic way 120 di®erent single-period scenarios that happen to be

consecutive in time.

The size of the window is set to n ¼ 120, return periods that correspond to 10

years of data. This means that the algorithm will rely on data from t1 to tn to identify

the best possible allocations for the period tnþ1, that is, t1 to tn will be used for

training and the clean data from tnþ1 for testing. Each time, the 10-year window will

move one month, 120 times in total to cover the date interval from 31/01/1990 to

31/12/2009.

Due to the stochastic nature of the algorithms, they will be run 100 times per

window. This means that, for each window, we will obtain 100 solutions sets per

algorithm.

5.2. Algorithms

The nature of the strategies designed to improve robustness is very °exible. It is

compatible with many di®erent metaheuristics. We brie°y describe the four used in

Table 1. Data sets.

Name Code

Frank Russell 1000 Growth FRUS1GR

Frank Russell 1000 Value FRUS1VA
Frank Russell 2000 Growth FRUS2GR

Frank Russell 2000 Value FRUS2VA

S&P GSCI Commodity Total Return GSCITOT

MSCI EAFE MSEAFEL
BOFA ML CORP MSTR ($) MLCORPM

BOFA ML US TRSY /AGCY MSTRAAA($) MLUSALM
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this study, namely NSGA-II, SPEA2, SMPSO, and GDE3. They all are either

population-based metaheuristics,35 i.e., they operate on a set of solutions at every

iteration, or include an external archive for storing the nondominated solutions

found during the search, or both. A general template for a multiobjective meta-

heuristic is displayed in Algorithm 5.1. The general operation of these algorithms

begins by generating the initial solutions, S (usually in a fully random manner), and

updating the set of nondominated solutions found in this ¯rst sampling, A (lines 1–

3). Then, the search loop starts. It lies in stochastically varying the solutions included

in S and A, and generating a (hopefully improved) new set of solutions (line 7) from

which those that are nondominated are retrieved (line 9). The matching of this

general scheme on the four algorithms used in this work is brie°y presented below,

after introducing the encoding of the tentative solutions they manipulate, i.e., the

portfolios. For a detailed description of the algorithms, interested readers are referred

to the references provided for each one.

5.2.1. NSGA-II

The NSGA-II, was proposed by Deb et al.12 It is a genetic algorithm based on

generating a new population from the original one by applying the typical genetic

operators (selection, crossover, and mutation); then, the individuals in the new and

old population are sorted according to their rank, and the best solutions are chosen to

create a new population. In case of having to select some individuals with the same

rank, a density estimation based on measuring the crowding distance to the sur-

rounding individuals belonging to the same rank is used to get the most promising

solutions. From Algorithm 5.1, S and A are considered to be one single set P ¼ S [ A

so that, at each iteration, the nondominated solutions found are used to generate new

solutions within the evolutionary loop.

Algorithm 5.1 Template of a multiobjective metaheuristic
1: S(0) ← GenerateInitialSolutions() // S can contain only a solution
2: Evaluation(S)
3: A(0) ← Update(A(0), S(0))
4: t ← 0
5: while not StoppingCriterion( ) do
6: t ← t + 1
7: S(t) ← Variation(A(t − 1), S(t − 1))
8: Evaluate(S(t))
9: A(t) ← Update(A(t), S(t))

10: end while
11: Output: A

10



5.2.2. SPEA2

The SPEA2 was proposed by Zitzler et al. in Ref. 13. In this algorithm, each

individual has a ¯tness value that is the sum of its strength raw ¯tness plus a

density estimation. SPEA2 ¯ts perfectly in the general template of Algorithm 5.1,

having a population of solutions plus an external archive. That is, the algorithm

applies the selection, crossover, and mutation operators with solutions from S to

¯ll the archive A of individuals; then, the nondominated individuals of both the

original population and the archive are copied into a new population. If the

number of nondominated individuals is greater than the population size, a trun-

cation operator based on calculating the distances to the kth nearest neighbor is

used. This way, the individuals having the minimum distance to any other indi-

vidual are chosen.

5.2.3. SMPSO

SMPSO algorithm is a particle swarm optimization algorithm for solving MOPs.16

From a high level of abstraction, in a PSO algorithm, a set (swarm) of candidate

solutions (particles) to the problem navigates through the search space of an opti-

mization problem. This navigation takes place attending to a velocity equation,

which rules the way how particles change their position. Among the factors that

govern the velocity equation, two of them can be highlighted: the current position of

the particle and the best positions visited so far, also referred as leaders. Usually, the

best position visited by a particle (local leader) and the best particle visited by any

particle in the swarm (global leader) are considered. The main innovation of SMPSO

is the incorporation of a constraining mechanism already applied in mono-objective

PSO algorithms, which modulate the speed at which particles °y.36 SMPSO uses an

external archive to store the nondominated solutions, so it ¯ts into the template

described in Algorithm 5.1.

5.2.4. GDE3

The GDE315 is an improved version of the GDE algorithm. It starts with a popu-

lation of random solutions, which becomes the current population. At each genera-

tion, an o®spring population is created using the di®erential evolution operators;

then, the current population for the next generation is updated using the solutions of

both, the o®spring and the current population. Before proceeding to the next gen-

eration, the size of the population is reduced using nondominated sorting and a

pruning technique aimed at diversity preservation, in a similar way as NSGA-II,

although the pruning used in GDE3 modi¯es the crowding distance of NSGA-II in

order to solve some of its drawbacks when dealing with problems having more than

two objectives. Therefore, the matching with Algorithm 5.1 is the same as NSGA-II:

S and A are merged into one single set.
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5.3. Algorithm Adaptation and Parametrization

All the algorithms evaluated in this work use the same encoding for the tentative

solutions that they are iteratively improving. These solutions are encoded as arrays

of °oating point numbers, wi, that represent the percentage of investment of the

asset i, that is, a portfolio. As long as the solutions must ful¯ll a set of hard con-

straints (Eqs. (3)–(6), a repair operator has been used to deal with unfeasibility.11

Whenever a new solution is generated, updated by the search operators, or sampled

within the �-neighborhood, its constraints are evaluated and it undergoes repair if

needed.

In order to have a fair comparison among all the algorithms to be performed, they

all are required to evaluate 150,000 tentative solutions and to obtain an approxi-

mation to the Pareto optimal set limited to 500 nondominated points. Recall that,

for every sliding windows, each algorithm is run 100 times in order to provide the

results with statistical con¯dence. Regarding the third objective, the neighborhood of

each portfolio is sampled with 1,000 small perturbations, with � ¼ 0:001. The de-

tailed settings for each of the four algorithms are included in Table 2. We want to

clarify two relevant points. On the one hand, we have not paid attention to the

particular parametrization of the recombination and mutation rates for each algo-

rithm as we have used the standard values given in the seminal works in which they

are presented. Such a thorough analysis is out of the scope of this work because

we want to focus the attention to the e®ect of the robust mechanism devised. On

the other hand, we want to underline again that the comparison is fair in terms of

both the numerical performance (i.e., the size of the sampling in the search space)

and the maximum size of the approximated fronts (i.e., no algorithm is given

more chance to cover regions of the Pareto front by using nondominated sets of

unbounded size). The parameters for the R+T component of the algorithm are the

same that were used in the cited reference paper.

Table 2. Parametrization of the algorithms. L is the individual length.

Parametrization used in NSGA-II and SPEA2

Population Size 500 individuals

Selection of Parents binary tournament + binary tournament

Recombination uniform
Mutation polynomial, pm ¼ 1:0=L

Parametrization used in SMPSO

Swarm Size 500 individuals
Leaders Size 500 individuals

Mutation polynomial, pm ¼ 1:0=L

Parametrization used in GDE3

Population Size 500 individuals

Recombination Di®erential Evolution, CR ¼ 0:1, F ¼ 0:5
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5.4. Evaluation metrics

The evaluation of the solutions requires quality indicators. The most widely used

in multiobjective optimization, such as Hypervolume (HV) and Spread,37 are not

appropriate to measure the quality of solutions from a robustness point of

view. These are very useful to identify evenly distributed and strong dominant

fronts but, unfortunately, they do not capture divergence between expected results

and actual results. For this reason, we use some other metrics to measure the ro-

bustness of the solutions. We will consider four: Estimation Error, Stability, Unre-

alized Returns, and Extreme Risk, introduced in Ref. 11, that we succinctly describe

below.

The Estimation Error (EE) considers the average Mahalanobis distance34 be-

tween the expected risk and return for every portfolio in the e±cient frontier and the

actual risk and return a posteriori, once the real values of the parameters are ob-

served. A small distance would imply that the expected behavior of the optimized

portfolios is close to the real one observed a posteriori.

The Stability (ST) metric measures the average di®erence between the expected

scenario and 500 feasible scenarios generated using nonparametric bootstrap. A

larger set of scenarios is likely to result on a more accurate approximation to the

potential distribution of parameters so that high values of this metric would repre-

sent higher sensitivity to likely scenarios and lower reliability.

Unrealized Returns (UR) evaluates, for every portfolio, the di®erence between its

realized return and the maximum potential return for that risk level. This means that

the higher the values of this metric, the larger the unrealized potential returns.

Hence, a low value for this indicator would be considered something positive.

