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Abstract

As the Internet-of-Things (IoT) has expanded, multiple solutions have attempted to address the

issues of the Low Power Wide Area (LPWA) networks physical layer. In a previous work, we proposed

the Turbo-FSK, a constant envelope modulation with orthogonal alphabet that allows the receiver to

operate at very low levels of power (high sensitivity performance) and very low levels of energy per

bit Eb. The scheme was demonstrated to approach Shannon’s limit as close as 0.29dB. However, the

scheme lacks of flexibility in terms of spectral efficiency (always lower than 10−1 bits/s/Hz), especially

compared to the recently standardized Narrow-Band IoT (NB-IoT) solution. In this work, we propose

an evolution of the initial scheme, so-called Coplanar Turbo-FSK (C-TFSK). In order to increase the

spectral efficiency of the system, two new features are introduced: a modulation combining linear and

orthogonal properties where only subsets of the alphabet are orthogonal and a puncturing mechanism.

Several aspects of the scheme are then studied under asymptotic hypothesis, such as the influence of the

linear component of the alphabet and the effects of puncturing. The high flexibility in term of spectral

efficiency, the short distance to Shannon’s limit and the constant envelope property make the C-TFSK

a serious contender for the physical layer of the IoT.

Index Terms

Internet-of-Things, IoT, Low Power Wide Area, LPWA, Turbo, FSK, Constant envelope, Orthogonal

modulations
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I. INTRODUCTION

The Internet-of-Things (IoT) is in the process of global expansion but the definition of its

technical features is still in progress [1]. According to the definition from the International

Telecommunication Union (ITU) [2], the IoT will interconnect existing networks as well as

evolving technologies. In this context, Low Power Wide Area (LPWA) networks [3], [4] are

expected to represent approximately 10% of the overall IoT connections [5]. Requirements for

LPWA include long range communication and low energy consumption at the device level, i.e.

long battery life. Low consumption can be achieved by reducing the constraints on the power

amplifier using a constant envelope waveform, or by reducing the energy per bit Eb of the

considered modulation [6]. Long range is obtained by decreasing the required received power,

also called the sensitivity level.

The problem of achieving a low sensitivity level can be solved by ensuring a low data rate

transmission [7]. It is commonly obtained following two possible strategies: reduce the bandwidth

or reduce the level of Signal-to-Noise Ratio (SNR) required for the given Quality of Service

(QoS). The first strategy leads to narrow band signaling, the keystone of the Sigfox LPWA

solution [8]. The second strategy is pursued by reducing the spectral efficiency η of the selected

technique (expressed in bits/s/Hz), or by reducing the Eb/N0, the SNR per bit, required for

the QoS. A commonly used technique to reduce the spectral efficiency is use of the repetition

code (repetition factor), used for example in the IEEE 802.15.4k standard [9]. Repetitions are

recombined at the receiver side, which lowers the level of sensitivity while maintaining a required

Eb/N0 constant. The required Eb/N0 can be reduced by using Forward Error Correction (FEC)

[10]. FEC is usually associated with a loss in spectral efficiency and introduces the notion of

capacity.

The maximum achievable data rate over Additive White Gaussian Noise (AWGN) for an

arbitrarily small level of error, also called the capacity, was established by Shannon [11]. Many

research works have focused on approaching the capacity through the use of FEC [10]. A

system operating close to the capacity ensures an efficient if not optimal use of the spectral

and energetic resource. Another formulation of the limit expresses the relationship between the

minimum achievable Eb/N0, (Eb/N0)min, and the maximum achievable spectral efficiency ηmax

with [12] (
Eb

N0

)
min

=
2ηmax − 1

ηmax
. (1)
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This expression illustrates the perpetual trade-off between spectral efficiency and energy effi-

ciency, which is related to the required Eb/N0. It also gives the ultimate limit in Eb/N0, obtained

when ηmax tends toward 0 and equal to (Eb/N0)lim ' −1.59dB. Having a high spectral efficiency

will result in a high Eb/N0, and inversely operating a low Eb/N0 requires the technique to have

a low spectral efficiency. For the LPWA context, ensuring both a low spectral efficiency and a

low level of required Eb/N0 will lead to a low level of sensitivity. Moreover, an efficient use of

the resource is guaranteed if the long range transmission technique approaches the capacity.

When it comes to existing solutions, the Narrow-Band IoT (NB-IoT) solution from the 3rd

Generation Partnership Project (3GPP) [13], [14], [15], [16] combines the elements necessary for

an efficient LPWA solution. Through the use of the powerful [1315] Turbo Code (TC) [17], [18],

a low Eb/N0 and a short distance to capacity can be achieved. The additional use of a repetition

factor ensures low levels of sensitivity by reducing the spectral efficiency [19]. The variable

number of repetitions and the possibility to puncture parity bits generated by the TC allows for

a wide range of spectral efficiencies. With a constant bandwidth, applications demanding higher

data rates are supported by increasing the spectral efficiency, while reducing the range of the

transmission.

An alternative strategy is to consider ultra low rate FEC schemes, such as Super Orthogonal

Turbo Codes (SOTC) [20] or Turbo-Hadamard Codes (THC) [21]. The use of orthogonal codes

can actually be shown to reach the capacity for an infinite size of alphabet [12]. As this

leads to a spectral efficiency tending towards 0, the use of orthogonal codes alone is not

practical. Nevertheless, through the use of a combination of orthogonal Hadamard codes, a

convolutional code and a turbo receiver, THC have been demonstrated to get as close as 0.29dB

from the (Eb/N0)lim for a spectral efficiency equal to 1.06 · 10−2 bits/s/Hz [22]. The joint

optimization of modulation and coding scheme have also been studied in the context of deep

space communication [23]. In this case Pulse Position Modulation (PPM) is considered, and a

turbo-like code is optimized to bridge the gap to Shannon capacity. However, this scheme is not

well optimized for the next generation of IoT communications as the size of the codeword is

quite important (4000 bits). Moreover PPM is not well adapted compared to constant amplitude

modulation when state of the art power amplifier is used. In a previous work, we proposed the

Turbo-FSK modulation [7], [19], [24], which is inspired by the THC and can be either viewed

as a bit interleaved coded modulation (BICM) or parallel concatenated trellis-coded modulation

(PCTCM) [25] schemes with orthogonal signaling. Low consumption of the transmitter is ensured
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by a constant envelope signal and a low complexity encoder. Turbo-FSK is adapted to the LPWA

context [26] as it ensures low levels of sensitivity to be reached while approaching the channel

capacity [27]. However, unlike the technologies relying on the use of a powerful FEC combined

with a repetition factor, Turbo-FSK is restrained to low levels of spectral efficiency. This limits

the number of possible applications for the solution.

