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The computational study of chemical reactions in complex, wet environments is critical for appli-
cations in many fields. It is often essential to study chemical reactions in the presence of applied
electrochemical potentials, taking into account the non-trivial electrostatic screening coming from
the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by
solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions,
respectively. In the present work, solvers for both problems have been developed. A preconditioned
conjugate gradient method has been implemented for the solution of the generalized Poisson equation
and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization
problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent
procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit
very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab
boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO
electronic-structure packages and will be released as an independent program, suitable for integration
in other codes. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939125]

I. INTRODUCTION

Many important chemical processes take place in solution
both in the context of basic and industrial research. The
computational study of such chemical reactions in wet
environments is therefore of cross-disciplinary interest to
physics, chemistry, materials science, chemical engineering,
and biology.1 Computational studies can complement these
investigations by giving insight into new processes and
materials as well as reducing development times and
production costs. Solar-energy harvesting in a dye-sensitized
cell or electro-catalytic water splitting are two simple
examples of relevance for applications in the energy and
environment context.

Molecular properties in the presence of a solution are
often very different compared to pure in vacuum2 conditions
making vacuum-like ab initio calculations an inappropriate
approach for such problems. An inclusion of the solute-
solvent interaction in ab initio simulations is thus mandatory.
On the atomistic scale, an explicit inclusion of all solvent
molecules in the simulation should be in principle the natural
way to account for solvent effects. Due to the very large
number of water and possibly other molecules required, this
approach enormously increases the computational cost and
limits at the same time the size of the system contained
in the explicit dielectric medium.3 The study of the solute-

a)giuseppe.fisicaro@unibas.ch

solvent interaction at length scales larger than the molecular
sizes would become virtually impossible. Investigations like
structure predictions4 or reaction path determination5 would
become unaffordable in such a purely atomistic approach.
Moreover, fully atomistic simulations of solvation effects
would need to deal with the extensive sampling, required to
characterize liquid configurations, and with the well-known
limitations that current state-of-the-art ab initio methods
present in describing liquid water, in particular regarding
its structural and dielectric properties.

An implicit inclusion of the solute-solvent interactions
can solve these issues. Starting from the earliest work of
Onsager,6 the quantum chemistry community investigated
implicit solvation models7–9 extensively. In these models,
the solvent is introduced as a continuous homogeneous and
isotropic medium fully described by a dielectric function.
Among them, the polarizable continuum model (PCM)
developed by Tomasi and co-workers7,8 is one of the
most popular models. In this approach, a dielectric cavity
surrounding the atomistic system is introduced where the
permittivity takes on the value of one in regions occupied
by atoms and some different value characteristics for the
dielectric solvent medium considered outside.

Density functional theory (DFT) is a widely used method
to investigate material properties at the atomistic scale. In
such ab initio calculations, the electronic-structure problem is
solved by minimizing the total energy of the system which is
a functional of the electronic density
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E[ρ] = T[ρ] +


v(r)ρ(r)dr +
1
2


ρ(r)φ[ρ]dr + Exc[ρ],

(1)

where the four terms on the right side of Eq. (1) are,
respectively, the standard kinetic energy, the interaction energy
with an external potential, the electrostatic and the exchange-
correlation energies. For gas-phase molecular simulations, the
potential φ(r) generated by a given charge density ρ(r) is
given by the solution of the standard Poisson (SPe) equation

∇2φ(r) = −4πρ(r). (2)

An implicit inclusion of the solvent at such DFT level
can be obtained by introducing a continuum dielectric cavity
by means of a dielectric distribution ϵ(r). Then, the potential
is given by the solution of the generalized Poisson equation
(GPe)

∇ · ϵ(r)∇φ(r) = −4πρ(r). (3)

If the system is surrounded by an ionic solution, an
extra-term has to be added on the right side of Eq. (3). It
accounts for the ionic distribution in the liquid and depends on
the local electrostatic potential φ(r). The resulting non-linear
differential equation would therefore become

∇ · ϵ(r)∇φ(r) = −4π
�
ρ(r) + ρions[φ](r)� , (4)

where ρions(r) is the local concentration of ions in the dielectric
solvent, written as a sum of concentration contributions ci of
ions of type i ∈ {1,2, . . . ,m} and valence Zi, which in turn
are φ-dependent functionals,

ρions[φ](r) = γ[ϵ](r)eNA

m
i=1

Zici[φ](r). (5)

Here, e is the elementary charge, NA the Avogadro’s number,
and γ[ϵ](r) a proper function which guarantees that mobile
ion concentrations tend to zero inside the dielectric cavity
mapped by ϵ(r). The most common expression for the ci[φ]
functional gives rise to the well-known Poisson-Boltzmann
equation (PBe).

Whereas several approaches and solvers exist for the
SPe,10–14 efficient and accurate solvers are still missing for
the GPe and PBe cases. Some of these solvers handle sparse
matrices obtained by low-order finite difference discretization
of Eq. (3), many of them keeping constant the permittivity
in both inner and external regions of the dielectric cavity
and then solving a standard Poisson problem. Furthermore,
simpler and linearized forms of the Poisson-Boltzmann
equation are usually considered, neglecting steric effects and
overestimating ionic concentrations close to highly charged
surfaces and for multivalent ions.

Fast and accurate GPe and PBe solvers which accurately
work for a continuously varying dielectric function could
therefore play a key role in the extension of vacuum-based
atomistic packages and allowing for quantum simulations in
the presence of water, dissolved species, electrolytes, and
non-aqueous solvents.

In the present paper, we present a minimization technique
which solves the generalized Poisson problem and the linear
regime of the Poisson-Boltzmann in some ten iterations of a

SPe solver. In combination with a self-consistent procedure,
it enables us to solve the non-linear Poisson-Boltzmann
problem in a formulation which includes ionic steric effects.
The implemented algorithms take advantage of the chosen
preconditioner for the minimization procedure. The accuracy
of both GPe and PBe solvers has been tested for cases where
an analytic solution is available. Two different methods have
been implemented to describe the solvent surrounding the
atomistic system. We prove the effectiveness of our method in
practical DFT calculations of electrostatic solvation energies
of various test systems.

II. GENERALIZED POISSON EQUATION

As discussed above, the dielectric medium is described
by means of a position-dependent dielectric distribution ϵ(r).
In order to solve numerically Eq. (3), the potential φ(r),
the charge density ρ(r), and the dielectric function ϵ(r) are
generally discretized on a finite grid. In principle also, the
generalized Poisson operator

A = ∇ · ϵ(r)∇ (6)

should be discretized on the same mesh. It will be shown
that depending on the adopted strategy to solve numerically
Eq. (3), the discretization of the differential operator A can
be avoided in exchange of an iterative procedure based on a
SPe solver.