Extreme Risk (ER) metric measures portfolio sensitivity to worst-case scenar-

ios. This indicator is especially important for portfolio managers that are con-

cerned about potentially extreme deviations in the expected risks and returns.

Under these circumstances, changes in the forecasted parameters could result in

large deviations that would make the behavior of the selected portfolios very

unreliable. The concept is very related to Value at Risk but, instead of focusing in

losses, it captures unexpected portfolio behaviors balancing both changes in

portfolio risk and return.

These are de¯ned as the 1% resampled scenarios from a 500 sample with the

highest average Mahalanobis distance between the risk/return of the portfolios

evaluated on these parameters and the expected risk/return of the same portfolios.

The higher the metric, the lower the robustness.

5.5. Results

In this section, we present the experimental results based on the data and procedures

previously discussed. The approach was tested on the four MOEAs already intro-

duced (SPEA2, NSGA-II, GDE3 and SMPSO) and the robustness of the solutions
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was assessed using EE, ST, ER and UR. For each algorithm, we compared the results

of the canonical version with four alternatives: a time-stamped resampled version,

and the three reliability levels arising from the extension of the previous version with

the new objective based on �-neighborhoods described in Sec. 4. For each metric and

con¯guration we provide a set of standard descriptive statistics. Speci¯cally, the

average, median and variance over 100 runs are reported in the tables that follow. In

addition to that, the di®erences in the metrics with respect to the basic versions of

the algorithms have been formally tested for statistical signi¯cance using the Wil-

coxon test due to their lack of normality.

The sensitivity of the results to the values of � can be inferred from the com-

prehensive results reported in Appendix A. As it can be observed, the choice of

parameter does not seem to play a major role. Despite testing the values of � that

di®er by orders of magnitude, the impact is seldom beyond 2% regardless of the

robustness quality indicator.

Conversely, the situation is very di®erent when we study the importance of

genetic operators. Appendix B shows the combined e®ect of replacing uniform

crossover in the genetic algorithms with Simulated Binary Crossover (SBX) and

Blend Alpha Crossover (BLX), together with the use of uniform mutation as an

alternative to polynomial. As for SMPSO, the implications of using uniform mu-

tation versus polynomial mutation are also reported. While the choice of operators

a®ects the results of all of these algorithms, the genetic algorithms, specially SPEA2,

show the largest dispersion. ST is, by far, the most in°uenced quality indicator,

while UR is at the opposite side of the spectrum. In terms of operators, depending on

the circumstance either uniform crossover or SBX o®er the best results over BLX.

Polynomial mutation, however, beats uniform mutation across the board.

The estimation error, the indicator that shows the discrepancy between the

expected behavior of the selected portfolios and reality, is very variable depending on

the underlying MOEA. As we can see in Table 3, out to the four basic algorithms,

GD3 provides the best starting point. Adding the time-stamped resampling makes a

major contribution to the results across the board, and we obtain the minimum value

with SMPSO. The largest overall gain is achieved with SPEA2, but it is largely

explained by the high baseline of the canonical algorithm, which performed the worst

for EE. This algorithm, together with NSGA-II also seems to o®er the lowest con-

sistency as the variance of the results tends to be much higher for this alternative

than the others. The best mean value for the metric is obtained by the high stability

subset of SMPSO. Here, the addition of the �-sensitivity objective results in addi-

tional mean improvement over the time-stamped resampled version of 13.5% in

global terms, or 43% in relative terms.

All the median di®erences between the baseline values of the metric for the

standard algorithms and the robust versions but one are signi¯cant at 1%. The

exception is the comparison between the low stability solution for SMPSO and

the standard setup. In that case the test could not reject equality at 5%.
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In terms of stability, SPEA2 is the core algorithm that both obtains the best

values for the metric and the largest average improvement. Surprisingly, the im-

provement in the metric of 76.70% is not achieved by the high stability subset of

portfolios, but the medium one. Having said that, Table 4 shows that the addition

of the �-neighborhood objective to the resampled version of SPEA2 improves the

performance for the three fronts. In this case, the largest contribution of the new

objective is lower than in the previous case, 6.7% in global terms or 8.7% in

relative terms. The previous observation holds also for the median results. Even

though the sets of portfolios identi¯ed by GDE3 show higher stability for the basic

con¯guration, it does not pro¯t as much as the rest from the inclusion of the

resampling and the third objective. This pattern is also mirrored by the multi-

objective PSO.

Once again, the only exception to the statistical signi¯cance of the di®erences at

1% between the robust versions and the baseline, is the solution set SMPSO Low.

In this occasion, the equality null hypothesis is rejected at the 5% conventional

level.

Table 5 reports the metric that captures the sensitivity of the solution to a set of

worst-case scenarios, where the deviations of risk and return are especially large (the

Extreme Risk indicator). In these cases, the introduction of the new approach results

in a clear improvement across basic algorithms. Having said that, the contribution as

Table 3. Estimation error indicator results.

EE Average Median Variance Av. imp. (%)

NSGAII 2.2613 1.8071 3.9781
NSGAII R+T 1.2216 0.6357 2.5894 45.98

NSGAII High 1.4099 0.6717 4.3607 37.65

NSGAII Medium 1.2878 0.5192 3.8437 43.05
NSGAII Low 1.4934 0.7328 3.5194 33.96

SPEA2 2.5196 1.8162 5.1751

SPEA2 R+T 1.1016 0.5270 2.4888 56.28

SPEA2 High 1.1595 0.4096 3.9791 53.98
SPEA2 Medium 1.1438 0.4172 3.8321 54.60

SPEA2 Low 1.2503 0.4826 3.9048 50.38

SMPSO 1.4939 1.2324 1.7256

SMPSO R+T 1.0234 0.7044 0.9181 31.49

SMPSO High 0.8211 0.5162 1.1562 45.04

SMPSO Medium 1.0785 0.7184 1.1759 27.80

SMPSO Low 1.5171 1.1020 1.9934 �1.55

GDE3 1.4807 1.1839 1.6799
GDE3 R+T 1.1001 0.6798 1.3447 25.71

GDE3 High 1.0406 0.6387 1.5822 29.72

GDE3 Medium 1.1947 0.7302 1.6907 19.31
GDE3 Low 1.4308 0.9410 2.2181 3.37
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Table 5. Extreme risk indicator results.

ER Average Median Variance Av. imp. (%)

NSGAII 3.2148 2.8235 3.8975

NSGAII R+T 1.7640 1.1865 2.6789 45.13

NSGAII High 2.0830 1.2043 5.1970 35.20

NSGAII Medium 1.8719 1.1469 3.7793 41.77

NSGAII Low 2.2642 1.5608 3.9371 29.57

SPEA2 3.5315 3.0472 4.9711

SPEA2 R+T 1.5991 1.0266 2.5787 54.72

SPEA2 High 1.6308 0.8174 4.1723 53.82

SPEA2 Medium 1.6519 0.8571 3.8335 53.22

SPEA2 Low 1.8729 1.0022 4.3176 46.97

SMPSO 2.2303 1.9779 1.8379
SMPSO R+T 1.4872 1.2325 1.0194 33.32

SMPSO High 1.3114 0.9860 1.1583 41.20
SMPSO Medium 1.7062 1.3493 1.4805 23.50

SMPSO Low 2.2328 1.9063 2.3973 �0.11

GDE3 2.2279 1.9722 1.8898

GDE3 R+T 1.6970 1.2665 1.6804 23.83

GDE3 High 1.6236 1.2107 1.8473 27.12

GDE3 Medium 1.8660 1.4252 2.1637 16.24

GDE3 Low 2.1845 1.7783 2.7579 1.95

Table 4. Stability indicator results.

ST Average Median Variance Av. imp. (%)

NSGAII 6.5078 6.1306 13.0883
NSGAII R+T 2.6528 2.4189 2.3038 59.24

NSGAII High 2.5756 2.0301 4.0390 60.42

NSGAII Medium 2.3863 1.9149 3.0975 63.33
NSGAII Low 3.2434 2.8207 4.2727 50.16

SPEA2 7.4009 7.0380 20.8347

SPEA2 R+T 2.2201 1.8669 2.2534 70.00

SPEA2 High 1.7629 1.6965 0.9544 76.18
SPEA2 Medium 1.7243 1.5875 0.9450 76.70

SPEA2 Low 2.0391 1.7974 1.5289 72.45

SMPSO 5.2076 4.8454 7.0554

SMPSO R+T 3.2402 2.8408 3.7394 37.78

SMPSO High 2.2425 2.0529 1.6246 56.94

SMPSO Medium 3.7007 3.1776 5.7124 28.94

SMPSO Low 5.1728 4.4513 10.1250 0.67

GDE3 5.1506 4.7763 6.9177
GDE3 R+T 3.3691 3.0426 3.9137 34.59

GDE3 High 3.0536 2.6485 5.3222 40.71

GDE3 Medium 3.8238 3.1992 6.0094 25.76
GDE3 Low 4.8841 4.0340 9.9212 5.17

16



a percentage over the time-stamped resampling tends to be negligible. The exception

is SMPSO, for which the highest stability portion of the new third objective shows a

sizeable improvement of 41.20% versus 33.32%. This combination is also the one

that gets the highest global results. The results, however, are poor for the genetic

algorithms. Surprisingly, even though the results outperform the baseline, the

new approach underperforms time-stamped resampling regardless of the tertile

chosen. The outcome of the statistical testing is exactly the same one that we

obtained in the previous metric. The di®erences for all the robust versions but

SMPSO Low, are signi¯cant at 1%. The exception requires relaxing the criterion and

setting it at 5%.