In this paper, we propose an extension of the initial Turbo-FSK technique presented in [7].

An alphabet of modulation combining orthogonal and linear properties, the so-called Orthogonal

with Coplanar Subsets (OCS) alphabet is introduced. It allows achieving higher levels of spectral

efficiencies. After giving a general definition of the alphabet, its application to Frequency

Shift Keying (FSK) signaling is reviewed. The use of this alphabet as a substitution for the

FSK alphabet in the Turbo-FSK scheme is considered, leading to the Coplanar Turbo-FSK

(C-TFSK) modulation. In addition to the more spectrally efficient alphabet, C-TFSK also includes

a puncturing mechanism which trades performance for a shorter transmitted sequence. The

introduction of these two new features increases the possible number of configurations for

C-TFSK. Additionally, it improves the flexibility of the scheme and makes it a serious contender

for IoT technology. The scheme is analyzed using the EXtrinsic Information Transfer (EXIT)

chart tool [28], which has already been introduced for the Turbo-FSK [27].It should be noted

that minimum distance analysis is also a powerful tool for Treillis-Coded-Modulation scheme,

but is not straightforward to derive for our PCTCM-like scheme (it has been partially done in

[29][24](page 38) for more basic scheme). The performance evaluation presented in this work is

limited to the AWGN channel. However, this is motivated by the following reasons. (i) This type

of channel is convenient to consider for the theoretical study of the structure of the code. (ii)

For low throughput scenarios it can be reasonable to consider the transmission channel as non-

frequency selective channel. It is particularly true for small bandwidth and terrestrial networks. It

should be however mentioned that performance evaluation of C-TFSK under frequency selective

channels demonstrated that the scheme is competitive versus standard Orthogonal Frequency

Division Multiplexing (OFDM) signaling [30].

The paper is organized as follows. Section II is dedicated to the presentation of the OCS

alphabet and Section III to the C-TFSK transmitter and the receiver’s architecture. In Section

IV, various features of the scheme are studied and Section V concludes the paper.
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II. ORTHOGONAL WITH COPLANAR SUBSETS MODULATION

The modulation mapping procedure consists in associating binary words of size m to a symbol

(or codeword) taken from the alphabet of modulation of size M = 2m. There are two main

families of modulations: linear modulations and orthogonal modulations. For linear modulations,

the alphabet is constructed from a base symbol which is multiplied by M various complex

values. Since the symbols belong to the complex plane, there is a coplanar relation between the

symbols of the alphabet. Linear modulations are spectrally efficient, both the spectral efficiency

and the required Eb/N0 increase with the size of alphabet, without limitation. Quadrature

Amplitude Modulation (QAM) and Phase Shift Keying (PSK) modulation are examples of linear

modulations. For orthogonal modulations, symbols of the alphabet are orthogonal to each other

(the scalar product is equal to 0). These modulations are energy efficient as the energy efficiency

increases with the size of the alphabet, but inversely the spectral efficiency decreases with an

increasing size of alphabet. Theoretically, orthogonal modulations can reach the (Eb/N0)lim for

an infinite size of alphabet [12]. However, this is not conceivable for a practical system, as

the spectral efficiency would tends toward 0. FSK and Pulse Position Modulation (PPM) are

examples of orthogonal modulations.

Linear and orthogonal modulations, due to their complementary spectral efficiencies and re-

quired Eb/N0 ranges, seem to be fundamentally opposed. We propose nevertheless the definition

of the hybrid OCS modulation, which holds properties from both modulations. This alphabet

is a generalization of the modulation presented in [31]. The hybridation of FSK modulation

and a linear modulation was also presented in [32], [33], [34], [35], but no channel coding was

considered. [36] considered the use of binary and multidimensional TCs associated with a hybrid

FSK and QAM modulation.

A. Definition of the Alphabet of Modulation

The alphabet of modulation is denoted by A and contains M elements. While having an

orthogonal alphabet would require a total of M orthogonal dimensions, we relax the orthogonality

constraint for subsets of the alphabet only. These subsets contain ML symbols (with ML ≥ 1)

and are denoted by Aδ with δ ∈ {0, . . . , MO − 1}, where MO is the number of orthogonal

dimensions, with M = MOML. Two symbols from two distinct subsets are orthogonal, but

two symbols from the same subset belong to the same complex plane and are thus coplanar.



6

Considering two symbols si and si
′ from the alphabet (with {i, i′} ∈ {0, . . . ,M − 1}2), the

definition of the alphabet leads to

〈si, si′〉 =


Ai−i′ if ∃ δ ∈ {0, . . . , MO − 1}, such that si, si′ ∈ Aδ

0 otherwise

,

where Ai−i′ is a complex number proportional to the coplanarity relation between two symbols

from the same subset and 〈·, ·〉 is the scalar product operator1 defined as follows:

〈x,y〉 =
∑
i

xiyi

with yi denotes the conjugate of complex number yi.

In the alphabet, each subset is equivalent to a linear modulation with ML elements. Orthog-

onality holds between the subsets only.

We consider the baseband model. Through the addition of the ML linear components, the

number of orthogonal dimensions have been divided by ML and so was the number of samples

(or chips) required to represent each symbol. MO chips are now required to represent one symbol.

Symbols from the alphabet are expressed as

si = f δzp, (2)

with i a function of δ and p and where f δ =
[
f δ
0, f

δ
1, . . . , f

δ
MO−1

]
is the length-MO base

vector of the subset Aδ. The coefficient zp ∈ C, with p ∈ {0, . . . , ML − 1}, is taken from the

complex plane and represents the linear modulation. The spectral efficiency of the modulation

η, expressed in bit/s/Hz, is given by the ratio between the number of information bits contained

in one symbol and the number of chips per symbols. It is given by

η =
log2(M)

MO

=
log2(M)

M
·ML. (3)

The second form of the expression offers a better understanding of the effect of the modulation.

While keeping a constant value for M , the spectral efficiency increases with the value of ML,

which reminds the property of linear modulation. However, increasing the size of alphabet for

a constant ML (i.e. increasing MO, the number of orthogonal dimensions) reduces the spectral

efficiency, similarly to orthogonal modulations.

1It should be noticed that the number of orthogonal dimension is equal to the number of chips MO and not 2MO since we

need to use the complex scalar product instead of the real one.
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B. Likelihood of a Symbol

Probabilistic demodulation is considered. The likelihood of all the symbol from the alphabet

must be evaluated. The observation r of the symbol s is given by

r = s+ n,

where n is a zero-mean circular complex Gaussian white noise. The elements of n are i.i.d.