An alternative would be to solve the GPe iteratively
as suggested in Ref. 15. In this approach, the polarization
field introduced by the spatially varying dielectric function
is added as a source term to the charge density of the
ordinary Poisson equation, and the Poisson equation is solved
repeatedly until self-consistency between the potential and
the polarization charge density induced by it is reached. Our
approach completes and simplifies this treatment, reducing
considerably the number of SPe iterations, thereby presenting
a robust and powerful iterative solver.

Considering that reliable convergence can be an issue
in mixing schemes, an alternative approach based on a
minimization procedure is desireable. Such an approach can
be based on an action integral whose Euler Lagrange equation
is the GPe [Eq. (3)],

I =
 

1
2
∇φ(r)ϵ(r)∇φ(r) − 4πρ(r)φ(r)


dr. (7)

Any numerical minimization scheme can then be applied to
solve the electrostatic problem.

In Sec. II B, our strategy to solve Eq. (3), based on a
preconditioned conjugate gradient (PCG) algorithm, will be
presented. The chosen preconditioner exactly represents the
operator in the limit of a slowly varying dielectric constant
and is based on the standard Poisson solver of BigDFT.

The possibility of solving the generalized Poisson
equation under various boundary conditions (BCs) will be
very important. In our approach, the boundary conditions
enter in a straightforward way by means of the preconditioner,
i.e., through the solution of the SPe.
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ALGORITHM 1. Self-consistent (SC) iterative procedure.

1: set ρiter
0

2: for k = 0,1, . . .do
3: ρtot

k
= ρ/ϵ+ρiter

k

4: solve ∇2φk =−4πρtot
k

5: ρiter
k+1=

1
4π ∇lnϵ ·∇φk

6: ρiter
k+1=ηρ

iter
k+1+ (1−η)ρiter

k

7: rk+1= ρ
iter
k+1−ρ

iter
k

8: end for

A. Self-consistent iterative procedure

A strategy to solve the GPe for a given charge density ρ(r)
is by means of a self-consistent (SC) iterative procedure.15

Applying simple algebraic manipulations, Eq. (3) can be
rewritten as

∇2φ(r) = −4π

ρ(r)
ϵ(r) + ρiter(r)


= −4π

�
ρ(r) + ρpol(r)� , (8)

where ρpol(r) is the polarization charge density. In this
approach, an extra-term ρiter(r),

ρiter(r) = 1
4π
∇ ln ϵ(r) · ∇φ(r) (9)

induced by the spatially varying dielectric function ϵ(r) is
added as a source to the charge density of the ordinary Poisson
equation. Hence, the GPe can be solved by a self-consistent
loop on the potential φ(r), obtained by a SPe solver onto
the second member of Eq. (8). The residual rk, quantifying
the convergence, is the difference between the extra terms of
Eq. (9) between subsequent iterations. Algorithm 1 describes
the procedure. This approach requires a finite difference filter
to be applied at step 5. In order to stabilize the iterative
method, a linear mixing of the extra-term ρiter(r) at steps
kth and (k + 1)th has been introduced tuned by means of the
mixing parameter η.

The polarization charge induced in the dielectric medium
can be easily related to the extra-term of Eq. (9),

ρpol(r) = ρiter(r) + 1 − ϵ(r)
ϵ(r) ρ(r). (10)

This charge represents the response of the surrounding implicit
dielectric. It lies in the transition region between the inner and
outside parts of the cavity and stabilizes the solute density
enveloped by the solvent.

B. Preconditioned conjugate gradient

Although a reasonably small number of iterations can be
obtained in a self-consistent scheme, minimization techniques
can produce more efficient methods to handle Eq. (3) if
sophisticated schemes are utilized. In addition, the formulation
as a minimization problem would allow to better control the
convergence behavior.

Solving this equation with a preconditioned steepest
descent (PSD) method is essentially identical to the self-
consistency approach of Sec. II A, once a standard Poisson
solver is taken as preconditioner. In particular, a good
preconditioner for a PSD minimization, whose inverse applied

ALGORITHM 2. Preconditioned conjugate gradient (PCG).

1: r0=−4πρ−Aφ0, p−1= 0
2: for k = 0,1, . . .do
3: vk = P−1rk

4: pk = vk+βkpk−1 (where βk =
(vk,rk)

(vk−1,rk−1) , k , 0)

5: αk =
(vk,rk)

(pk,Apk)
6: φk+1=φk+αkpk

7: rk+1= rk−αkApk

8: end for

to a residual vector rk provides the preconditioned residual vk,
is as follows:

PSDvk(r) = ϵ(r)∇2vk(r) = −4πrk(r). (11)

Being the Laplacian of vk(r) related to the residual vector
rk by means of Eq. (11), the generalized Poisson operator
becomes

Avk(r) = ∇ · ϵ(r)∇vk(r) = ∇ϵ(r) · ∇vk(r) − 4πrk(r). (12)

Such a PSD approach can be described by Algorithm 2
with βk = 0. Fixing αk = η, it corresponds to the previously
described self-consistent approach.

In a PSD scheme, the number of iterations l needed
for convergence is proportional to the condition number κ
(i.e., the ratio between the largest and the smallest eigenvalue
of the product operator P−1A). Minimization methods with
a faster convergence rate than the preconditioned steepest
descent algorithm can significantly improve the convergence
speed.

We use a preconditioned conjugate gradient scheme,
where l ∝

√
κ. In such minimization procedure, a good

preconditioner can lower κ and, therefore, the overall number
of iterations. Algorithm 2 describes the implemented PCG
procedure to compute the electrostatic potential φ(r) starting
from a given charge density ρ(r). The minimization procedure
starts from an initial gradient r0 computed on an input guess
φ0. P is the preconditioner whose inverse has to be applied
to the residual vector rk returning the preconditioned residual
vk, and, finally, φk is the solution of Eq. (3). The convergence
criterion is imposed on the Euclidean norm of the residual
vector rk.

Both performances and accuracy in a PCG scheme criti-
cally depend on the preconditioner chosen. We implemented
a preconditioner based on the solution of the standard Poisson
equation (namely, on a standard Poisson solver). Once a
residual vector rk is given at the step 3 of Algorithm 2, we
define a preconditioned residual from the following equation:

PCGvk(r) =

ϵ(r)∇2[vk(r)


ϵ(r)] = −4πrk(r). (13)

This equation has to be solved with respect to vk(r) once rk(r)
is given.