The introduction of the third objective also has an impact on the divergence

between the selected set of portfolios and the observed e±cient frontier. For the sake

of these comparisons, the e±cient frontier was determined using the individual fronts

provided by the standard nonrobust versions of the core MOEAs using the ex-post

parameters. All the fronts were combined into a single set of portfolios, and the

nondominated subset was used as reference solution.

In all cases, as it is apparent in Table 6, the addition of strategies to increase

robustness reduces the sum of money left of the table. The speci¯c amount varies

with the basic algorithm, but we obtained the best results with SMPSO. The

multiobjective PSO also turns out to be the most consistent alternative among

algorithm runs, as we can see in the variances. Once again, the lowest third of the

Table 6. Unrealized returns results.

UR Average Median Variance Av. imp. (%)

NSGAII 3.4788 2.7252 7.9201

NSGAII R+T 2.5265 1.9556 4.2799 27.37

NSGAII High 2.5901 2.0154 6.4126 25.55

NSGAII Medium 2.4786 1.8850 5.4828 28.75

NSGAII Low 2.7654 2.1186 5.8123 20.51

SPEA2 3.5859 2.7953 8.6577

SPEA2 R+T 2.3506 1.7922 4.1225 34.45

SPEA2 High 2.2843 1.7146 5.3432 36.30

SPEA2 Medium 2.2655 1.6740 5.1199 36.82

SPEA2 Low 2.4537 1.8015 5.5949 31.58

SMPSO 2.9953 2.4891 5.3718
SMPSO R+T 2.2702 1.7245 3.0980 24.21

SMPSO High 1.8212 1.4248 2.1816 39.20
SMPSO Medium 2.2934 1.8028 3.4946 23.43

SMPSO Low 2.8357 2.2378 5.2096 5.33

GDE3 3.3427 2.8714 6.0005

GDE3 R+T 2.6886 2.1756 4.6265 19.57

GDE3 High 2.4340 1.9484 3.5869 27.19

GDE3 Medium 2.7611 2.2202 4.8470 17.40

GDE3 Low 3.1077 2.5057 5.9904 7.03
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set in terms of �-sensitivity (high stability front) gets the largest reduction for the

metric. Compared to the basic version of SMPSO which, we should bear in mind, is

the algorithm with the best starting point, it gets a 39.20% drop. As the lower the

value for UR, the better, the data shows an important contribution of the new

objective to the enhancement of the robustness of the solution. In this case, the

global improvement over R+T was 15%, 38.2% in relative terms. The di®erences

observed for this metric between the standard MOEAs and the robust versions were

all signi¯cant at 1%.

As we have seen, the results of the experimental process suggest that the addition

of the third objective based on �-neighborhoods improves the robustness of the

solutions. It is therefore a reliable mechanism for attaining such a goal that can be

adopted in any MOEA. While the magnitude of the gain varies depending on the

metric and core algorithm chosen, there is a clear pattern that suggests that the

lower the value of the third objective, the more robust is the solution. Regardless of

the robustness indicator chosen, the best performance was always achieved

extending the time-stamped resampled version of the algorithm with the third

�-sensitivity objective, and selecting the portfolios in either the lowest or the mid

third in terms of third new variable. Unsurprisingly, the portfolios in the highest

third in terms of the new objective, low stability fronts, tend to perform worse. Most

of the time they drag the robustness provided by R+T signi¯cantly.

A visual inspection of the resulting approximated Pareto fronts in terms of risk

and return shows a truly interesting conclusion. The inclusion of the �-sensitivity as a

new objective has enabled the algorithms to explore portions of the solution space

that the R+T versions cannot reach. Indeed, Fig. 3 displays the 50%-attainment
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Fig. 3. Risk versus returns attainment surfaces for the three versions of SMPSO.

18



function38 (it can be considered as the \median" approximated Front) for the three

versions of SMPSO: the core algorithm, and those with the R+T approach, and the

�-sensitivity approach. It can be seen that the core algorithm is able to cover the

wider portion of the search space, but the robust metrics in the tables above clearly

point out that the portfolios reached are the worst in terms of robustness.

The R+T version, which shows a rather similar value for these metrics, does

support the robustness by avoiding reaching portfolios with high risk, and also high

return (located on the upper right part of the ¯gure), that tend to be specially

sensitive to uncertainty regarding the predicted returns and the variance–covariance

matrix.

This idea of the existence of di®erentiated areas in terms of robustness along

the Pareto front is also supported by the analysis of the traditional metrics con-

sidered in Appendices A and B. There we can see the sensitivity of HV and spread

metrics to the choice of � and operators. The results are in line with the ones we

reported for the other indicators. While we observe that the sensitivity of HV and

spread to � are very limited, the selection of operators is important, specially for

the former.

As we already discussed, there is an inverse relationship between robustness and

HV. This makes sense since, as we mentioned before, robust solutions are a subset of

the potential ones. The more robust is the subset, the smaller the range of alter-

natives in terms of risk and return and the smaller HV. This is consistent with the

¯ndings that, for NSGAII and SPEA2, uniform crossover and SBX provide lower

values than BLX, and that polynomial mutation tends to o®er higher results than

the uniform alternative. Regarding SMPSO, the in°uence of the mutation operator is

very limited. The impact of these choices on spread is not that clear. The indicator is

mostly driven by the core algorithm. The evidence of the in°uence of the mutation

operator is mixed and, regarding crossover, the only consistent pattern that we

identi¯ed is that SBX tends to be slightly better.

To summarize, the results mentioned suggest that this approach provides not

only advantages in term of sensitivity to the trading strategy used to build the

selected portfolio, but also o®ers the decision maker portfolio choices of with good

risk/return pro¯les that are at least as robust as the R+T strategy.

6. Summary and Conclusions

In this paper, we introduced a method to enhance the robustness of ¯nancial port-

folios. The approach relies on the extension of the basic mean-variance standard

formulation, with a third objective. This objective models portfolio implementation

risk through the structure of the landscape surrounding a candidate portfolio and

favors solutions located in reliable areas.

We de¯ne these as sections of the solution space where similar portfolios are also

close in the objective space, that is, they o®er similar risks and rewards. The rationale

for this is the idea that, in these cases, temporary deviations from the desired
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solutions caused by trading strategies, are less likely to result in a major unexpected

behavior. This reduces the exposure and increases the robustness of solutions.

As we mentioned, the method focuses its attention on the structure of the land-

scape, biasing the search towards areas of the solution space where small di®erences

in the structure of portfolios do not result in major disparity in risk and return. This

represents a major di®erence versus alternatives like time-stamped resampling

(R+T), which are focused on the sensitivity of the solutions to perturbation in the

two key parameters of the optimization, expected returns and the variance–covari-

ance matrix. In other words, these approaches target two di®erent intermediate

objectives in their search for robustness that are not only compatible, but comple-

mentary, and can be implemented at the same time.

The implementation of this strategy is based on �-neighborhoods together with

the use of Mahalanobis distance to create a dispersion metric that should be mini-

mized. The output of the method is a three-dimensional surface that could be used by

the decision maker to select the portfolio that suits his needs better.

In order to assess the performance of the solutions, once the optimization is done,

the resulting set of portfolios is broken into three sets of equal size according to the

new variable. The selection of the nondominated solutions in terms of risk and return

results on three subfronts with di®erent degrees of stability, the best of which is likely

to consist of robust solutions.

The approach is both compatible with the use of very di®erent evolutionary

multiobjective optimization methods, and alternatives like the one already men-

tioned. For this reason, the experimental setup consisted in four core popular

MOEAs (NSGA II, SPEA2, SMPSO and GDE3), as baseline, plus the time-stamped

resampling working in tandem with R+T versions of all of them. These alternatives

were tested on historic ¯nancial data using a sliding window approach, and they were

compared according to four di®erent robustness metrics.

Even though the best results di®er in their basic multiobjective algorithm

depending on the metric, they were mostly achieved by a combination of R+T and

the high stability subset of the �-sensitivity objective. The combined e®ect resulted in

major improvements for the robustness metrics. The contribution of the new ob-

jective to this result was generally substantial. Unsurprisingly, those portfolios with

low values for the stability objective resulted in a signi¯cant drag to R+T in terms of

increasing the reliability of the solutions.

Regarding the algorithm setup, the sensitivity of the results to neighborhood size,

controlled by the parameter �, depends on the core algorithm chosen. Having said

that, it does not seem to play a major role in this particular context. However, it is

not the case when we consider changes in evolutionary operators. The choice of the

crossover and the mutation operators severely a®ects the robustness of the solutions.