Gaussian random variables with zero mean and variance equal to σ2
n .Assuming that si was

transmitted, the likelihood of the symbol is given by

p
(
r
∣∣ si) = MO−1∏

k=0

p
(
rk

∣∣ sik)
=

(
1

2πσ2
n

)MO

exp

− 1

2σ2
n

MO−1∑
k=0

|rk − sik|2


= C exp

{
− 1

2σ2
n

MO−1∑
k=0

∣∣sik∣∣2 + 1

σ2
n

MO−1∑
k=0

〈rk, sik〉

}
, (4)

where C is a constant independent of i. Following the definition of the vector s given in (2), the

summation of the scalar product over k is expressed
MO−1∑
k=0

〈rk, sik〉 =
MO−1∑
k=0

Re
(
rk · f δ

k · zp
)

= Re
(
zp · 〈r,fδ〉

)
, (5)

where 〈r,fδ〉 represents the projection of the received vector r on the subset Aδ which includes

si.

Additionally, the definition of the symbols in (2) yields
MO−1∑
k=0

∣∣sik∣∣2 = |zp|2 ·
∥∥f δ

∥∥2
. (6)

Using (5) and (6) in (4), the likelihood of the symbol si is expressed

p
(
r
∣∣ si) = C exp

{
−|zp|2

2σ2
n
·
∥∥f δ

∥∥2
+

1

σ2
n
Re

(
zp · 〈r,f δ〉

)}
. (7)

Maximum Likelihood (ML) decision could be performed by searching the symbol si which

has the greatest likelihood.
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Figure 1: Alphabet of modulation for the case M = 8, 2-FSK and ML = 4.

C. Application to FSK Signaling

In practice, common modulations can be chosen to represent both orthogonal and linear parts

of the OCS modulation. For the considered application C-TFSK, we select the FSK modulation

as orthogonal modulation. For this specific case, the vectors f δ can be picked as rows or columns

from the Discrete Fourier Transform (DFT) matrix of size MO. The coplanar value can take any

complex value. However, we will consider the case where roots of the unity are selected in order

for the modulation to have a constant envelope. The ML values are given by zp = exp
{
j 2π
ML

p
}

,

which reminds of the construction of the PSK modulation alphabet. In Figure 1, the alphabet of

modulation for the case M = 8 and ML = 4 is depicted. For this example, the vectors f δ are of

size 2. In the figure, an entire line of symbols corresponds to a subset and rows are orthogonal

to each other. The spectral efficiency, given by (3), is equal to 3/2. Due to the choice of the FSK

modulation as orthogonal modulation and roots of the unity as coplanar points, this modulation

has a constant envelope.

III. COPLANAR TURBO-FSK

The alphabet introduced previously is now applied to the Turbo-FSK principle presented in

[19]. After reviewing the operations performed at the transmitter side, the receiver is presented.
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Figure 2: The C-TFSK transmitter architecture.

A. Transmitter

The architecture of the transmitter is presented in Figure 2. Q is the information block size,

and it is divided into Nq binary words of size q (thus Q = Nq · q). The transmitter is composed

of λ similar stages and the stage ` ∈ {0, . . . , λ − 1} is considered. The operations performed

by one stage are presented.

1) Encoder: The information block is interleaved with the function πint
` , where int stands for

internal, as this interleaver corresponds to the interleaver used for the turbo process. The Nq

words of length q are then encoded using the encoder presented in Figure 3. The encoder in

each branch adds one parity bit to each length-q information word and an extra word to force

the memory state back to 0. The rate of the code (one branch) is

Rc =
Q

(Nq + 1)(q + 1)
≈ q

q + 1
,

where the approximation is valid for large sizes of Q. The size of the encoded words is denoted

m, with m = q + 1. For each stage, the sequence of Nq + 1 binary words of length m is to

be modulated. Each binary word of size m will be associated with one of the elements of the

alphabet of modulation A, referred to as codewords. The encoder needs to be systematic as

the codewords will be mapped to a physical waveform. Omitting the systematic bits as in the

case of Turbo-Hadamard [21] cannot be considered when dealing with non-binary transmitted

codewords. Contrary to usual efficient binary coding scheme, note that the systematic bits are then

sent multiple times, and that more than λ = 2 stages should be considered for turbo-encoders.
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...

. . .

q bits

+

Memory

...

m = q + 1 bits

Figure 3: The Parity-Accumulator encoder

However, the performance of this type of architecture has been demonstrated previously for

Turbo-Hadamard (see [29] figure 3) as well as for the Turbo-FSK scheme (see [19],[30]). In

order to increase the spectral efficiency of the scheme, a puncturing step is also considered.

2) Puncturing: Puncturing commonly consists in removing some parity bits of the encoded

sequence. Only the systematic bits and a reduced number of parity bits are sent. For the

considered scheme, removing some parity bits would involve changing the size m to q for some

specific words. However, the size of the words to be modulated should be kept to a constant

value, equal to m. In order to fulfill this condition, entire words of size m are punctured. If the

first stage is not punctured, then every systematic bit is sent at least once. Every other stage is

punctured at a rate R`
p ≥ 1. This rate may differ depending on the stage. The overall puncturing

rate is denoted by Rp, and is equal to

Rp =
λ(Nq + 1)

(Nq + 1) +
λ−1∑
`=1

(Nq+1)

R`
p

=
λ

1 +
λ−1∑
`=1

1
R`

p

,

with Rp ≥ 1.

In order to avoid puncturing too many consecutive codewords and induce holes in the trellis,

a block interleaver πpunc
` of size G is used. The block is interleaved by filling a matrix of size

G×(Nq+1) row by row, and the same matrix is read column by column to form the interleaved

output. Considering the puncturing rate of stage ` to be R`
p, the actual step of puncturing consists

in selecting only the first (Nq + 1)/R`
p binary words. The use of the block interleaver scatters

the punctured binary words over the whole sequence.

3) Modulation: After puncturing, the overall sequence consists of λ(Nq+1)/Rp binary words

of size m. These words are mapped to the alphabet of codewords A of size M . The alphabet is
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chosen as the OCS alphabet with FSK as orthogonal modulation, as described in Section II-C.

The number of elements in each subset is ML and the number of frequencies is given by the

ratio M/ML. The size of the alphabet is given by M = 2m. With the spectral efficiency of the

modulation as defined by Equation (3), the overall spectral efficiency of the scheme is given by

η =
Nq · q

λ(Nq + 1)M
·ML ·Rp. (8)

under the assumption of critically sampled and spaced frequency shift signals, i.e an orthogonal

basis built from discrete Fourier series. Following the relation m = q + 1, the number of

information bits per codeword is given by

q = log2(M)− 1.

The spectral efficiency can be approximated, for large sizes of information block Q, with

η ≈ log2(M)− 1

λM
·ML ·Rp.