In addition to speeding up the PCG procedure, the
preconditioner defined by Eq. (13) retains a further feature
which guarantees accuracy and fast performance for the whole
electrostatic solver. In step 7 of Algorithm 2, we have to apply
the generalized Poisson operator A to the preconditioned
residue pk, which means, thanks to step 4, applying it to vk.
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Using a change of variable v ′
k
(r) = 

ϵ(r)vk(r), the GPe
becomes

∇ · ϵ(r)∇vk(r) =

ϵ(r)∇2v ′k(r) − v ′k(r)∇2


ϵ(r). (14)

Now simple algebraic manipulations and Eq. (13) allow
to rewrite the generalized Poisson operator A as

Avk(r) = ∇ · ϵ(r)∇vk(r) (15)
= −vk(r)q(r) − 4πrk(r), (16)

where q(r) = 
ϵ(r)∇2


ϵ(r) is calculated once at the

beginning of the PCG procedure and kept fixed for the
whole minimization loop. Therefore, thanks to the chosen
preconditioner, the action of the operator A can be simplified
to a simple multiplication between the potential vk(r) and
the vector q(r) related to the spatially varying dielectric
function ϵ(r). This feature, which provides the exact operator
output, makes our PCG procedure robust and fast, avoiding
any finite difference differentiation. Furthermore, reducing
the PCG algorithm to simple vector operations makes its
parallelization straightforward, delegating it to the chosen SPe
solver. A similar discussion holds for the boundary conditions,
which enter in a natural way by means of the preconditioner,
i.e., through the solution of the ordinary Poisson equation,
both in the SC and PCG algorithms.

C. Numerical results

Both the self-consistent iterative procedure (Algorithm 1)
and the preconditioned conjugate gradient minimization
scheme (Algorithm 2) have been implemented and tested.
As SPe solver (step 4 of Algorithm 1 and step 3 of
Algorithm 2), we used the Interpolating Scaling Function
(ISF) Poisson solver, allowing to obtain highly accurate
electrostatic potentials for free, wire, surface, and periodic
boundary conditions at the cost of O(N log(N)) operations,
where N is the number of discretization points (see Ref. 14).

To test both solvers, analytic three dimensional functions
have been used. An orthorhombic grid of uniform mesh
spacing hgrid and (nx,ny,nz) points in each directions has been
used. Fig. 1 shows plots of these benchmark fields along a
particular direction passing through the box center and parallel
to the y axis. All functions depend on the radial distance r
from the center of the simulation domain.

A normalized Gaussian function has been chosen for the
electrostatic potential φ(r) (red dashed line in Fig. 1) and
the charge density ρ(r) has been derived from the chosen
potential and dielectric functions, applying the generalized
Poisson differential operator of Eq. (6) (red dotted line). In
order to reproduce the dielectric environment typically tackled
in electrostatic problems where a solute system is embedded in
a solvent (i.e., a cavity where the majority of the atomic charge
density is confined), the error function 1 + (ϵ0 − 1)h(d0,∆; r)
has been chosen to represent the spatially varying dielectric
constant ϵ(r) (solid black line in Fig. 1), where

h(d0,∆; r) = 1
2


1 + erf

(
r − d0

∆

)
. (17)

Here, ∆ is a parameter which controls the transition region
(≈4∆ wide) between the inner and external parts of the cavity

FIG. 1. Analytical three dimensional functions used as benchmark fields for
both SC and PCG solvers along a particular direction passing through the box
center and parallel to the y axis. Red dashed line: potential φ(r); red dotted
line: charge density ρ(r); black solid line: dielectric function ϵ(r).

of radius d0, and ϵ0 is the dielectric constant of the surrounding
medium. These benchmark functions have been used for both
free, surface and periodic boundary conditions.

To implement the nabla differential operator needed for
Algorithm 1, central, forward and backward finite difference
filters of order 16 have been used, which match the accuracy
of the underlying SPe solver. We remark that the use of these
finite difference filters is not needed for Algorithm 2 as soon
as the vector q(r) of Eq. (16) is pre-calculated.

Fig. 2 shows solver performances. Top graphs report
the residual norm as function of the iteration number. The
residual norm is defined has the Euclidean norm of the
residual vector rk. Graphs in lower panel present the output
accuracy as a function of the iteration number. The accuracy
in the whole paper is defined as the maximum value of
the difference between the final numerical solution and the
analytical potential. In this test case, a cubic box of length 10
a.u. has been chosen with nx = ny = nz = 300. The Gaussian
variance for the potential φ(r)was σ = 0.5, and the parameters
of ϵ(r) were d0 = 1.7, ∆ = 0.3, and ϵ0 = 78.36 (all in a.u.).
The mixing parameter in step 6 of Algorithm 1 has been fixed
to be η = 0.6, resulting in a robust convergence for all cases.
Lower values slow down the convergence for the chosen test
functions.

The PCG solver (black squares) exhibits a faster
convergence with respect to the SC one (blue circles), reaching
an accuracy of ∼10−10 with some ten iterations. Furthermore,
its behavior does not change with the boundary conditions as
is the case with the SC algorithm. It is worth remembering
that each PCG iteration involves only a single solution of the
ordinary Poisson equation and as well as of fully parallelizable
vector operations. If an accuracy of ∼10−4 to 10−5 is enough,
then some five iterations solve the electrostatic problem. These
features make the developed PCG algorithm together with the
chosen preconditioner of Eq. (13) very efficient for atomistic
calculations where the generalized Poisson equation needs to
be solved repeatedly. Performances of the implemented PCG
procedure are also higher than multigrid approaches to solve
the GPe, where a number of iterations between 17 and 25 are
needed to reach an accuracy of ∼10−8.16

For the sake of completeness, the preconditioned steepest
descent scheme (Algorithm 2 with βk = 0) has been tested
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FIG. 2. Euclidean norm of the residual vector rk (top
graphs) and accuracy of the numerical solution (lower
graphs) for SC (blue circles) and PCG (black squares)
solvers with free, surface and period boundary condi-
tions.

with the preconditioner described by Eq. (11). Residual
norm convergence as well as the accuracy of the solution
(not reported) behaves like the self-consistent approach
(Algorithm 1, blue circles of Fig. 2). An integration of DIIS
in the PSD loop effectively lowered the iteration numbers, but
did not show better performances with respect to the PCG
approach.