The best combinations include either uniform or SBX as crossover operators with

polynomial mutation. The most a®ected algorithm is SPEA2 and the most sensitive

performance indicator is ST.
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Since solutions represent a subset of the range of alternatives, we observe an

inverse relationship between robustness an HV. For this reason, the pattern of results

in terms of this indicator basically mirrors the one described for robustness. Re-

garding spread, its connection with the di®erent parameters and operators seem to be

much weaker, and is driven by the choice of the core algorithm.

There are a number of potential ways to extend this work. Among them, we could

mention comprehensive scalability studies; the exploration of di®erent perturbation

strategies or increasing the range basic algorithms to be tested.

In conclusion, the experimental evidence obtained by testing the approach over a

very long period on real data supports the idea that it contributes to identifying

robust portfolios. Given its °exibility, the low sensitivity of results to its only pa-

rameter, and its compatibility with di®erent core algorithms and other robustness

enhancing strategies, we think it is an option to be considered by both practitioners

and researchers working with MOEAs in this domain.
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Appendix A. Sensitivity of Results to ²

Table A.1. Sensitivity to � of the estimation error indicator.

EE � Average Median Variance Av. imp. (%)

NSGAII 2.2613 1.8071 3.9781

NSGAII R+T 1.2216 0.6357 2.5894 45.98

NSGAII High 0.01 1.4160 0.6662 4.4399 37.38

NSGAII Medium 1.3058 0.5213 3.9894 42.26

NSGAII Low 1.5023 0.7374 3.6167 33.57

NSGAII High 0.001 1.4099 0.6717 4.3607 37.65

NSGAII Medium 1.2878 0.5192 3.8437 43.05

NSGAII Low 1.4934 0.7328 3.5194 33.96

NSGAII High 0.0001 1.4324 0.6847 4.3981 36.65

NSGAII Medium 1.3045 0.5151 3.9954 42.31

NSGAII Low 1.5135 0.7324 3.6646 33.07

NSGAII High 0.00001 1.4214 0.6661 4.4190 37.14

NSGAII Medium 1.3026 0.5091 3.9540 42.40

NSGAII Low 1.5044 0.7102 3.6359 33.47

SPEA2 2.5196 1.8162 5.1751

SPEA2 R+T 1.1016 0.5270 2.4888 56.28
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Table A.1. (Continued )

EE � Average Median Variance Av. imp. (%)

SPEA2 High 0.01 1.1699 0.4355 4.0348 53.57

SPEA2 Medium 1.1485 0.4245 3.9249 54.42

SPEA2 Low 1.2720 0.4907 4.1532 49.52

SPEA2 High 0.001 1.1595 0.4096 3.9791 53.98

SPEA2 Medium 1.1438 0.4172 3.8321 54.60

SPEA2 Low 1.2503 0.4826 3.9048 50.38

SPEA2 High 0.0001 1.1548 0.4195 3.9423 54.17

SPEA2 Medium 1.1518 0.4261 3.8796 54.29

SPEA2 Low 1.2366 0.4877 3.8586 50.92

SPEA2 High 0.00001 1.1473 0.4170 3.8978 54.46

SPEA2 Medium 1.2510 0.4871 3.9619 54.46
SPEA2 Low 1.1474 0.4191 3.9399 50.35

SMPSO 1.4939 1.2324 1.7256

SMPSO R+T 1.0234 0.7044 0.9181 31.49

SMPSO High 0.01 0.8334 0.5243 1.2212 44.21

SMPSO Medium 1.0864 0.7259 1.1941 27.28

SMPSO Low 1.5237 1.1091 1.9836 �2.00

SMPSO High 0.001 0.8211 0.5162 1.1562 45.04

SMPSO Medium 1.0785 0.7184 1.1759 27.80
SMPSO Low 1.5171 1.1020 1.9934 �1.55

SMPSO High 0.0001 0.8224 0.5163 1.1420 44.95

SMPSO Medium 1.0903 0.7370 1.2037 27.02
SMPSO Low 1.5437 1.1318 2.0695 �3.33

SMPSO High 0.00001 0.8264 0.5213 1.1749 44.68

SMPSO Medium 1.0815 0.7427 1.1570 27.61
SMPSO Low 1.5181 1.1121 1.9642 �1.62

GDE3 1.4807 1.1839 1.6799
GDE3 R+T 1.1001 0.6798 1.3447 25.71

GDE3 High 0.01 1.0567 0.6538 1.6219 28.63

GDE3 Medium 1.2213 0.7590 1.7732 17.52
GDE3 Low 1.4567 0.9770 2.1729 1.62

GDE3 High 0.001 1.0406 0.6387 1.5822 29.72

GDE3 Medium 1.1947 0.7302 1.6907 19.31
GDE3 Low 1.4308 0.9410 2.2181 3.37

GDE3 High 0.0001 1.0415 0.6462 1.5620 29.66
GDE3 Medium 1.2038 0.7398 1.7029 18.70

GDE3 Low 1.4453 0.9648 2.0794 2.39

GDE3 High 0.00001 1.0542 0.6511 1.5695 28.80
GDE3 Medium 1.2138 0.7445 1.7917 18.03

GDE3 Low 1.4287 0.9538 2.1284 3.51
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Table A.2. Sensitivity to � of the stability indicator.

ST � Average Median Variance Av. imp. (%)

NSGAII 6.5078 6.1306 13.0883
NSGAII R+T 2.6528 2.4189 2.3038 59.24

NSGAII High 0.01 2.5566 2.0398 3.8033 60.71

NSGAII Medium 2.4027 1.9133 3.1669 63.08
NSGAII Low 3.2265 2.8121 4.2622 50.42

NSGAII High 0.001 2.5756 2.0301 4.0390 60.42

NSGAII Medium 2.3863 1.9149 3.0975 63.33
NSGAII Low 3.2434 2.8207 4.2727 50.16

NSGAII High 0.0001 2.5746 2.0487 3.6795 60.44
NSGAII Medium 2.3878 1.9169 2.8363 63.31

NSGAII Low 3.2344 2.8007 4.1223 50.30

NSGAII High 0.00001 2.5679 2.0328 3.8883 50.14
NSGAII Medium 2.3893 1.9168 2.9934 63.29

NSGAII Low 3.2184 2.7829 4.1869 50.55

SPEA2 7.4009 7.0380 20.8347
SPEA2 R+T 2.2201 1.8669 2.2534 70.00

SPEA2 High 0.01 1.7877 1.7189 0.9625 75.84
SPEA2 Medium 1.7290 1.5949 0.9446 76.64

SPEA2 Low 2.0624 1.8056 1.5423 72.13

SPEA2 High 0.001 1.7629 1.6965 0.9544 76.18
SPEA2 Medium 1.7243 1.5875 0.9450 76.70

SPEA2 Low 2.0391 1.7974 1.5289 72.45

SPEA2 High 0.0001 1.7511 1.6950 0.8967 76.34
SPEA2 Medium 1.7153 1.5890 0.8871 76.82

SPEA2 Low 2.0128 1.7881 1.3832 72.80

SPEA2 High 0.00001 1.7615 1.7030 0.9200 76.20

SPEA2 Medium 1.7199 1.5922 0.8919 76.76

SPEA2 Low 2.0440 1.7972 1.4515 72.38

SMPSO 5.2076 4.8454 7.0554

SMPSO R+T 3.2402 2.8408 3.7394 37.78

SMPSO High 0.01 2.2559 2.0676 1.6274 56.68
SMPSO Medium 3.7002 3.1791 5.6781 28.95

SMPSO Low 5.1610 4.4768 9.7711 0.89

SMPSO High 0.001 2.2425 2.0529 1.6246 56.94

SMPSO Medium 3.7007 3.1776 5.7124 28.94

SMPSO Low 5.1728 4.4513 10.1250 0.67

SMPSO High 0.0001 2.2381 2.0517 1.5802 57.02

SMPSO Medium 3.6960 3.2029 5.5885 29.03

SMPSO Low 5.1913 4.4998 10.0789 0.31

SMPSO High 0.00001 2.2226 2.0391 1.5911 57.32

SMPSO Medium 3.6761 3.1820 5.5142 29.41

SMPSO Low 5.1592 4.4767 10.0110 0.93

GDE3 5.1506 4.7763 6.9177

GDE3 R+T 3.3691 3.0426 3.9137 34.59

GDE3 High 0.01 3.1418 2.7035 5.7365 39.00

GDE3 Medium 3.9129 3.2678 6.4121 24.03

GDE3 Low 4.9855 4.1357 10.3618 3.21
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Table A.3. Sensitivity to � of the extreme risk indicator.