This expression includes the 4 main parameters which define the scheme: the number of stages

λ, the size of alphabet M , the number of elements in each orthogonal subset ML and the

puncturing rate Rp (the number of frequencies, denoted previously with MO, is obtained with

M/ML). The introduction of puncturing and a linear component allows for higher ranges of

spectral efficiency. Increasing the size ML or the puncturing rate Rp clearly increases the spectral

efficiency. Typically, multiplying ML by 2 with a constant size of alphabet M increases the

spectral efficiency by a factor 2. By setting ML = 1 and without puncturing, the scheme is

strictly equivalent to the Turbo-FSK from [26], [19].

4) Trellis: A trellis is established due to the use of the accumulator in the encoding process.

Each input information word is associated to one of the 4 possible transitions. As there are

M = 2m possible encoded words, each transition has M/4 branches. The mapping performed

between the binary words of length m and the codewords from the alphabet can be represented

on the trellis.

An example of trellis for the case M = 32 and ML = 8 is depicted in Figure 4. For this

configuration, there are 8 branches for each transition. The mapping is then done so that each

transition corresponds to a unique orthogonal subset. All the parallel branches are mapped by

codewords belonging to the same subset. Since FSK is considered for the orthogonal modulation,

the vectors f are lines of the DFT matrix of size 4.



12

t t+ 1

State 1

State 0

State index

(z0 z1 z2 z3 z4 z5 z6 z7)
T × f3

(z0 z1 z2 z3 z4 z5 z6 z7)
T × f0

(z0 z1 z2 z3 z4 z5 z6 z7)
T

×f1

(z0 z1 z2 z3 z4 z5 z6 z7)
T

×f2

Figure 4: A section of the trellis for the configuration M = 32 and ML = 8, with one possible

mapping .

When the chosen alphabet is orthogonal without any linear component (i.e. ML = 1), the

choice of mapping has no influence. The distance between the branches in the trellis is a constant

as all branches are in different orthogonal dimensions. However, when considering ML > 1, this

is no longer the case. Codewords belonging to a same subset are not orthogonal between each

other. The distance between the various symbols of the alphabet is modified by the introduction

of a linear component. When mapping the binary words to the codewords, consideration must

be taken on the orthogonality of the trellis, i.e. on the distances between the symbols associated

to the transitions.

Using the mapping presented in Figure 4, the transitions in the trellis are ensured to be further

apart, as the distance between the orthogonal subsets is larger than the minimum distance in

each subset. This may not be the case for other mappings or for other values of M and ML.

The influence of the choice of mapping on the performance is studied later.

B. Receiver

1) Derivation of the Receiver: First of all, we consider in this work a coherent receviver

perfectly synchronized in time and frequency. As in conventional turbo receivers, the Bahl,

Cocke, Jelinek and Raviv (BCJR) algorithm [37] is used in order to compute the log-A Posteriori
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Probabilities (APP) ratios of the information bits. The log-APP are given by

L
(
bn,t

∣∣∣RNq+1
1

)
= log

Pr
(
bn,t = 0

∣∣∣RNq+1
1

)
Pr

(
bn,t = 1

∣∣∣RNq+1
1

) ,
where R

Nq+1
1 is the received codewords sequence and bn,t the bit at index n of the information

word at time index t. The derivations of the receiver are similar to the case of Turbo-FSK

presented in [7]. The use of the BCJR introduces the terms α, β and γ similarly to [17]. The

final expression of the log-APP is

L
(
bn,t

∣∣∣RNq+1
1

)
= log

∑
i∈Bn

+1

αt−1(s
′
i) · p (rt | ci) Pr (ci) · βt(si)∑

i∈Bn
−1

αt−1(s′i) · p (rt | ci) Pr (ci) · βt(si)
, (9)

where Bn
+1 (resp. Bn

−1) is the group of codewords that encodes information words for which the

bit bn is equal to +1 (resp. −1). p (rt | ci) is the likelihood of the codeword ci and Pr (ci) its

a priori probability of the codeword, given by the other decoders. Considering the chosen OCS

alphabet, for which the symbols likelihood was developed in Section II-B, Equation (7), and

with ci = zpf
δ, the product can be expressed

p
(
rt

∣∣ ci)Pr (ci) = C exp

−|zp|2

2σ2
n
·
∥∥f δ

∥∥2
+

1

σ2
n
Re

(
zp · 〈rt, f

δ〉
)
+

1

2

q−1∑
k=0

LA(bk)b
i
k

 . (10)

In this expression, both the orthogonal and linear components of the codeword ci appear.

2) Architecture: The architecture of the receiver is depicted in Figure 5. The λ stage obser-

vations are first retrieved. For each stage, the observation consists in (Nq +1)/R`
p codewords of

length MO = M/ML. The detail of one stage is depicted in Figure 6. The detector computes

both the correlation on the orthogonal dimensions and the two first terms of (10) in order to

estimate a quantity related to the likelihood of the M codewords. The result is a matrix of size

(Nq + 1)/R`
p × M . Then, the depuncturing block appends (Nq + 1)(1 − 1/R`

p) extra lines to

the aforementioned matrix, corresponding to the same number of punctured codewords at the

transmitter side. For these lines, the M likelihoods are equal, i.e. the receiver considers each

codeword to be equally probable. Interleaving is then applied and scatters the appended lines

over the whole sequence. This step requires the receiver to know the puncturing rate as well

as the puncturing pattern for each stage. When considering the trellis representation, puncturing

consists in not transmitting some sections of the trellis. The receiver then considers every branch
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Figure 5: The C-TFSK receiver architecture.

of the punctured sections to be equally probable. This procedure is similar to the puncturing and

depuncturing process widely considered with Turbo codes [38].

The detector and the puncturing management provide the log of the likelihood part of (10). It

is fed to the decoder, which first computes the log of the a priori part (the third term) of (10) by

combining the a priori log ratios. After summation, the log of (10) is fed to the BCJR algorithm,

which estimates the log-APP of the information bits using Equation (9). The extrinsic log ratio

is then computed and stored for use at the following iteration. After interleaving, the log-APP

are fed to the next decoder. Complexity of the BCJR algorithm can be reduced by using the

common max-log approximation. It avoids the computation of exponential functions, which are

required when computing the Maximum A Posteriori (MAP) algorithm. For the case where the

FSK orthogonal alphabet is selected, the correlation on the orthogonal dimensions may be done

using the Fast Fourier Transform (FFT) algorithm. The detector would then consist in a FFT

operation followed by normalization and real part selection operations.

The initial motivation for C-TFSK was to introduce flexibility in terms of spectral efficiency.