III. POISSON-BOLTZMANN EQUATION

The generalized Poisson equation so far discussed holds
for a solute plunged in a neutral solution where no mobile
charges are present. In order to extend the library to ionic
solutions, effects of mobile ions have to be taken into account
which, being free to move inside the dielectric medium,
modify the spatial distribution of charge and potential close
to the interface giving rise to the well known double layer.

In general, mobile charges can be included in the electro-
static problem by means of a continuum mean-field approach,
assuming point-like ions in thermodynamic equilibrium. Once
the equilibrium is reached, ionic concentrations explicitly
depend on the local electrostatic potential φ(r). Following
this idea, the potential φ(r) generated by a charge density
ρ(r) placed in contact with an ionic solution can be extracted
solving the generalized Poisson equation [Eq. (4)]. Several
models have been proposed in the literature for the ionic bulk
concentrations [Eq. (5)]. Gouy17 and Chapman18 proposed a
Boltzmann distribution

ci[φ](r) = c∞i exp
(
− Zieφ(r)

kT

)
, (18)

where k is the Boltzmann constant and T is the absolute
temperature of the solvent. Combining Eqs. (4), (5), and
(18), the well-known Poisson-Boltzmann equation can be
recovered. It arises from the equilibrium between thermal
and electric forces, which depend, respectively, on the ionic
concentration and electrostatic potential. At equilibrium, the
total average force must be zero and Eq. (18) holds. In
the regions where the electrostatic energy is smaller than

kT , i.e., Zieφ(r)/kT ≪ 1, the exponential of Eq. (18) can
be approximated by a linear function of φ(r), switching the
non-linear problem of Eq. (4) into a linear one.

The Poisson-Boltzmann equation correctly predicts ionic
profiles close to the solid-liquid interface with ionic solutions.
However, it strongly overestimates ionic concentrations close
to highly charged surfaces or multivalent ions. In order
to overcome these drawbacks, several models have been
proposed.19 Finite ion size effects can be included in the
model by introducing an additional internal force. Using
a Bikerman-type expression to model steric effects20 and
imposing that at equilibrium the total average force (thermal,
electric, and steric) must go to zero, a Langmuir-type equation
for the ionic concentrations can be found

ci[φ](r) =
c∞i exp

(
− Zieφ(r)

kT

)
1 +

m
j=1

c∞j
cmax
j


exp

(
−

Z jeφ(r)
kT

)
+ 1

 . (19)

In Eq. (19), cmax
i are the maximum local concentrations

that an ionic species of effective radius Ri can attain. This last
is given by

cmax
i =

p
4
3
πR3

i NA

, (20)

where p is the packing coefficient. The combination of
Eqs. (4), (5), and (19) gives rise to the so-called modified
Poisson-Boltzmann equation (MPBe).1,21–23 It accounts for
finite ion size effects representing an extension of the PBe
and preventing ion concentrations to exceed cmax

i . Note that if
cmax
i → ∞ ∀i ∈ {1,2, . . . ,m}, Eq. (19) is reduced to Eq. (18)

and the standard Poisson-Boltzmann equation holds.
Both PBe and MPBe equations consider ions in solution

as pointlike. A further extension can account for finite size
effects in an explicit way, describing ions by means of
insulating spheres plunged in the dielectric solvent.24 This
correction allows for a local modification of the solvent
permittivity as well as the inclusion of two new forces: one
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related to a non-uniform dielectric which tend to move ions
into high-permittivity regions; another due to the interaction
of the ion dipole and the non-uniform local electric field
(dielectrophoretic force).

The Poisson-Boltzmann equation is more difficult to solve
than the generalized Poisson equation due to its non-linear
nature. If Zieφ(r)/kT ≪ 1, Eq. (18) can be approximated
by a linear function of φ(r), and the Poisson-Boltzmann
problem of Eq. (4) becomes linear. In Sec. II B, a particular
preconditioner, i.e., Eq. (13), has been proposed for the
solution of the GPe. Furthermore, the generalized Poisson
operator, as reformulated in Eq. (16), already contains a linear
term with respect to the potential φ(r). Therefore, Algorithm 2
is expected to solve the linear regime of the PBe, where the
A operator is now given by Eq. (16) with an additional linear
term,

Avk(r) = ∇ · ϵ(r)∇vk(r) + 4πρions[φ](r)

= −vk(r) *
,
q(r) + 4πe2NA

kT

m
i=1

Z2
i c∞i +

-
− 4πrk(r), (21)

where q(r) has been defined in Sec. II B.
In the general non-linear case, at variance to the

generalized Poisson equation discussed in Sec. II, there
is no general consensus on what flavor of the Poisson-
Boltzmann equation is most appropriate for various problems.
Therefore, a (M)PBe solver should allow to solve various
formulations of this equation. Since it is unlikely that for all
variants an action integral can be established (allowing for a
minimization scheme), a self-consistent approach should be
the most feasible algorithm.

Such a procedure has been implemented and it is detailed
in Algorithm 3. The ionic charge density ρions[φ] is included
as source term to the charge density of the generalized
Poisson equation which, in turn, is solved repeatedly until
self-consistency between the potential and the ionic charge
induced by it is reached. Starting with an initial input guess
ρions

0 for the ionic charge density, on each self-consistent
iteration, a generalized Poisson solver (Algorithm 1 or 2) is
applied to numerically compute the electrostatic potential φ(r).
Then, the ionic charge is computed using the new potential
at step 5 [using Eq. (5)] and mixed with the old density by
means of a linear scheme tuned by the parameter η (step 6).

In order to speed up performances of the (M)PBe
solver, an improved version is reported in Algorithm 4.
On each iteration k, the electrostatic problem at step 4 is
solved only for the previous residual vector r ′

k−1 once ρions
k

ALGORITHM 3. Self-consistent iterative procedure for the Poisson-
Boltzmann equation.

1: set ρions
0

2: for k = 0,1, . . .do
3: ρtot

k
= ρ+ρions

k

4: solve ∇ · ϵ∇φk =−4πρtot
k

(Algorithm 1 or 2)
5: compute ρions

k+1= ρ
ions[φk]

6: ρions
k+1=ηρ

ions
k+1+ (1−η)ρions

k

7: rk+1= ρ
ions
k+1−ρ

ions
k

8: end for

ALGORITHM 4. Improved self-consistent iterative procedure for the
Poisson-Boltzmann equation.