ER � Average Median Variance Av. imp. (%)

NSGAII 3.2148 2.8235 3.8975

NSGAII R+T 1.7640 1.1865 2.6789 45.13

NSGAII High 0.01 2.0821 1.2042 5.2588 35.23

NSGAII Medium 1.8916 1.1513 3.8595 41.16

NSGAII Low 2.2715 1.5507 4.0121 29.34

NSGAII High 0.001 2.0830 1.2043 5.1970 35.20

NSGAII Medium 1.8719 1.1469 3.7793 41.77

NSGAII Low 2.2642 1.5608 3.9371 29.57

NSGAII High 0.0001 2.1075 1.2257 5.2513 34.44

NSGAII Medium 1.8880 1.1491 3.8730 41.27

NSGAII Low 2.2835 1.5775 4.0353 28.97

NSGAII High 0.00001 2.0871 1.2038 5.2419 35.08

NSGAII Medium 1.8884 1.1359 3.8793 41.26

NSGAII Low 2.2720 1.5603 4.0169 29.33

SPEA2 3.5315 3.0472 4.9711

SPEA2 R+T 1.5991 1.0266 2.5787 54.72

SPEA2 High 0.01 1.6560 0.8300 4.2195 53.11

SPEA2 Medium 1.6658 0.8852 3.9287 52.83

SPEA2 Low 1.9061 1.0162 4.5500 46.03

SPEA2 High 0.001 1.6308 0.8174 4.1723 53.82

SPEA2 Medium 1.6519 0.8571 3.8335 53.22

SPEA2 Low 1.8729 1.0022 4.3176 46.97

SPEA2 High 0.0001 1.6217 0.8175 4.1016 54.08

SPEA2 Medium 1.6585 0.8677 3.8694 53.04

SPEA2 Low 1.8566 1.0011 4.2722 47.43

SPEA2 High 0.00001 1.6175 0.8172 4.0528 54.20

SPEA2 Medium 1.6593 0.8650 3.9331 53.02
SPEA2 Low 1.8801 1.0028 4.4195 46.76

SMPSO 2.2303 1.9779 1.8379

SMPSO R+T 1.4872 1.2325 1.0194 33.32

Table A.2. (Continued )

ST � Average Median Variance Av. imp. (%)

GDE3 High 0.001 3.0536 2.6485 5.3222 40.71

GDE3 Medium 3.8238 3.1992 6.0094 25.76
GDE3 Low 4.8841 4.0340 9.9212 5.17

GDE3 High 0.0001 3.0822 2.6843 5.1351 40.16

GDE3 Medium 3.8555 3.2606 6.0403 25.14
GDE3 Low 4.8853 4.0893 9.7035 5.15

GDE3 High 0.00001 3.0984 2.6715 5.5051 39.84

GDE3 Medium 3.8488 3.2365 6.0192 25.28
GDE3 Low 4.8480 4.0590 9.7989 5.88
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Table A.4. Sensitivity to � of the unrealized returns indicator.

UR � Average Median Variance Av. imp. (%)

NSGAII 3.4788 2.7252 7.9201

NSGAII R+T 2.5265 1.9556 4.2799 27.37

NSGAII High 0.01 2.5961 2.0124 6.5110 25.37

NSGAII Medium 2.4815 1.8862 5.5478 28.67

NSGAII Low 2.7626 2.1029 5.9501 20.59

NSGAII High 0.001 2.5901 2.0154 6.4126 25.55

NSGAII Medium 2.4786 1.8850 5.4828 28.75

NSGAII Low 2.7654 2.1186 5.8123 20.51

NSGAII High 0.0001 2.6264 2.0312 6.5937 24.50

NSGAII Medium 2.5045 1.8831 5.6675 28.01

NSGAII Low 2.7834 2.1199 6.0204 19.99

NSGAII High 0.00001 2.6198 2.0223 6.6731 24.69

NSGAII Medium 2.5071 1.8763 5.8220 27.93

NSGAII Low 2.7746 2.1233 6.0407 20.24

SPEA2 3.5859 2.7953 8.6577

SPEA2 R+T 2.3506 1.7922 4.1225 34.45

Table A.3. (Continued )

ER � Average Median Variance Av. imp. (%)

SMPSO High 0.01 1.3263 0.9891 1.2227 40.53

SMPSO Medium 1.7204 1.3656 1.5185 22.86

SMPSO Low 2.2431 1.9261 2.4140 �0.57

SMPSO High 0.001 1.3114 0.9860 1.1583 41.20

SMPSO Medium 1.7062 1.3493 1.4805 23.50

SMPSO Low 2.2328 1.9063 2.3973 �0.11

SMPSO High 0.0001 1.3129 0.9969 1.1344 41.13

SMPSO Medium 1.7145 1.3583 1.4992 23.13

SMPSO Low 2.2615 1.9571 2.4844 �1.40

SMPSO High 0.00001 1.3137 0.9847 1.1708 41.10

SMPSO Medium 1.7061 1.3499 1.4779 23.50
SMPSO Low 2.2355 1.9213 2.4019 �0.23

GDE3 2.2279 1.9722 1.8898

GDE3 R+T 1.6970 1.2665 1.6804 23.83

GDE3 High 0.01 1.6523 1.2325 1.8790 25.84

GDE3 Medium 1.9049 1.4598 2.2477 14.50

GDE3 Low 2.2192 1.8683 2.7076 0.39

GDE3 High 0.001 1.6236 1.2107 1.8473 27.12

GDE3 Medium 1.8660 1.4252 2.1637 16.24
GDE3 Low 2.1845 1.7783 2.7579 1.95

GDE3 High 0.0001 1.6336 1.2240 1.8797 26.68

GDE3 Medium 1.8776 1.4500 2.1692 15.72
GDE3 Low 2.1986 1.8330 2.6659 1.32

GDE3 High 0.00001 1.6542 1.2306 1.9386 25.75

GDE3 Medium 2.1729 1.8013 2.6769 2.47
GDE3 Low 1.8897 1.4315 2.2555 15.18
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Table A.4. (Continued )

UR � Average Median Variance Av. imp. (%)

SPEA2 High 0.01 2.2857 1.7652 5.0552 36.26

SPEA2 Medium 2.2563 1.6774 4.9483 37.08
SPEA2 Low 2.4650 1.8161 5.6578 31.26

SPEA2 High 0.001 2.2843 1.7146 5.3432 36.30

SPEA2 Medium 2.2655 1.6740 5.1199 36.82
SPEA2 Low 2.4537 1.8015 5.5949 31.58

SPEA2 High 0.0001 2.2720 1.7110 5.1008 36.64

SPEA2 Medium 2.2530 1.6674 5.0165 37.17
SPEA2 Low 2.4323 1.8021 5.4562 32.17

SPEA2 High 0.00001 2.2778 1.7108 5.1167 36.48
SPEA2 Medium 2.2602 1.6713 4.9607 36.97

SPEA2 Low 2.4576 1.8134 5.6130 31.46

SMPSO 2.9953 2.4891 5.3718
SMPSO R+T 2.2702 1.7245 3.0980 24.21

SMPSO High 0.01 1.8383 1.4231 2.2844 38.63

SMPSO Medium 2.2866 1.7815 3.5252 23.66
SMPSO Low 2.8306 2.2418 5.1108 5.50

SMPSO High 0.001 1.8212 1.4248 2.1816 39.20
SMPSO Medium 2.2934 1.8028 3.4946 23.43

SMPSO Low 2.8357 2.2378 5.2096 5.33

SMPSO High 0.0001 1.8305 1.4297 2.1990 38.89
SMPSO Medium 2.3008 1.7994 3.4689 23.19

SMPSO Low 2.8586 2.2653 5.2400 4.56

SMPSO High 0.00001 1.8146 1.4214 2.1751 39.42
SMPSO Medium 2.2843 1.7924 3.4498 23.74

SMPSO Low 2.8289 2.2380 5.1331 5.56

GDE3 3.3427 2.8714 6.0005

GDE3 R+T 2.6886 2.1756 4.6265 19.57

GDE3 High 0.01 2.4671 1.9619 3.7148 26.20
GDE3 Medium 2.7911 2.2465 4.7696 16.50

GDE3 Low 3.1406 2.5447 5.9849 6.05

GDE3 High 0.001 2.4340 1.9484 3.5869 27.19
GDE3 Medium 2.7611 2.2202 4.8470 17.40

GDE3 Low 3.1077 2.5057 5.9904 7.03

GDE3 High 0.0001 2.4702 1.9898 3.7410 26.10

GDE3 Medium 2.7874 2.2484 4.7802 16.61

GDE3 Low 3.1242 2.5336 5.9004 6.54

GDE3 High 0.00001 2.4734 2.0024 3.7607 26.01

GDE3 Medium 2.7995 2.2467 4.9233 16.25

GDE3 Low 3.1107 2.5129 6.0031 6.94
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Table A.5. Sensitivity to � of HV.