Starting from the initial Turbo-FSK scheme, a specific puncturing procedure is introduced in

order to reduce the number of transmitted codewords by a factor Rp, the puncturing rate. The

alphabet of codewords is also modified by introducting ML linear components, so that the size

of the codewords is divided by ML, while the number of elements of the alphabet stays equal

to M . The introduction of these linear components may also be interpreted as a reduction in the
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Figure 6: The C-TFSK one stage receiver’s architecture.

orthogonality of the alphabet. In the next section, we propose a study of the performance of the

scheme.

IV. ANALYSIS

The design of the scheme gives 5 parameters to study: the alphabet size M , the size of

the linear modulation ML, the number of stages λ, the puncturing rate Rp and the choice of

mapping on the trellis. In this section, each parameter is studied and the performance of the

scheme according to this parameter is assessed. The EXIT chart for Turbo-FSK, presented in

[27], was demonstrated to be able to predict the asymptotic behavior of the decoder, and that

performance when the block size is shortened follow the same trend. Its use for the analysis of

the C-TFSK is considered.

The impact of the choice of how to map codewords on the trellis is first studied. The puncturing

mechanism, introduced for the C-TFSK scheme is then studied. It allows for gains in spectral

efficiency, at the expense of some performance loss, which is evaluated for some use cases.

Finally, some configurations of the scheme are compared to the maximum achievable spectral

efficiency for a given Eb/N0, and the flexibility in terms of spectral efficiency of the C-TFSK
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Section Study
Changing

Parameter(s)

Constant

Parameter(s)

III.A
Influence of the Choice

of Trellis Mapping
M , λ, Mapping Rp

III.B Effects of Puncturing Rp

M , ML, λ, Map-

ping

III.C
Impact on the Spectral

Efficiency
M , ML, λ Rp, Mapping

Table I: Organization of the section concerning the analysis of the parameters.

is demonstrated. The starting Eb/N0 value of the waterfall can be estimated by computing the

threshold of the decoder (also called the turbo cliff position). It is the minimum level of Eb/N0

required for the decoder to be able to correct all the erroneous bits, regardless of the interleaver

size and the number of iterations performed. It represents the asymptotic behavior of the decoder.

Table I summarizes the content of the section and mentions what are the changing or constant

parameters for each subsection. For all simulations, FSK is used as orthogonal modulation and

PSK as linear modulation. When Bit Error Rate (BER) performance is computed, a random

interleaving function is selected.

A. Influence of the Choice of Trellis Mapping

As presented when describing the trellis, the introduction of linearities in the alphabet can

also be interpreted as a loss of orthogonality. For the initial case of the Turbo-FSK, the M

codewords of the alphabet are orthogonal to each other. When using the OCS modulation, only

subsets (each containing ML codewords) are orthogonal to each other. The choice of the mapping

of the binary words of length m on the alphabet of size M can be expected to have an impact

on the performance. In order to quantify that impact, various trellis and mappings are compared.

The thresholds are estimated using the EXIT chart technique. No puncturing is applied (i.e.

Rp = 1) and the values zp are taken as roots of the unity.

1) Trellis Classification: Since the alphabet has M elements and there are M branches in

the trellis (M/4 branches per transition), the total number of mapping strategies is equal to M !.
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Figure 7: Example of ⊥ mapping (a), L mapping (b) and X mapping (c) for the case M = 16

and ML = 4.

As this value increases exponentially (for example, 16! ' 2.09 · 1013), we focus our analysis on

three types of mapping rules.

The first type, denominated ⊥ mapping, is characterized by the group of orthogonal vectors

Fs′→s, and

ci ∈ Ts′→s if f δ ∈ Fs′→s,

where ci = zpf
δ and Ts′→s is the group of branches corresponding to the transition from s′ to s.

This means that two different transitions are mapped by codewords from different subsets. This

mapping ensures orthogonality between the transitions. The example of mapping for M = 32

and ML = 8 given in Figure 4 belongs to the ⊥ mapping, with e.g F1→1 = {f 3}. In Figure 7

(a), the case M = 16 and ML = 4 is represented for a ⊥ mapping.

The second type of mapping considered is the L mapping. It is characterized by the group

Zs′→s with

ci ∈ Ts′→s if zp ∈ Zs′→s.

With this mapping, two different transitions are mapped by codewords with different zp, but

that may belong to the same subset. There is no orthogonality between the transitions, but there
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Figure 8: A section of the trellis with L mapping for the configuration M = 32 and ML = 8.

t t+ 1

State 1

State 0

State index


z1
z2
z4
z7

× f0,


z0
z3
z5
z6

× f3


z0
z3
z5
z6

× f0,


z1
z2
z4
z7

× f3


z1
z2
z4
z7

× f1,


z0
z3
z5
z6

× f2


z0
z3
z5
z6

× f1,


z1
z2
z4
z7

× f2

Figure 9: A section of the trellis with X mapping for the configuration M = 32 and ML = 8.

is orthogonality between the branches of a transition. A L mapping for the case M = 32 and

ML = 8 is depicted in Figure 8, with for example Z1→1 = {z0, z4}. In Figure 7 (b), the case

M = 16 and ML = 4 is represented for a L mapping.
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The third mapping, denominated X mapping, is a hybrid mapping. For each transitions,

the M/4 branches are mapped in MO/2 of the orthogonal dimensions, and each orthogonal

dimension can be modulated by ML/2 of the linear values. The mapping is selected so that

pairs of orthogonal dimensions are modulated by the ML linear values. An X mapping for the

case M = 16 and ML = 4 is depicted in Figure 7 (c), and another for the case M = 32 and

ML = 8 is depicted in Figure 9. This mapping somehow mixes the two mappings ⊥ and L. The

pair of transitions 1 → 1 and 0 → 0 is orthogonal to the pair 1 → 0 and 0 → 1, but the two

transitions 1 → 1 and 0 → 0 are mapped by codewords in the same orthogonal subsets.

The three mapping types correspond to several of the M ! possible mappings, and two different

mappings of the same type may lead to variation in performance. However, each mapping defines

a general structure for the trellis, and the study will help evaluate the impact of the mapping on

the performance.

2) Threshold Comparisons: In order to estimate the asymptotic performance, thresholds of the

C-TFSK with various parameters and mappings are computed. The EXIT Chart technique was

used to estimate the thresholds, in a similar process as the one presented in [26]. For each size

of alphabet M , four trellis mappings are considered: the three mappings previously introduced

and the fully orthogonal mapping, where each branch is orthogonal to all the other branches.

This mapping is strictly equivalent to the Turbo-FSK (ML = 1).