1: set φ1= 0, ρions
0 = 0, ρions

1 , r ′0= ρ
2: for k = 1, . . .do
3: ρtot

k
= r ′

k−1+ρ
ions
k
−ρions

k−1
4: solve ∇ · ϵ∇φ′

k
=−4πρtot

k
(Algorithm 2 with a residual vector r ′

k
)

5: φk =φk+φ
′
k

6: compute ρions
k+1= ρ

ions[φk]
7: ρions

k+1=ηρ
ions
k+1+ (1−η)ρions

k

8: rk+1= ρ
ions
k+1−ρ

ions
k

9: end for

has been updated at step 3. Then, the overall solution is
given at step 5 as sum over all potential corrections φ′

k
.

This procedure substantially corresponds to the general self-
consistent approach of Algorithm 3, now using on each step
information of the previous as input guess. It is worth noting
that the improved Algorithm 4 can be coupled only with the
faster PCG solver (Algorithm 2) for the GPe.

A. Numerical performances

To show performances and accuracy of the Poisson-
Boltzmann solver, both Algorithms 3 and 4 have been applied
to analytical test cases. Following the strategy reported in
Sec. II C, all the involved fields and functions, i.e., the
potential, the charge density, and the operator have been
discretized on the orthorhombic three dimensional grid and
the same parameters have been used to set up all analytical
functions. The electrostatic problem lies in a cavity where
the great majority of the charge density is confined, described
by means of a dielectric error function ϵ(r) (solid black line
of Fig. 1). A normalized Gaussian function has been chosen
for the electrostatic potential φ(r) (red dashed line of Fig. 1),
whereas the charge density ρ(r) has been derived from the
fixed potential and dielectric functions, applying the Poisson-
Boltzmann differential operator. To guarantee that mobile ion
concentrations tend to zero inside the dielectric cavity mapped
by ϵ(r), the following functional dependence has been chosen
for the γ[ϵ](r) prefactor of Eq. (5),

γ[ϵ](r) = ϵ(r) − 1
ϵ0 − 1

. (22)

A monovalent (Z1 = −Z2 = 1) binary aqueous electrolyte
solution has been considered, with a close packing coefficient
p = 0.74, effective ionic radius Ri = 3 Å, and bulk ion
concentrations c∞i = 100 mol/m3 kept fixed for all ions. As
discussed in Sec. III, the PCG algorithm has been applied to
solve the linear Poisson-Boltzmann equation with the same
GPe preconditioner of Eq. (13). In Fig. 3, the euclidean norm
of the residual vector rk (black squares) and the accuracy
of the numerical solution (blue circles) have been reported.
Similar performances have been found with respect to the
generalized Poisson solver, reaching an accuracy of ∼10−10

with some ten iterations and proving that the PCG procedure
is a well suited and fast method also for the linear regime of
the PBe.
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FIG. 3. Euclidean norm of the residual vector rk (black squares) and accu-
racy of the numerical solution (blue circles) for the linear Poisson-Boltzmann
equation with free boundary conditions (Algorithm 2 has been applied with
A the linear Poisson-Boltzmann operator given by Eq. (21)).

In the general non-linear case, Algorithms 3 and 4 have
been applied. An input guess ρions

0 = 0 has been chosen. We
found that only a relatively small number of self-consistency
iterations is needed in this approach to solve both the Poisson-
Boltzmann and the modified Poisson-Boltzmann problems.
Fig. 4 shows the Euclidean norm of the residual vector rk
(black squares) and the accuracy of the numerical solution
(blue circles) for the modified Poisson-Boltzmann solver
with free boundary conditions. The solver exhibits a fast
convergence, reaching an accuracy of ∼10−10 with some five
iterations. The inset shows ρions[φ] as given by Eqs. (5)
and (19), revealing an ionic density saturation in the solvent
for electrostatic potentials whose absolute value is higher
than ∼0.01 a.u. Numbers between round brackets represent
the number of iterations needed to solve the GPe at step
4 of Algorithm 4 using the PCG scheme. The convergence
criterion for the GPe solver has been fixed equal to the one
of Algorithm 4, except for the first two iterations where very
accurate potentials do not change the overall performances
of the PBe solver. Furthermore, its behavior does not change
with the boundary conditions which are managed by means of
the generalized Poisson solver. The latter also fixes the final
accuracy of the self-consistent procedure. It is worth noting
that performances and parallel efficiency as well as boundary
conditions of both GPe and (M)PBe solvers are, eventually,
delegated to the underlying SPe solver.

FIG. 4. Euclidean norm of the residual vector rk (black squares) and ac-
curacy of the numerical solution (blue circles) for the modified Poisson-
Boltzmann solver with free boundary conditions. Numbers between round
brackets represent the number of iterations needed to solve the GPe at step 4
of Algorithm 4. The inset shows ρions[φ] given by Eqs. (5) and (19).

IV. ELECTRONIC-STRUCTURE COMPUTATIONS

Effects of complex wet environments surrounding an
atomistic system can be approximately included into density
functional calculations by simply introducing a dielectric
cavity surrounding the atomistic system and taking in Eq. (1)
the electrostatic potential φ[ρ](r) as solution of the generalized
Poisson or Poisson-Boltzmann equation. The PCG solver for
the GPe (Algorithm 2) has been implemented in the electronic-
structure package BigDFT,25–28 extending the capability of the
code beyond vacuum-simulations.

Two distinct approaches have been implemented and
tested to build up the dielectric cavity enveloping the atomic
system. In both approaches, the cavity, mapped by the
dielectric function ϵ(r), is fully differentiable and continuous
in the whole simulation domain. In the first approach, the
function ϵ(r) is defined starting from spherical-symmetric
atom-centered cavities. Each sphere depends only on the
radial distance with respect to a fixed atomic position. The
whole rigid cavity is kept fixed during the whole SCF cycle
in a DFT simulation.

On the other hand, it could be argued that regions occupied
by atoms and their associated electronic charge density are
strictly related. In other words, the actual value of the charge
density might determine how much “space” is occupied by
the solute. Starting from this idea, a cavity can be built up
directly from the electronic density, as it has been shown
in various publications.15,29,30 In this second approach, the
dielectric function is not explicitly space-dependent, but can
be implicitly mapped by means of the electronic charge
density.

A. Rigid cavity

The most widespread continuum solvation model, which
tries to include the effects of a surrounding dielectric medium
in an implicit way, is the polarizable continuum model
developed by Tomasi and co-workers.7,8,31 In the PCM
formulation, the cavity surrounding the solute is sharp and
discontinuous, and a polarization charge density is exactly
localized at the vacuum-dielectric interface. In this way, the
dielectric environment is represented by an effective surface
polarization charge, reducing the three-dimensional dielectric
problem into a two-dimensional one. Furthermore, the cavity
can be considered rigid since it depends only on the atomic
coordinates which does not vary during a SCF cycle in DFT
simulations.