HV � Average Median Variance Av. imp. (%)

NSGAII 0.6743 0.6534 0.0034
NSGAII R+T 0.5703 0.6066 0.0148 �15.42

NSGAII High 0.01 0.2888 0.2763 0.0252 �57.17

NSGAII Medium 0.3715 0.3787 0.0335 �44.90
NSGAII Low 0.5181 0.5666 0.0208 �23.17

NSGAII High 0.001 0.2924 0.2771 0.0255 �56.64

NSGAII Medium 0.3763 0.3861 0.0326 �44.20
NSGAII Low 0.5223 0.5677 0.0192 �22.54

NSGAII High 0.0001 0.2910 0.2734 0.0260 �56.84
NSGAII Medium 0.3775 0.3889 0.0321 �44.02

NSGAII Low 0.5209 0.5675 0.0197 �22.75

NSGAII High 0.00001 0.2920 0.2736 0.0264 �56.69
NSGAII Medium 0.3761 0.3863 0.0326 �44.22

NSGAII Low 0.5192 0.5657 0.0196 �23.00

SPEA2 0.6746 0.6538 0.0034
SPEA2 R+T 0.5230 0.5845 0.0213 �22.48

SPEA2 High 0.01 0.2370 0.1860 0.0308 �64.87
SPEA2 Medium 0.2587 0.2089 0.0344 �61.65

SPEA2 Low 0.4038 0.4302 0.0259 �40.15

SPEA2 High 0.001 0.2404 0.1984 0.0307 �64.36
SPEA2 Medium 0.2578 0.2074 0.0341 �61.79

SPEA2 Low 0.4025 0.4276 0.0260 �40.34

SPEA2 High 0.0001 0.2397 0.1932 0.0310 �64.47
SPEA2 Medium 0.2577 0.2093 0.0334 �61.81

SPEA2 Low 0.4006 0.4240 0.0262 �40.62

SPEA2 High 0.00001 0.2415 0.1931 0.0315 �64.20

SPEA2 Medium 0.2601 0.2117 0.0337 �61.45

SPEA2 Low 0.4026 0.4273 0.0258 �40.32

SMPSO 0.5895 0.5781 0.0047

SMPSO R+T 0.4058 0.4323 0.0133 �31.16

SMPSO High 0.01 0.3153 0.3186 0.0159 �46.51
SMPSO Medium 0.3738 0.3994 0.0155 �36.60

SMPSO Low 0.3840 0.4190 0.0161 �34.86

SMPSO High 0.001 0.3668 0.3849 0.0154 �37.77

SMPSO Medium 0.3989 0.4217 0.0134 �32.33

SMPSO Low 0.3981 0.4262 0.0146 �32.47

SMPSO High 0.0001 0.3165 0.3221 0.0160 �46.32

SMPSO Medium 0.3754 0.4007 0.0156 �36.32

SMPSO Low 0.3831 0.4181 0.0163 �35.02

SMPSO High 0.00001 0.3153 0.3194 0.0160 �46.52

SMPSO Medium 0.3752 0.4022 0.0157 �36.35

SMPSO Low 0.3827 0.4178 0.0166 �35.08

GDE3 0.5935 0.5815 0.0045

GDE3 R+T 0.4564 0.4931 0.0168 �23.09

GDE3 High 0.01 0.3824 0.4234 0.0241 �35.57

GDE3 Medium 0.3820 0.4106 0.0154 �35.64

GDE3 Low 0.3864 0.4136 0.0155 �34.90
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Table A.5. (Continued )

HV � Average Median Variance Av. imp. (%)

GDE3 High 0.001 0.3875 0.4236 0.0231 �34.71

GDE3 Medium 0.3881 0.4134 0.0145 �34.61
GDE3 Low 0.3908 0.4145 0.0148 �34.15

GDE3 High 0.0001 0.3782 0.4151 0.0236 �36.28

GDE3 Medium 0.3757 0.4037 0.0151 �36.70
GDE3 Low 0.3828 0.4109 0.0149 �35.50

GDE3 High 0.000001 0.3802 0.4199 0.0235 �35.94

GDE3 Medium 0.3771 0.4057 0.0149 �36.46
GDE3 Low 0.3818 0.4114 0.0151 �35.66

Table A.6. Sensitivity to � of spread.

Spread � Average Median Variance Av. imp. (%)

NSGAII 0.5907 0.5689 0.0066

NSGAII R+T 1.0742 1.0675 0.0361 �81.86

NSGAII High 0.01 1.2028 1.0620 0.0608 �103.62

NSGAII Medium 1.0946 1.0233 0.0358 �85.32

NSGAII Low 0.9838 0.9610 0.0365 �66.56

NSGAII High 0.001 1.2004 1.0596 0.0601 �103.22

NSGAII Medium 1.0859 1.0204 0.0343 �83.85

NSGAII Low 0.9776 0.9520 0.0354 �65.50

NSGAII High 0.0001 1.1986 1.0532 0.0614 �102.92

NSGAII Medium 1.0869 1.0210 0.0341 �84.00

NSGAII Low 0.9817 0.9572 0.0365 �66.19

NSGAII High 0.00001 1.1921 1.0494 0.0593 �101.81

NSGAII Medium 1.0819 1.0197 0.0333 �83.16

NSGAII Low 0.9819 0.9546 0.0367 �66.24

SPEA2 0.3984 0.3825 0.0106

SPEA2 R+T 1.2193 1.1868 0.0562 �206.01

SPEA2 High 0.01 1.0891 1.0196 0.0267 �173.33

SPEA2 Medium 1.0431 1.0120 0.0115 �161.79

SPEA2 Low 1.0587 1.0493 0.0199 �165.72

SPEA2 High 0.001 1.0898 1.0225 0.0259 �173.52

SPEA2 Medium 1.0411 1.0132 0.0106 �161.29

SPEA2 Low 1.0603 1.0538 0.0194 �166.11

SPEA2 High 0.0001 1.0866 1.0209 0.0257 �172.72

SPEA2 Medium 1.0388 1.0123 0.0101 �160.71

SPEA2 Low 1.0611 1.0507 0.0195 �166.32

SPEA2 High 0.00001 1.0851 1.0202 0.0258 �172.33

SPEA2 Medium 1.0390 1.0126 0.0100 �160.76
SPEA2 Low 1.0593 1.0514 0.0198 �165.85

SMPSO 1.2391 1.2422 0.0674

SMPSO R+T 0.9624 0.9674 0.0162 22.33
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Appendix B. Sensitivity of Results to Evolutionary Operators

Table A.6. (Continued )

Spread � Average Median Variance Av. imp. (%)

SMPSO High 0.01 1.0062 0.9944 0.0247 18.80

SMPSO Medium 0.9473 0.9552 0.0116 23.55

SMPSO Low 0.8926 0.8939 0.0082 27.97

SMPSO High 0.001 1.0336 1.0000 0.0386 16.59

SMPSO Medium 0.9481 0.9525 0.0139 23.48

SMPSO Low 0.8888 0.8945 0.0087 28.27

SMPSO High 0.0001 0.9963 0.9852 0.0256 19.60

SMPSO Medium 0.9396 0.9453 0.0121 24.17

SMPSO Low 0.8908 0.8934 0.0087 28.11

SMPSO High 0.00001 0.9964 0.9847 0.0249 19.59

SMPSO Medium 0.9398 0.9459 0.0115 24.15
SMPSO Low 0.8910 0.8940 0.0088 28.09

GDE3 1.2858 1.3171 0.1042

GDE3 R+T 0.9986 0.9981 0.0338 22.34

GDE3 High 0.01 1.1482 1.1102 0.0689 10.71

GDE3 Medium 0.9592 0.9757 0.0177 25.40

GDE3 Low 0.9311 0.9357 0.0097 27.58

GDE3 High 0.001 1.1295 1.0868 0.0689 12.16

GDE3 Medium 0.9557 0.9738 0.0178 25.68
GDE3 Low 0.9332 0.9399 0.0121 27.42

GDE3 High 0.0001 1.1317 1.0935 0.0646 11.99

GDE3 Medium 0.9561 0.9748 0.0163 25.64
GDE3 Low 0.9405 0.9447 0.0104 26.86

GDE3 High 0.00001 1.1260 1.0864 0.0652 12.43

GDE3 Medium 0.9544 0.9734 0.0168 25.78
GDE3 Low 0.9386 0.9437 0.0098 27.00

Table B.1. Sensitivity of estimation error to evolutionary operators.

Crossover: SBX �c ¼ 20, BLX � = 0.5, Uniform Prob.¼ 0:5

Mutation: Uniform Perturb.¼ 1, Polynomial �m ¼ 20.

EE Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII High Uniform Polynomial 1.4099 0.6717 4.3607

NSGAII Medium 1.2878 0.5192 3.8437

NSGAII Low 1.4934 0.7328 3.5194

NSGAII High Uniform Uniform 1.5144 1.0320 2.2401 �7.42

NSGAII Medium 1.4321 0.8662 2.5313 �11.21

NSGAII Low 1.6267 1.0907 2.5183 �8.93

NSGAII High SBX Polynomial 1.0899 0.4971 2.3081 22.70

NSGAII Medium 1.0928 0.4723 2.4435 15.14

NSGAII Low 1.4250 0.7551 3.0300 4.58

NSGAII High SBX Uniform 1.1632 0.5621 2.4632 17.50

NSGAII Medium 1.1525 0.5119 2.5599 10.50
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Table B.1. (Continued )

EE Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII Low 1.5589 0.8574 3.3644 �4.39

NSGAII High BLX Polynomial 1.3678 0.8189 2.3991 2.98
NSGAII Medium 1.3571 0.7556 2.5721 �5.38

NSGAII Low 1.5393 1.0070 2.3887 �3.07

NSGAII High BLX Uniform 1.5059 1.0064 2.2449 �6.81
NSGAII Medium 1.4299 0.8688 2.4835 �11.04

NSGAII Low 1.6251 1.1078 2.4379 �8.82

SPEA2 High Uniform Polynomial 1.1595 0.4096 3.9791

SPEA2 Medium 1.1438 0.4172 3.8321
SPEA2 Low 1.2503 0.4826 3.9048

SPEA2 High Uniform Uniform 1.1526 0.4320 3.8641 0.59
SPEA2 Medium 1.1576 0.4416 3.8475 �1.21