For the first comparison, we consider the C-TFSK where the number of orthogonal subsets

is kept constant and equal to 4. The number of elements in the subsets increases with M as

ML = M/4. The estimated thresholds for values of M spanning from 16 to 512 and with

the parameter λ = 4 are depicted in Figure 10. The trellis depicted and presented previously

actually corresponds to some of the mappings used for these simulations: the case M = 16 with

⊥ mapping is depicted in Figure 7 (a); the case M = 32 with ⊥ mapping is depicted in Figure

4, the case M = 16 with L mapping is depicted in Figure 7 (b), the case M = 32 with L

mapping is depicted in Figure 8 and the case M = 32 with X mapping is depicted in Figure 9.

Since one of the properties of the linear modulations is to have an energy efficiency decreasing

with the order of the modulation, a loss in performance is expected when increasing the value

of ML. For all cases but M = 16, the thresholds of the C-TFSK is indeed higher than the

threshold of the Turbo-FSK, for all types of mapping rules. However, the loss varies depending

on the selected mapping. More particularly, the L mapping (which totally gives up orthogonality

between the transitions) has a threshold more than 6dB higher than the Turbo-FSK case for M =
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Figure 10: Thresholds for various size of alphabet M and mappings, with a constant number of

orthogonal dimensions MO = 4 (4-FSK) and λ = 4.

256 (i.e. ML = 64), while using the X mapping reduces this gap to 1dB. This mapping performs

better than the ⊥ mapping for larger sizes of alphabet, with a gain of 0.5dB for M = 512.

This figure emphasizes the importance of choosing mappings that maintain a certain degree of

orthogonality between the transition in the trellis. However, preserving complete orthogonality

between the transitions (i.e. ⊥ mapping) reveals itself less interesting than introducing linearities

between some transitions (i.e. X mapping).

The case M = 16 (thus ML = 4) shows interesting results. Indeed, for this size of alphabet,

the C-TFSK performs better than the Turbo-FSK. Also, the L mapping outperforms the two

other mappings, and offers 0.4dB of gain versus the Turbo-FSK. The trellis for this mapping

and configuration is depicted in Figure 7 (b).

In order to explain these differences in performance, it is necessary to study the distance

between the various codewords in the alphabet. A useful representation is the projection of all

codewords of the alphabet on one of the orthogonal dimensions f δ. For an arbitrary size of

alphabet M and ML = 4, this projection is depicted in Figure 11. There are M points: the

4 coplanar values and M − 4 points at coordinates (0, 0). These M − 4 points correspond to

all the vectors that are orthogonal to the considered subset δ. This representation also gives an

indication of the distances between the various codewords. With a normalized constellation, the
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λ = 3.

distance between e.g z0 and (0, 0) is 1. But the distance between z0 and z1 is equal to
√
2 ' 1.41

and the distance between z0 and z2 is equal to 2. Since the L mapping with ML = 4 associates

each transition to one of the four possible zp, transitions are further apart than when simple

orthogonality is considered.

With these considerations on the 4-PSK modulation, and its potential gain versus the Turbo-
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FSK scheme, we wish to study this size of linear modulation versus various values of MO.

The parameter λ = 3 is selected, and alphabet sizes spanning from M = 16 to 512 are chosen

(equivalent to sizes of FSK spanning from 4 to 128). The same 4 mappings are considered, and

the estimated thresholds are depicted in Figure 12. Up to an alphabet size equal to M = 128,

the L mapping outperforms the other mappings, with a gain of 0.42dB versus the Turbo-FSK

for M = 16. For M = 256 (i.e. 64-FSK), the C-TFSK (regardless of the mapping) has a lower

threshold than the Turbo-FSK, but the difference is much less significant. For M = 512, the

thresholds of the C-TFSK are no longer lower than the Turbo-FSK. The impact of having larger

distances due to the choice of linear modulation is reduced when large numbers of orthogonal

subsets are considered. Considering the L mapping, the distance between the transitions is the

same when M = 16 and when M = 512, but each transition has 4 orthogonal branches per

transition in the first case and 128 in the second case.

As expected when first considering the use of a linear component, some performance loss

is observed for large sizes of ML. Nonetheless, the impact of the loss of orthogonality can be

reduced by selecting an appropriate mapping that maintains some orthogonal properties between

the transitions. Also, using the parameter ML = 4 is beneficial for the performance when a

relatively small number of orthogonal subsets are considered (up to MO = 64).

In addition to the three parameters that are M , ML and λ, the selected mapping must be

considered for the C-TFSK, and there are M ! possible mappings. This makes the scheme arduous

to study, and only a small proportion of the parameters have been explored. It is possible

for another configuration to exceed the initial Turbo-FSK, but this configuration has not been

found yet. For the rest of the study, the X mapping is considered, as it seems to offer the best

compromise in terms of performance.

B. Effects of Puncturing

The puncturing procedure included in the design of C-TFSK offers additional flexibility in data

rate, which may be required for potential applications. In classical coding schemes, puncturing is

done at the bit level. In the case of C-TFSK, puncturing must be applied at binary words level, as

they are associated to a non-binary non-systematic waveforms in the modulation process. Overall,

the puncturing mechanism reduces the number of transmitted symbols. At the receiver side, entire

sections of the trellis are unknown. For these sections, the likelihood of all the codewords from

the alphabet is considered equal. While a gain in spectral efficiency is achieved, the receiver has
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Rp R0p R1p R2p R3p G η

1 1 1 1 1 N/A 0.093

4/3 1 3/2 3/2 3/2 3 0.124

3/2 1 3/2 3/2 3 3 0.140

8/5 1 2 2 2 2 0.149

12/7 1 3/2 3 3 3 0.160

2 1 3 3 3 3 0.186

Table II: Parameters of the different puncturing patterns tested. Rp is the global puncturing rate

and R`
p, with ` ∈ {0, . . . , λ− 1}, the puncturing rate of stage `. G is the parameter of the block

interleaver, and η is the spectral efficiency, expressed in bits·s−1·Hz−1. The other parameters are

set to M = 128, ML = 8 and λ = 4.

less information from the channel to work with. Using puncturing usually has a negative impact

on the performance.

The case M = 128 and ML = 8 is selected. Using the parameter λ = 4 and an X mapping,

5 different puncturing patterns are considered, for which the parameters are given in Table II.

Puncturing rates spanning from 4/3 to 2 are considered, as well as cases where the puncturing

rate of the different branches is equal or varies. The BER performance with Q = 1000 is depicted

in Figure 13. As expected, increasing the puncturing rate induces a loss in performance, at the

benefit of a gain in spectral efficiency (which is given, for each case, in Table II). For the case

Rp = 2 and Q = 1000, only 336 codewords are transmitted instead of 672 for the case without

puncturing. The spectral efficiency is multiplied by 2 at the expense of a performance loss of

1.3dB for a BER of 10−5. The cases Rp = 3/2 and Rp = 8/5 give almost the same performance,

even though the puncturing rates are different. For the case Rp = 8/5, branches puncturing rates

are all equal while the Rp = 3/2 uses two different puncturing rates on the branches.