For a first test of the electrostatic solver integration
(Algorithms 1 and 2) in an electronic-structure code, a PCM-
like cavity has been considered. The dielectric function ϵ(r)
is thus given by the product of spherical-symmetric atom-
centered error functions. Differently from the early PCM
model, we here define a cavity which is fully differentiable
and continuous. In particular, for a system of N atoms of
coordinates Ri (for i = 1, . . . ,N), the dielectric function ϵ(r)
can be expressed as

ϵ(r,{Ri}) = (ϵ0 − 1)




i

h(di,∆; d(r,Ri))


+ 1, (23)
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where ϵ0 is the dielectric constant of the surrounding medium
and the function h is defined by Eq. (17). In Eq. (23)
d(r,Ri) = ∥r − Ri∥, di are the cavity radii which depend
on the particular atom species, and ∆ a parameter (kept fix
for all atoms) which controls the transition region (≈4∆ wide)
from 0 to 1 where the polarization charge is located. Starting
from Eq. (23), all vectors which explicitly depend on ϵ(r)
can be analytically computed. The cavity is uniquely defined
once Ri, di, and ∆ are fixed. All environment-dependent fields
are calculated once at the start of the solver and kept fixed
throughout the procedure.

It has to be noticed that this definition of the cavity
relies on the explicit dependence of ϵ(r,{Ri}) from the
atomic coordinates Ri (and, consequently, of the system
Hamiltonian). This dependence gives rise to additional terms
when atomic forces are computed. The analytical rigid cavity
above described should overcome this problem allowing a
direct analytic calculation of such additional contributions.
Furthermore, the values of di and of ∆ have to be tuned by the
user, usually by choosing a solvent-dependent scaling factor
with respect to empirical Van der Waals radii.32 A solution that
would remove part of this arbitrariness should therefore avoid
an explicit use of atomic coordinates in the cavity mapping.
This will be the subject of Sec. IV B.

B. Charge-dependent cavity

For this definition of the cavity, the dielectric function
does not explicitly depend in the atomic positions, but
implicitly via the charge density ρelec,

ϵ(r) = ϵ[ρelec](r). (24)

This approach allows the cavity to self-consistently
change during the SCF loop, strictly following the modifi-
cation of the electronic charge density. A cavity surrounding
an atomic system can be generated by means of two threshold
parameter, i.e., ρmax and ρmin, fixing ϵ(r) = 1 in regions when
ρelec(r) > ρmax and ϵ(r) = ϵ0 when ρelec(r) < ρmin. Like di in
the rigid case, ρmax fix the width of the cavity, whilst the
extension of the transition region, previously defined by ∆, is
now tuned by ρmin.

Several features make the charge-dependent cavity more
advantageous with respect to the rigid one. First, once the
electron charge density is given, only two parameters uniquely
define both the cavity and the transition region for the whole
atomic system. Furthermore, since the dielectric function does
not explicitly depend on the atomic coordinates, the evaluation
of ionic forces can be done without modifications with respect
to a simulation in gas-phase.

Among several ways to define the functional dependence
on the electronic charge density, the self-consistent continuum
solvation (sccs) model developed in Ref. 15 has been
implemented. It allows to fit experimental solvation energies
on a set of 240 neutral solutes with a mean absolute error of
1.2 kcal/mol,

ϵ(ρelec) =



1 ρelec > ρmax

ϵ
w(ρelec)
0 ρmin < ρelec < ρmax

ϵ0 ρelec < ρmin

, (25)

where w(x) is a continuous smooth function describing the
transition region between vacuum (where atoms are placed)
and the full dielectric medium,

w(x) = 1
2π

[z(x) − sin (z(x))] , (26)

z(x) = 2π
ln
� ρmax

x

�

ln
(
ρmax
ρmin

) . (27)

A good description of this region by means of Eq. (25)
is mandatory for the procedure convergence as well as for
the mapping of the polarization charge there confined. Since
ϵ(r) explicitly depends on ρelec(r), its variation needs to be
included in the Kohn-Sham (KS) potential. Starting from
Eq. (3) and integrating by parts, the electrostatic energy can
be rewritten as

Ees[ρ] = 1
2


ρφ[ρ]dr =

1
8π


ϵ[ρ](∇φ[ρ])2dr. (28)

Its functional derivative with respect to ρ gives the electrostatic
potential φ(r) plus an additional term vϵ(r),

vϵ(r) = − 1
8π

dϵ(ρelec(r))
dρelec |∇φ(r)|2, (29)

which has to be added to the KS potential.

C. Solvation free energies

In order to test the integration and performances of the
generalized Poisson solver into ab initio codes, the whole
procedure previously described, i.e., Algorithms 1 and 2 of
Secs. II A and II B, rigid and charge-dependent cavities
of Secs. IV A and IV B as well as the additional term of
Eq. (29) have been integrated in the main BigDFT package.28

This extension allows to handle complex wet environments
in electronic-structure calculations, including implicitly the
effects of a solvent surrounding an atomic system.

The electrostatic solvation energy is defined as difference
between the total energy of a given atomic system in the
presence of the dielectric environment and the energy of the
same system in vacuum

∆Gel = Gel − G0. (30)

A full comparison with experimental solvation energies
needs the inclusion of non-electrostatic contributions. In this
case, the main terms in the solute Hamiltonian, as introduced
by PCM,8 are

∆Gsol = ∆Gel + Gcav + Grep + Gdis + Gtm + P∆V, (31)

where ∆Gel is the electrostatic contribution, Gcav the cavitation
energy, i.e., the energy necessary to build up the solute
cavity inside the solvent medium. Grep is a repulsion term
representing the continuum counterpart of the short-range
interactions induced by the Pauli exclusion principle, whilst
Gdis reflects van der Waals interactions. The thermal term Gtm

accounts for the vibrational and rotational changes and, finally,
P∆V includes volume change in the solute Hamiltonian.

The inclusion of all non-electrostatic contributions goes
beyond the aim of the present paper, where testing of
the generalized Poisson solver and its integration into first
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TABLE I. Electrostatic solvation energies ∆Gel (in kcal/mol).