SPEA2 Low 1.3602 0.6366 3.6763 �8.79

SPEA2 High SBX Polynomial 0.8493 0.3523 2.2745 26.76
SPEA2 Medium 0.9831 0.4126 2.4459 14.05

SPEA2 Low 1.3162 0.6190 3.0601 �5.27

SPEA2 High SBX Uniform 0.8915 0.4177 2.0401 23.11
SPEA2 Medium 1.0871 0.5124 2.1727 4.96

SPEA2 Low 1.5497 0.8858 2.9585 �23.94

SPEA2 High BLX Polynomial 1.3171 0.6766 2.7992 �13.59

SPEA2 Medium 1.3748 0.7181 2.8934 �20.20

SPEA2 Low 1.4919 0.9483 2.4961 �19.32

SPEA2 High BLX Uniform 1.3846 0.7827 2.7387 �19.41

SPEA2 Medium 1.4241 0.8060 2.8795 �24.51

SPEA2 Low 1.5499 1.0293 2.4349 �23.96

SMPSO High N/A Polynomial 0.8211 0.5162 1.1562

SMPSO Medium 1.0785 0.7184 1.1759

SMPSO Low 1.5171 1.1020 1.9934

SMPSO High N/A Uniform 1.0178 0.6961 1.2953 �23.96

SMPSO Medium 1.1753 0.8275 1.2073 �4.04

SMPSO Low 1.5785 1.2221 1.9816 �8.97

Table B.2. Sensitivity of stability indicator to evolutionary operators.

Crossover: SBX �c ¼ 20, BLX � ¼ 0:5, Uniform Prob.¼ 0:5

Mutation: Uniform Perturb.¼ 1, Polynomial �m ¼ 20

ST Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII High Uniform Polynomial 2.5756 2.0301 4.0390

NSGAII Medium 2.3863 1.9149 3.0975

NSGAII Low 3.2434 2.8207 4.2727

NSGAII High Uniform Uniform 3.9037 3.2838 7.9404 �51.56

NSGAII Medium 3.6572 3.0151 6.1054 �53.26

NSGAII Low 5.0242 4.2081 9.4289 �54.90

NSGAII High SBX Polynomial 2.1713 1.7496 2.6931 15.70

NSGAII Medium 2.2796 1.9733 2.4405 4.47
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Table B.2. (Continued )

ST Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII Low 3.6430 3.0543 5.7428 �12.32

NSGAII High SBX Uniform 2.3214 1.8288 3.2417 9.87
NSGAII Medium 2.4464 2.0672 2.8112 �2.52

NSGAII Low 4.0692 3.3929 6.7888 �25.46

NSGAII High BLX Polynomial 3.3514 2.8410 5.6230 �30.12
NSGAII Medium 3.4755 2.8704 5.6367 �45.64

NSGAII Low 4.7928 4.1389 8.7753 �47.77

NSGAII High BLX Uniform 3.8479 3.2192 7.9766 �49.40
NSGAII Medium 3.6560 3.0118 6.1538 �53.21

NSGAII Low 4.9783 4.1836 9.2820 �53.49

SPEA2 High Uniform Polynomial 1.7629 1.6965 0.9544

SPEA2 Medium 1.7243 1.5875 0.9450

SPEA2 Low 2.0391 1.7974 1.5289

SPEA2 High Uniform Uniform 1.7761 1.7071 0.8998 �0.75

SPEA2 Medium 1.7817 1.6331 0.9120 �3.33

SPEA2 Low 2.6003 2.3076 2.4584 �27.52

SPEA2 High SBX Polynomial 1.5555 1.4582 0.7858 11.77

SPEA2 Medium 2.1069 1.7175 2.5325 �22.19

SPEA2 Low 3.2902 2.5046 6.5230 �61.35

SPEA2 High SBX Uniform 1.7092 1.5509 0.9235 3.05

SPEA2 Medium 2.6156 1.9594 4.1602 �51.69

SPEA2 Low 4.3845 3.3307 9.7292 �115.02

SPEA2 High BLX Polynomial 3.0978 2.6761 4.5804 �75.72

SPEA2 Medium 3.5888 3.0108 6.1195 �108.13

SPEA2 Low 4.6482 4.0915 8.4107 �127.96

SPEA2 High BLX Uniform 3.1861 2.6886 5.3176 �80.73

SPEA2 Medium 3.5544 2.9632 6.1035 �106.14
SPEA2 Low 4.7665 4.0284 9.0661 �133.75

SMPSO High N/A Polynomial 2.2425 2.0529 1.6246

SMPSO Medium 3.7007 3.1776 5.7124
SMPSO Low 5.1728 4.4513 10.1250

SMPSO High N/A Uniform 2.9281 2.6096 3.3223 �30.57

SMPSO Medium 4.1833 3.5362 7.2630 �13.04
SMPSO Low 5.4670 4.8265 10.7605 �5.69

Table B.3. Sensitivity of extreme risk indicator to evolutionary operators.

Crossover: SBX �c ¼ 20, BLX � ¼ 0:5, Uniform Prob.¼ 0:5

Mutation: Uniform Perturb.¼ 1, Polynomial �m ¼ 20

ER Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII High Uniform Polynomial 2.0830 1.2043 5.1970

NSGAII Medium 1.8719 1.1469 3.7793

NSGAII Low 2.2642 1.5608 3.9371

NSGAII High Uniform Uniform 2.3169 1.7856 3.2135 �11.23

NSGAII Medium 2.1479 1.5919 2.8992 �14.74

NSGAII Low 2.4696 2.1120 2.9153 �9.07
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Table B.3. (Continued )

ER Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII High SBX Polynomial 1.6968 1.0344 2.9890 18.54

NSGAII Medium 1.7059 1.0417 2.6472 8.87
NSGAII Low 2.2077 1.6325 3.3042 2.49

NSGAII High SBX Uniform 1.7922 1.0784 3.1922 13.96

NSGAII Medium 1.7727 1.1261 2.7121 5.30
NSGAII Low 2.3677 1.8052 3.5897 �4.57

NSGAII High BLX Polynomial 2.0500 1.4572 3.0578 1.58

NSGAII Medium 2.0273 1.4075 2.9418 �8.30
NSGAII Low 2.3400 1.9451 2.8815 �3.35

NSGAII High BLX Uniform 2.3029 1.7524 3.2588 �10.56
NSGAII Medium 2.1429 1.5886 2.8309 �14.48

NSGAII Low 2.4656 2.1127 2.8610 �8.89

SPEA2 High Uniform Polynomial 1.6308 0.8174 4.1723
SPEA2 Medium 1.6519 0.8571 3.8335

SPEA2 Low 1.8729 1.0022 4.3176

SPEA2 High Uniform Uniform 1.6353 0.8311 4.0881 �0.28
SPEA2 Medium 1.6869 0.9193 3.7906 �2.12

SPEA2 Low 2.0581 1.2684 4.1035 �9.89

SPEA2 High SBX Polynomial 1.3136 0.7291 2.4065 19.45

SPEA2 Medium 1.5371 0.9002 2.6449 6.95

SPEA2 Low 2.0103 1.3141 3.4594 �7.34

SPEA2 High SBX Uniform 1.3980 0.8398 2.2632 14.27

SPEA2 Medium 1.7086 1.1332 2.4663 �3.43

SPEA2 Low 2.3539 1.8263 3.3893 �25.68

SPEA2 High BLX Polynomial 1.9473 1.2652 3.3444 �19.41

SPEA2 Medium 2.0443 1.3856 3.2797 �23.75

SPEA2 Low 2.2768 1.8320 3.0319 �21.57

SPEA2 High BLX Uniform 2.0947 1.3967 3.6256 �28.44

SPEA2 Medium 2.1156 1.5002 3.2975 �28.07

SPEA2 Low 2.3710 1.9655 2.9180 �26.59

SMPSO High N/A Polynomial 1.3114 0.9860 1.1583

SMPSO Medium 1.7062 1.3493 1.4805

SMPSO Low 2.2328 1.9063 2.3973

SMPSO High N/A Uniform 1.6031 1.2745 1.4233 �22.24

SMPSO Medium 1.8295 1.5042 1.5045 �7.22
SMPSO Low 2.3209 2.0886 2.3663 �3.95
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Table B.4. Sensitivity of unrelaized returns to evolutionary operators.