In order to study the influence of the choice of puncturing rate on each branch, we select

the case Rp = 4/3. Four combinations of branch puncturing rates are selected, and the BER

performance is depicted in Figure 14. The combinations are given in the form [R0
p R

1
p R

2
p R

3
p].

G = 3 for all cases except the case [1 1 4/3 4] where G = 4. For the case [1 1 1 ∞],

the last branch is not sent. This case corresponds to λ = 3, as the last branch does not give any

information.
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Figure 13: BER performance under the AWGN channel versus Eb/N0 of C-TFSK with the

configuration M = 128, ML = 8, λ = 4, X mapping and various puncturing rates. The

spectral efficiency without puncturing is equal to 9.32 ·10−2, and for punctured cases the spectral

efficiencies are given in Table II. The interleaver size is set to Q = 1000 and 10 decoder iterations

are performed.

The choice of puncturing rate on each branch has a minimal influence on the performance,

except for the case where the last branch is not sent. This last case has an increased error floor

when compared to the other puncturing schemes. This shows that by considering an additional

branch with only a limited number of symbols (for the case [1 1 4/3 4], only 42 are sent

for the last branch), the error floor can be reduced for a constant value of spectral efficiency.

In order to illustrate this effect, the Packet Error Rate (PER) performance for the case λ = 3

without puncturing and the case λ = 4 with Rp = 4/3 is depicted in Figure 15. These two

configurations have the same spectral efficiency and are thus comparable in SNR. The PER

performance for two other configurations, the case λ = 4 without puncturing and the case

λ = 5 with Rp = 5/4 (with R`
p = 4/3 and G = 4), are also depicted in the figure. These two

configurations also have the same spectral efficiency, equal to η = 9.319 · 10−2 bits·s−1·Hz−1.

For both cases, considering an extra branch (λ+ 1) only few symbols gives performance close

to the case λ without puncturing, but the error floor is significantly reduced. For a constant

spectral efficiency, puncturing can thus be used to reduce the error floor. However, complexity
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Figure 14: BER performance under the AWGN channel versus Eb/N0 of C-TFSK with the

configuration M = 128, ML = 8, λ = 4, X mapping and a puncturing rate of Rp = 4/3. The

spectral efficiencies are equal to 9.32 · 10−2 bits·s−1·Hz−1(without puncturing) and 1.24 · 10−1

bits·s−1·Hz−1(with puncturing). The interleaver size is set to Q = 1000 and 10 decoder iterations

are performed.

is increased as when considering a receiver with λ instead of λ− 1 branches, the execution an

additional trellis decoding is implied.

Puncturing is very often used to increase the spectral efficiency or the coding rate. For the

C-TFSK scheme, the puncturing procedure introduced has the expected effect. It allows more

flexibility and an additional trade-off between performance and spectral efficiency. Moreover,

simulations demonstrated that puncturing can be used to reduce the error floor, at the expense

of a complexity increase.

C. Influence of the linear component

C-TFSK introduced a linear component with the aim to improve spectral efficiency flexibility.

We wish to study the impact of the parameter ML regarding both the spectral efficiency and the

performance of the scheme. During this section, the mapping and puncturing are selected con-

stant, respectively chosen as the X mapping and Rp = 1. There are still numerous combinations of

M , λ and ML possible. Two cases are selected: M = 128 with λ = 4 and M = 512 with λ = 3.

These combinations correspond to some of the best ones in terms of performance and according
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Figure 15: PER performance under the AWGN channel versus the SNR of C-TFSK with the

configuration M = 128, ML = 8 and X mapping with two different values for λ, with and without

puncturing. The interleaver size is set to Q = 1000 and 10 decoder iterations are performed.

to [27]. For both cases, there are respectively 7 and 9 possible values for ML, considering the

condition MO = M/ML ≥ 2 (i.e. a minimum of 2 orthogonal subsets). Thresholds for both

cases and all possible values of ML are computed using the EXIT chart. To each configuration

corresponds a spectral efficiency, computed with Equation (8). Two elements of comparison are

considered for the study: the maximum achievable spectral efficiency according to the channel

capacity, computed using (1), and the threshold of the [13 15] TC associated with Binary Phase

Shift Keying (BPSK) modulation. The result is depicted in Figure 16. For each point, the

parameter couple (MO, ML) is labeled. For example, the point labeled (8, 64) for the curve

M = 512 and λ = 3 corresponds to ML = 64 with MO = 8 orthogonal subsets.

For both sizes of alphabet, the effect of increasing the size of ML (i.e. decreasing the number

of orthogonal subsets) also increases the spectral efficiency. Up to a certain value of ML, the

performance loss in Eb/N0 is limited, an effect previously observed. The minimum distance

in the trellis is maintained, and the performance depends on the choice of mapping (for all

configurations, the X mapping described in Section IV-A is selected). When ML ≥ 8, this

minimum distance starts to decrease, with a negative effect on the threshold level. As men-

tioned previously, the Shannon limit (expressed here in terms of maximum achievable spectral
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Figure 16: Spectral efficiency versus threshold for various sizes of alphabet M and parameter

λ, using various combinations of (MO, ML). The spectral efficiency is computed with (8). The

maximum achievable spectral efficiency according to the channel capacity is computed using

(1). A X mapping was selected, without any puncturing (i.e. Rp = 1).

efficiency) traduces the required trade-off between energy efficiency and spectral efficiency. The

performance observed for C-TFSK also follows this principle, as the energy efficiency decreases

when the spectral efficiency increases. However, the performance of the scheme stays efficient as

the distance to the maximum achievable spectral efficiency for a given Eb/N0 remains relatively

small.

The [13 15] TC, which threshold is depicted in Figure 16, is the channel code used in the

NB-IoT approach for LPWA solutions. Associated with BPSK modulation, this scheme has a

threshold of −0.06dB for a spectral efficiency of 1/3. As shown in the figure, the performance

of the TC can be closely approached using different configurations. In order to improve the

range of the communication, the NB-IoT approach also considers the use of a Spreading Factor

(SF). By reducing the spectral efficiency, the required level of SNR for the QoS is reduced.

However, the use of SF does not improve the energy efficiency of the scheme, i.e. the level

of Eb/N0 required for the QoS will remain unchanged. Unlike the NB-IoT approach, C-TFSK

offers flexibility in configuration. By selecting a configuration with a lower spectral efficiency,

both the range and the energy efficiency can be improved, up to more than 1dB.