PCMa RigidBigDFT sccsPQE
b sccsFBigDFT

NH3 −6.65 −6.28 −5.39 −5.35
H2O −8.98 −8.32 −8.21 −8.23
CH4 −0.61 −1.20 −0.68 −0.63
CH3OH −6.78 −6.57 −5.89 −5.83
CH3NH2 −4.51 −5.71 −4.53 −4.45
CH3CONH2 −12.53 −12.97 −11.87 −11.87

aPolarizable continuum model results obtained with  0936 and Pauling’s set of
atomic radii.34

bSelf-consistent continuum solvation model results from periodic BC calculations in
Ref. 15.

principle atomistic calculations is the main goal. Therefore,
only electrostatic solvation energies have been computed for
a set of small neutral organic molecules.

Water has been chosen as solvent for all cases, with
a dielectric constant of ϵ0 = 78.36 (experimental value at
low frequency and ambient conditions). Final energies for
all molecules have been extracted after a full geometry
optimization both in vacuum and in aqueous solution. In
all cases, the surrounding dielectric medium lowers the total
energy of the system with respect to vacuum, because the
polarization of the dielectric stabilizes the solutes.

Table I reports electrostatic solvation energy ∆Gel

obtained both with rigid and charge-dependent cavities under
free boundary conditions. As previously stated, a critical
point of PCM approaches is the choice of shape and size
of the cavity, which should mimic the solute incorporating
the whole atomic charge density. From its first formulation,31

PCM atomic radii Ri were fixed proportional to the van der
Waals radii, Ri = f · RvdW

i . In our rigid model, a proportional
factor of f = 1.2 has been fixed and the Pauling’s set of atomic
radii has been considered33–35 (except for the hydrogen atoms
bound to heteroatoms which have a radius value of 1 Å).
Having a further degree of freedom with respect to sharp
PCM cavities, a ∆ = 0.5 a.u. has been tuned and kept constant
for all atoms.

As reference, in Table I, PCM calculations together
with sccs calculations from Ref. 15 have been reported.
The first were performed with the  09 code,36

but using the version of PCM which was the default
in  03, as specified by the keyword g03defaults.
Only electrostatic solvation effects were included in the
calculation and, to simplify the comparison, the simple
van der Waals surface was adopted with Pauling’s set of
atomic radii34 (explicit hydrogens), but without the additional
smoothing used to describe the solvent-excluded surface.
The Perdew-Berke-Ernzerhof (PBE) functional37 and the
extended triple-zeta 6-311+g(d,p) basis set were used for
both geometry optimizations and energy calculations, in
vacuum and in solution, consistently with the setup used
for the parameterization of the electrostatic solvation energy
in sccs.15

In all calculations, soft norm-conserving pseudopotentials
including non-linear core correction38,39 along with PBE
functional were used to describe the core electrons and
exchange-correlation, respectively.

FIG. 5. Accuracy of the Kohn-Sham total energy with respect to the spatial
grid hgrid. Calculations for all molecules have been done both in vacuum
(empty symbols, dashed lines) and with a surrounding dielectric environment
(filled symbols, solid lines) in free boundary conditions.

For the charge-dependent cavity, values of ρmax = 5 · 10−3

a.u. and ρmin = 1 · 10−4 a.u. have been fixed which produce a
mean absolute error of 1.20 kcal/mol for the solvation energies
of a database of 240 molecules.15 A perfect agreement has
been reached which confirms the performance and reliability
of the integrated generalized Poisson solver.

In order to test and validate the whole electrochemical
library in BigDFT, the effects of grid resolution and boundary
conditions on the electrostatic solvation energies for the same
set of neutral molecules have been investigated. The global
accuracy is strictly related to the size of the simulation box
and the spatial grid resolution hgrid. However, a decrease of the
latter can affect the whole cost of the calculation both in time
and memory usage. Consequently, it is worth to investigate
the effects of the dielectric medium’s inclusion in a DFT run
with respect to the vacuum case.

In that respect, Kohn-Sham total energies have been
extracted both in vacuum and in the presence of the solvent
(water) as function of the spatial grid hgrid. Its accuracy
is reported in Fig. 5 as difference with the reference
value at hgrid = 0.20 bohr. Results show that the accuracy
is not affected by the surrounding dielectric environment
(filled symbols, solid lines) with respect to the vacuum
case (empty symbols, dashed lines). Following the same
guidelines, the accuracy of the electrostatic solvation energy
[Eq. (30)] with respect to the spatial grid hgrid has been
investigated and reported in Fig. 6. Results indicate that an hgrid
= 0.30 bohr in BigDFT with free boundary condition provides
electrostatic solvation energies with an accuracy lower than
∼10−2 kcal/mol.

Since isolated systems embedded in a wet environment
are the subject of interest, spurious long range electrostatic
interactions with periodic images due to artificially imposed
periodicities along certain direction can be problematic. In the
developed procedure, the boundary conditions enter through
the preconditioner, i.e., the SPe solver. Since in the BigDFT
Poisson solver, all the common boundary conditions such as
free, wire, and surface are exactly implemented, such spurious
interactions do not exist at any stage of our approach.
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FIG. 6. Accuracy of the electrostatic solvation energy with respect to the
spatial grid hgrid with free boundary conditions.

Fig. 7 reports the difference between the electrostatic
solvation energies computed with periodic and free boundary
conditions as function of the periodic cell length and keeping
fixed the spatial grid hgrid = 0.20 bohr. Molecules have been
ordered according to the strength of their electrostatic dipole,
from largest to smallest. Dipole values for each molecule are
reported in Table II both in vacuum and in the presence of a
water solvent. It can be noticed that the presence of the polar
solvent increases the electrostatic dipoles of the molecules.32

As it might be expected, the free BC calculation represents
the asymptotic result for periodic BC run of increasing box
sizes. Interactions with image-molecules are less relevant
for molecules with small dipole moment like CH4, but are
not negligible for molecules with larger dipoles such as
CH3CONH2. In such cases unrealistic large periodic boxes
are required for periodic BC to reproduce the free boundary
condition results with high accuracy.

Numerous processes of practical interest involve surfaces
in contact with neutral or ionic solvents, leading to an induced
polarization charge on the dielectric medium or an electric
double layer. The BigDFT package allows to use exact
surface boundary conditions avoiding spurious interaction
in the direction orthogonal to the surface. To show a further
application of the solvation library in BigDFT, a TiO2 surface
in contact with pure water has been simulated. The full DFT
simulation in presence of the solvent has been initialized
starting from its relaxed state in vacuum. Fig. 8 shows the

FIG. 7. Difference between the electrostatic solvation energy computed with
periodic and free boundary conditions as a function of the periodic cell length.
Molecules have been ordered as a function of their electrostatic dipole norm,
from largest to smallest (see Table II).