Crossover: SBX �c ¼ 20, BLX � ¼ 0:5, Uniform Prob.¼ 0:5

Mutation: Uniform Perturb.¼ 1, Polynomial �m ¼ 20

UR Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII High Uniform Polynomial 2.5901 2.0154 6.4126

NSGAII Medium 2.4786 1.8850 5.4828
NSGAII Low 2.7654 2.1186 5.8123

NSGAII High Uniform Uniform 2.7843 2.1664 5.1318 �7.50

NSGAII Medium 2.7714 2.1087 5.3960 �11.81
NSGAII Low 3.1060 2.4013 6.2799 �12.32

NSGAII High SBX Polynomial 2.3015 1.8486 3.7305 11.14
NSGAII Medium 2.3730 1.8612 4.2165 4.26

NSGAII Low 2.7954 2.1399 5.8025 �1.08

NSGAII High SBX Uniform 2.3871 1.8727 4.1781 7.84
NSGAII Medium 2.4427 1.8925 4.5125 1.45

NSGAII Low 2.9210 2.2511 6.2307 �5.63

NSGAII High BLX Polynomial 2.5922 2.0100 4.3465 �0.08
NSGAII Medium 2.6769 2.0854 5.0529 �8.00

NSGAII Low 3.0245 2.3310 6.0111 �9.37

NSGAII High BLX Uniform 2.7965 2.1580 5.1894 �7.97

NSGAII Medium 2.7715 2.1149 5.2273 �11.82

NSGAII Low 3.0988 2.3914 6.3012 �12.06

SPEA2 High Uniform Polynomial 2.2843 1.7146 5.3432

SPEA2 Medium 2.2655 1.6740 5.1199

SPEA2 Low 2.4537 1.8015 5.5949

SPEA2 High Uniform Uniform 2.2812 1.7026 4.9974 0.14

SPEA2 Medium 2.2822 1.6808 4.9082 �0.74

SPEA2 Low 2.6052 1.9488 5.7174 �6.18

SPEA2 High SBX Polynomial 1.9386 1.6319 2.2516 15.14

SPEA2 Medium 2.1857 1.7556 3.2872 3.52

SPEA2 Low 2.6194 2.0236 5.1601 �6.75

SPEA2 High SBX Uniform 1.9979 1.6440 2.5751 12.54

SPEA2 Medium 2.3241 1.7801 3.8877 �2.59

SPEA2 Low 2.8702 2.1505 6.0742 �16.98

SPEA2 High BLX Polynomial 2.5211 1.9340 4.3368 �10.37

SPEA2 Medium 2.6821 2.0709 4.9709 �18.39
SPEA2 Low 2.9411 2.2753 5.5599 �19.86

SPEA2 High BLX Uniform 2.6168 1.9877 5.0101 �14.56

SPEA2 Medium 2.7256 2.0608 5.4047 �20.31
SPEA2 Low 2.9931 2.3030 5.7821 �21.98

SMPSO High N/A Polynomial 1.8212 1.4248 2.1816

SMPSO Medium 2.2934 1.8028 3.4946
SMPSO Low 2.8357 2.2378 5.2096

SMPSO High N/A Uniform 2.1179 1.6185 2.8641 �16.29
SMPSO Medium 2.4117 1.8846 3.6406 �5.16

SMPSO Low 2.9282 2.3369 5.3500 �3.26
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Table B.5. Sensitivity of HV to evolutionary operators.

Crossover: SBX �c ¼ 20, BLX � ¼ 0:5, Uniform Prob.¼ 0:5

Mutation: Uniform Perturb.¼ 1, Polynomial �m ¼ 20

HV Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII High Uniform Polynomial 0.2924 0.2771 0.0255

NSGAII Medium 0.3763 0.3861 0.0326
NSGAII Low 0.5223 0.5677 0.0192

NSGAII High Uniform Uniform 0.3436 0.3593 0.0176 17.50

NSGAII Medium 0.4671 0.4975 0.0168 24.14
NSGAII Low 0.5155 0.5391 0.0142 �1.30

NSGAII High SBX Polynomial 0.3132 0.3151 0.0192 7.10
NSGAII Medium 0.4042 0.4224 0.0239 7.42

NSGAII Low 0.5325 0.5659 0.0188 1.95

NSGAII High SBX Uniform 0.3341 0.3344 0.0186 14.26
NSGAII Medium 0.4295 0.4634 0.0217 14.13

NSGAII Low 0.5562 0.5763 0.0140 6.50

NSGAII High BLX Polynomial 0.3485 0.3669 0.0212 19.19
NSGAII Medium 0.4457 0.4772 0.0186 18.44

NSGAII Low 0.4796 0.4990 0.0165 �8.17

NSGAII High BLX Uniform 0.3417 0.3558 0.0174 16.87

NSGAII Medium 0.5134 0.5382 0.0146 �1.70

NSGAII Low 0.4650 0.4967 0.0168 23.58

SPEA2 High Uniform Polynomial 0.2404 0.1984 0.0307

SPEA2 Medium 0.2578 0.2074 0.0341

SPEA2 Low 0.4025 0.4276 0.0260

SPEA2 High Uniform Uniform 0.2486 0.2121 0.0310 3.40

SPEA2 Medium 0.2865 0.2438 0.0338 11.12

SPEA2 Low 0.4831 0.5344 0.0220 20.03

SPEA2 High SBX Polynomial 0.2556 0.2315 0.0206 6.33

SPEA2 Medium 0.3289 0.3127 0.0225 27.58

SPEA2 Low 0.4452 0.4821 0.0195 10.61

SPEA2 High SBX Uniform 0.2829 0.2552 0.0223 17.68

SPEA2 Medium 0.3706 0.3770 0.0218 43.74

SPEA2 Low 0.4746 0.5086 0.0182 17.92

SPEA2 High BLX Polynomial 0.3472 0.3715 0.0265 44.42

SPEA2 Medium 0.4064 0.4343 0.0214 57.66
SPEA2 Low 0.4447 0.4632 0.0174 10.49

SPEA2 High BLX Uniform 0.3207 0.3349 0.0222 33.39

SPEA2 Medium 0.4258 0.4545 0.0210 65.18
SPEA2 Low 0.4807 0.5035 0.0161 19.44

SMPSO High N/A Polynomial 0.3668 0.3849 0.0154

SMPSO Medium 0.3989 0.4217 0.0134
SMPSO Low 0.3981 0.4262 0.0146

SMPSO High N/A Uniform 0.3690 0.3861 0.0154 0.59
SMPSO Medium 0.3997 0.4226 0.0133 0.21

SMPSO Low 0.3980 0.4257 0.0143 �0.03
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Table B.6. Sensitivity of spread to evolutionary operators.

Crossover: SBX �c ¼ 20, BLX � ¼ 0:5, Uniform Prob.¼ 0:5

Mutation: Uniform Perturb.¼ 1, Polynomial �m ¼ 20

Spread Cross. Op. Mut. Op. Average Median Variance Av. imp. (%)

NSGAII High Uniform Polynomial 1.2004 1.0596 0.0601

NSGAII Medium 1.0859 1.0204 0.0343
NSGAII Low 0.9776 0.9520 0.0354

NSGAII High Uniform Uniform 1.1686 1.1577 0.0422 2.65

NSGAII Medium 0.9886 0.9832 0.0332 8.96
NSGAII Low 0.8507 0.8357 0.0157 12.98

NSGAII High SBX Polynomial 1.1925 1.0803 0.0543 0.66
NSGAII Medium 1.0640 1.0123 0.0262 2.02

NSGAII Low 0.9853 0.9564 0.0247 �0.79

NSGAII High SBX Uniform 1.1967 1.1004 0.0510 0.31
NSGAII Medium 1.0873 1.0266 0.0311 �0.13

NSGAII Low 0.9666 0.9256 0.0268 1.13

NSGAII High BLX Polynomial 1.2282 1.2017 0.0569 �2.32
NSGAII Medium 1.0658 1.0301 0.0319 1.86

NSGAII Low 0.9459 0.9321 0.0150 3.24

NSGAII High BLX Uniform 1.1666 1.1511 0.0421 2.81

NSGAII Medium 0.9867 0.9812 0.0334 9.14

NSGAII Low 0.8521 0.8392 0.0155 12.83

SPEA2 High Uniform Polynomial 1.0866 1.0209 0.0257

SPEA2 Medium 1.0388 1.0123 0.0101

SPEA2 Low 1.0611 1.0507 0.0195

SPEA2 High Uniform Uniform 1.0863 1.0188 0.0269 0.32

SPEA2 Medium 1.0445 1.0134 0.0121 �0.33

SPEA2 Low 1.0473 1.0280 0.0306 1.22

SPEA2 High SBX Polynomial 1.0381 1.0024 0.0097 4.74

SPEA2 Medium 1.0020 0.9978 0.0060 3.75

SPEA2 Low 0.9879 0.9858 0.0142 6.83

SPEA2 High SBX Uniform 1.0556 1.0026 0.0174 3.13

SPEA2 Medium 1.0106 0.9983 0.0154 2.93

SPEA2 Low 0.9570 0.9557 0.0175 9.74

SPEA2 High BLX Polynomial 1.2061 1.1400 0.0630 �10.68

SPEA2 Medium 1.0759 1.0274 0.0315 �3.35
SPEA2 Low 0.9859 0.9741 0.0162 7.02

SPEA2 High BLX Uniform 1.1762 1.1143 0.0572 �7.93

SPEA2 Medium 1.0290 0.9997 0.0369 1.16
SPEA2 Low 0.9073 0.9016 0.0192 14.43

SMPSO High N/A Polynomial 1.0336 1.0000 0.0386

SMPSO Medium 0.9481 0.9525 0.0139
SMPSO Low 0.8888 0.8945 0.0087

SMPSO High N/A Uniform 1.0332 1.0000 0.0380 0.03
SMPSO Medium 0.9482 0.9527 0.0139 �0.01

SMPSO Low 0.8889 0.8953 0.0091 �0.02
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