These results clearly demonstrate how the C-TFSK scheme allows for a gain in spectral
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efficiency while having thresholds close to the minimum achievable Eb/N0. Thanks to the

introduction of a linear modulation, spectral efficiencies up to 4/3 (MO = 2, ML = 256 and

λ = 3) can be achieved. However, in agreement with the information theory’s limit (see equation

1), this comes with a significant performance loss in required Eb/N0 compared to the Turbo-FSK

with the same size of alphabet (4.41dB for the same configuration). Spectral efficiency can also

be increased by using puncturing (at the expense of more performance loss).

V. CONCLUSION

Solutions dedicated to LPWA networks always try to offer low levels of sensitivity at the

expense of a low data rate. However, having a system with flexibility in data rate or spectral

efficiency can lead to a larger number of potential applications. The original design, the Turbo-

FSK, is a constant envelope modulation restrained to low levels of spectral efficiencies. In

order to improve the flexibility of the system, two new features have been introduced: the

OCS modulation, which introduces a linear component in the modulation’s alphabet, and a

puncturing mechanism. The scheme, so-called C-TFSK, also has a constant envelope and is

defined by several parameters. Due to the very large number of possible configurations, strict

optimization is cumbersome and seems hardly practicable. Instead, an asymptotic non-exhaustive

study has been realized, and demonstrated interesting properties for C-TFSK. While a very large

number of possible mappings of the codewords on the trellis are possible, it is more beneficial to

maintain some orthogonal properties between the transition of the trellis. Puncturing allows for

an increase in the spectral efficiency at the expense of some performance loss. It can also reduce

the error floor for a given spectral efficiency, at the expense of an increase in complexity. Finally,

the comparison to the maximum achievable spectral efficiency reveals that C-TFSK maintains

an energy efficiency close to the limit, despite the fact that increasing the size of the linear

component of the alphabet increases the value of the threshold. When compared to the TC used

for the NB-IoT solution, C-TFSK is more flexible and can provide a better energy efficiency

when low spectral efficiencies are considered.
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[7] Y. Roth, J.-B. Doré, L. Ros, and V. Berg, “Turbo-FSK, a Physical Layer for Low-Power Wide-Area Networks: Analysis

and Optimization,” Elsevier Comptes Rendus Physique, vol. 18, no. 2, pp. 178 – 188, 2017.

[8] “SigFox website,” http://www.sigfox.com/, accessed: July 16, 2018.

[9] “802.15.4k: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 5: Physical Layer Specifications for

Low Energy, Critical Infrastructure Monitoring Networks.” IEEE Standard for Local and metropolitan area networks, pp.

1–149, Aug 2013.

[10] J. Costello, D.J. and J. Forney, G.D., “Channel coding: The road to channel capacity,” Proceedings of the IEEE, vol. 95,

no. 6, pp. 1150–1177, June 2007.

[11] C. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423,

July 1948.

[12] J. Proakis, Digital Communications 3rd Edition, ser. Communications and signal processing. McGraw-Hill, 1995.

[13] “LTE Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Channels and Modulation,” 3GPP TS 36.211,

V13.2.0, Release 13, Aug 2016.

[14] “Whitepaper Narrowband Internet of Things,” Rohde & Schwarz, Aug 2016.

[15] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, and A. Ghosh, “NB-IoT System for M2M communication,” in 2016 IEEE

Wireless Communications and Networking Conference, April 2016, pp. 1–5.

[16] Y. P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi, “A Primer on

3GPP Narrowband Internet of Things,” IEEE Communications Magazine, vol. 55, no. 3, pp. 117–123, March 2017.

[17] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes,”

in IEEE International Conference on Communications (ICC). Geneva., vol. 2, May 1993, pp. 1064–1070.

[18] “LTE Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding,” 3GPP TS 36.212,

V12.6.0, Release 12, pp. 12–15, Oct 2015.

[19] Y. Roth, J.-B. Doré, L. Ros, and V. Berg, “Turbo-FSK: A New Uplink Scheme for Low Power Wide Area Networks,” in

2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm,

Sweden, June 2015, pp. 81–85.

[20] P. Komulainen and K. Pehkonen, “Performance Evaluation of Superorthogonal Turbo Codes in AWGN and Flat Rayleigh

Fading Channels,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 2, pp. 196–205, Feb 1998.

[21] L. Ping, W. Leung, and K. Y. Wu, “Low-rate turbo-Hadamard codes,” IEEE Transactions on Information Theory, vol. 49,

no. 12, pp. 3213–3224, Dec 2003.

[22] Y.-J. Wu and L. Ping, “On the Limiting Performance of Turbo-Hadamard Codes,” IEEE Communications Letters, vol. 8,

no. 7, pp. 449–451, July 2004.

http://www.sigfox.com/


30

[23] M. Peleg and S. Shamai(Shitz), “Efficient communication over the discrete-time memoryless rayleigh fading channel with

turbo coding/decoding,” European Transactions on Telecommunications, vol. 11, no. 5, pp. 475–485. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460110505

[24] Y. Roth, “The Physical Layer for Low Power Wide Area Networks: A Study of Combined Modulation and Coding

Associated with an Iterative Receiver,” PhD Thesis, Université Grenoble Alpes, Jul. 2017. [Online]. Available:
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[35] I. Veřtàt, “Hybrid M-FSK/DQPSK modulations for CubeSat picosatellites,” Radioengineering, vol. 22, no. 1, pp. 389–393,

2013.

[36] S. Hong, M. Sagong, C. Lim, K. Cheun, and S. Cho, “FQAM : A Modulation Scheme for Beyond 4G Cellular Wireless

Communication Systems,” in 2013 IEEE Globecom Workshops (GC Wkshps), Dec 2013, pp. 25–30.

[37] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate (corresp.),”

IEEE Transactions on Information Theory, vol. 20, no. 2, pp. 284–287, Mar 1974.

[38] O. F. Acikel and W. E. Ryan, “Punctured turbo-codes for BPSK/QPSK channels,” IEEE Transactions on Communications,

vol. 47, no. 9, pp. 1315–1323, 1999.

https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460110505
https://hal.archives-ouvertes.fr/tel-01568794
https://doi.org/10.1007/s11432-009-0165-y

	Introduction
	Orthogonal with Coplanar Subsets Modulation
	Definition of the Alphabet of Modulation
	Likelihood of a Symbol
	Application to FSK Signaling

	Coplanar Turbo-FSK
	Transmitter
	Encoder
	Puncturing
	Modulation
	Trellis

	Receiver
	Derivation of the Receiver
	Architecture


	Analysis
	Influence of the Choice of Trellis Mapping
	Trellis Classification
	Threshold Comparisons

	Effects of Puncturing
	Influence of the linear component

	Conclusion
	References