TABLE II. Molecule dipole norm in vacuum and water solvent (in Debye).

Dipolevacuum Dipolewater

CH3CONH2 3.88 5.76
H2O 1.81 2.41
CH3OH 1.57 2.14
NH3 1.49 1.98
CH3NH2 1.27 1.78
CH4 0.00 0.00

TiO2 wet surface as well as isosurfaces of the polarization
charge density ρpol as given by Eq. (10). In this test case,
an electrostatic solvation energy of −46.60 kcal/mol has been
recovered for the TiO2 slab in contact with the dielectric
medium.

D. Performances for a full SCF run

In this section, we report the performances of an entire
electronic-structure calculation using the extended BigDFT
package containing our new Poisson solver applied to
non-vacuum environments. As a test system, we took the
protein PDB ID: 1y49 (122 atoms), which was also chosen
as a benchmark system in another recent publication on
an optimized version of the COSMO40 Poisson solver for
dielectric environments.41 The approach in this publication is
quite different from ours. A small Gaussian type basis set was
used, whereas we use a systematic basis set of wavelets. Also

FIG. 8. TiO2 surface in contact with water: Isosurfaces of the polarization
charge ρpol in the implicit dielectric medium.
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the hardware targeted was different. We target traditional
massively parallel supercomputers, whereas they targeted
powerful single nodes that were enhanced with graphics
processing unit (GPU) hardware. In spite of all the differences
we will see that in both approaches, the overhead for a
simulation in a dielectric medium compared to vacuum is
rather small and that the total numerical effort is also quite
similar. In our tests, the rigid PCM-like cavity has been used
together with the parameter’s setting of Sec. IV C and a
spatial grid hgrid = 0.40 bohr. The direct minimization method
of BigDFT25 for the calculation of the converged wavefunction
was used.

Both the developed preconditioned conjugate gradient
and the self-consistent algorithm have been applied for the
electrostatic problem (generalized Poisson equation) with and
without the use of an input guess from previous routine calls.
As accurate potentials are not needed during the first stages
of the SCF wavefunction optimization loop, a dynamic exit
threshold from Algorithms 1 and 2 based on the norm of
the residual vector rk has been implemented. It is allowed
to vary between τmin and τgnrm, where the last is the norm
of the KS energy gradient from the previous wavefunction
SCF iteration. A τmin = 10−4 guarantees a correct SCF conver-
gence while lowering the overall electrostatic calculation
time.

The whole electrochemical library, namely, the general-
ized Poisson and the Poisson-Boltzmann solvers, has been
fully embedded in the parallelization scheme of BigDFT,
which exploits two levels of parallelization, i.e., MPI and
OpenMP. For our test system, which has 179 orbitals, 45 MPI
tasks with 4 OpenMP threads were used. The simulations were
performed on a Cray XC30 system whose nodes are equipped
with 8-core 64-bit Intel SandyBridge CPU (Intel® Xeon®

E5-2670) and NVIDIA® Tesla® K20X. Fig. 9 reports a
detailed schematic of timings for the total SCF convergence of
BigDFT runs both in gas phase and with the inclusion of the

FIG. 9. Relative timings for full SCF convergence in a BigDFT run for
a solvated 1y49 protein (122 atoms). Each column refers to a particular
algorithm (SC and PCG) to handle the generalized Poisson equation (IG
means the use of input guess). Colors indicate the load of the different run
categories. SCF vacuum data are also reported for comparison. Absolute
timings are reported in Table III.

TABLE III. BigDFT timings and performances for 1y49 protein.

Algorithm Environment
SCF loop

(s)
GP solver

(s)
Total GPe
iterations

No. of
SCF

iterations

Vacuum
solver

Vacuum 42 0.43 1 16

SC Water 218 97 342 18
SC-IG Water 91 23 60 18
PCG Water 71 19 686 16
PCG-IG Water 54 5.50 178 18

implicit solvent. Each column refers to a particular algorithm
(SC and PCG) to solve the generalized Poisson equation (IG
means the use of input guess). Colors indicate the load of the
different timing categories. SCF vacuum data are also reported
for comparison.

Fig. 9 shows the relative cost to include implicit solvent-
solute interactions with respect to its gas phase using our
generalized Poisson solver. These additional efforts can
be visualized by the yellow and dark blue blocks which
are related, respectively, to the electrostatic solver and
communications. The ratio of the wavefunction optimization
runtime in solvent and gas phase strongly varies with respect
to the algorithm chosen. Using an input guess from the
previous calculation strongly decreases the computational
runtime for both approaches (PCG and SC). However, the
best performances come out for the PCG algorithm with input
guess (PCG-IG) where a ratio of 1.28 is recovered. So thanks
to the PCG algorithm, which requires only vacuum Poisson
solver calls and fully parallelizable operations (without the
use of finite-difference filters like in the SC algorithm), a
small overhead for the solvent calculation can be obtained.
Similar performance ratios are also found for runs of the same
system on a single node of the above mentioned machine,
with 8 OpenMP threads, where a vacuum run takes 741 s and
a PCG-IG run needed 857 s, i.e., only about 15% slower.

Table III reports run data for all single-point energy
evaluations of Fig. 9. It shows the total time spent in
the SCF wavefunction optimization loop, the time spent in
the electrostatic solver, the sum of all generalized Poisson
iterations during the whole SCF loop, and the number of SCF
iterations needed to converge both for vacuum and the implicit
solvent case.

V. CONCLUSIONS

In the present work, a library to handle complex wet-
environments in electronic-structure calculations has been
presented. It allows to include on the atomistic scale effects
of an aqueous environment in an implicit way. The solver
is able to handle both the generalized Poisson and several
variants of the Poisson-Boltzmann equation. The core of
the generalized Poisson solver is a preconditioned conjugate
gradient algorithm which allows to numerically solve the
minimization problem with some ten iterations. The same
algorithm works for the linear case of the Poisson-Boltzmann
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equation, whilst for the general case, a self-consistent
procedure has been implemented. The chosen preconditioner
is based on the ISF Poisson solver for the standard Poisson
equation, which can handle all common boundary conditions
exactly. The code requires a small amount of memory and is
very fast and in addition also highly parallelized. We have
shown that coupled with BigDFT, our method can correctly
reproduce electrostatic solvation energies of a set of small
neutral organic molecules. Effects of grid resolution and
boundary conditions on the electrostatic solvation energies
have been also reported. The whole library will be released
as an independent program suitable for integration in other
electronic structure codes. A GPU-accelerated version of
this software package is also in preparation, following the
guidelines indicated in Ref. 42.
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