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Modelling of specimen interaction with
ferrite cored coils by coupling

semi-analytical and numerical techniques

Anastasios SKARLATOS a,1, Edouard DEMALDENT a, Audrey VIGNERON a

and Christophe REBOUD a,
a CEA LIST, Centre de Saclay, F-91191 Gif-sur-Yvette cedex, France

Abstract. Two numerical techniques, the finite integration technique (FIT) and the
surface integral equation (SIE) method are combined with the semi-analytical cal-
culation of the field in planar conducting pieces in order to calculate the interaction
of such specimens with ferrite-cored eddy-current probes. Coupling different tech-
niques allows us to chose the best suited for each part of the configuration and to
better exploit the existing symmetries.
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1. Introduction

Eddy-current testing (ECT) probes feature ferrite cores in a large number of practical
situations. The use of ferrite cores enhances the electromagnetic coupling between probe
and the specimen, and results consequently in signal amplification and hence improved
signal-to-noise ratio. From the modelling point of view, however, the strong coupling
between probe and specimen complicates the analysis since the convenient separation
of probe and work-piece, which allows the treatment of the latter using semi-analytical
tools, is no longer valid (at least rigorously speaking) and the two of them have to be
considered simultaneously.

The straight-forward approach to deal with such problems is the application of a
numerical technique, like the finite elements method (FEM), to the entire configuration,
which may result in a computationally demanding problem.

An alternative approach to the brute-force discretization is to split the problem into a
probe and a specimen-related subproblem, similarly with the case of the air-cored probe,
coupling the two sub-problems in a way that properly addresses the bi-directional inter-
actions between them. Such approach will enable us to exploit the possible symmetries
of the consisting parts, and to apply the best suited technique for each subproblem. Fur-
thermore, relative motion or rotation of the consisting parts may be viewed as a rear-
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Figure 1. Schematic demonstration of the FIT/semi-analytical coupling approach: decomposition of the initial
problem into a probe and a workpiece-related subproblem and solution propagation of one into another.

rangement of the same objects, the analysis of which remains the same and hence only
their mutual interactions must therefore be modified.

The application of the latter approach for the calculation of ferrite-cored probes in-
teraction with planar work-pieces, is the subject the present contribution. The probe en-
semble is treated using either the finite integration technique (FIT) [1] or the surface inte-
gral equation (SIE) [2,3], depending whether the probe is rotationally symmetric or not,
whereas the effect of the planar piece is taken into account by means of semi-analytical
tools. Basic tool for the realisation of the coupling is the equivalence theorem. The results
of the two presented approaches will be compared with plain FEM simulations using the
commercial package COMSOL [4].

2. Coupling principle

The working principle for the FIT/semi-analytical coupling is depicted schematically
in Fig. 1. We consider an arbitrary fictitious closed surface that entirely encloses the
probe ensemble. According to the equivalence principle, the solution of the interior (in
respect to the introduced surface) problem is formally equivalent with the one the original
problem, provided that the (actual) normal magnetic flux density on the boundary in
given. Using the same arguments, we can set an equivalent problem in the external to
the surface domain, based on the (assumedly known) normal magnetic flux and scalar
magnetic potential distribution (or equivalently of the normal and tangential magnetic
flux distribution) on the boundary [5].

Starting with an arbitrary initial magnetic flux density distribution on the boundary,
the internal (probe) problem is solved numerically using FIT, and the calculated solution
is propagated in the external domain by means of the updated boundary field distribution.
Using the semi-analytical solution for the planar piece, the effect of the specimen is
propagated back to the probe domain and the proceedure is repeated until convergence
is reached [5].

A similar procedure is also followed for the SIE/semi-analytical coupling. The main
difference here consists in the choice of the domain boundary, which coincides with
the surface of the ferrite. Furthermore, the boundary conditions used for the transition
between the two domains are intrinsically satisfied by the method formulation.



3. Solution of the internal problem: probe field calculation

3.1. Modelling of axisymetrical probes using the finite integration technique

The FIT in its classical formulation [1] is based on direct discretisation of the continuous
Maxwell’s equations using a pair of mutually orthogonal, staggered (Yee-type) grids
(extensions of the basic schema to non-orthogonal grids have also been proposed, yet
they will not be considered herein). The so-derived discrete Maxwell’s equations (called
in FIT jargon as the Maxwell’s grid equations) read for the magnetostatics

C
_

h =
__

j s, (1)

S̃
__

b = 0, (2)

where C, S̃ stand for the discrete curl and div operator, respectively,
_

h are the magnetic
voltages along the primary grid edges and

__

b the magnetic fluxes across the grid facets
[1,6].

We introduce the discrete magnetic scalar potential φφφ by means of the relation
_

h =
_

hi − Gφφφ, where G is the discrete grad topological operator and
_

hi stands for a
partial solution to the inhomogeneous Ampere’s equation (1). Substituting to the Gauss’
equation for the magnetic field, we obtain the magnetostatic formulation

S̃MµGφφφ = S̃Mµ
_

hi +
__

b
(b)
, (3)

with Mµ being the diagonal permeability matrix, derived by the discretisation of the

magnetic constitutive relation. Its detailed expression can be found in [6].
__

b
(b)

denotes
the normal component of the magnetic flux on the FIT boundary, i.e. it yields the con-
tribution from the non-homogeneous Neumann conditions, and hence it accounts for the
coupling effects.

Let us now restrict ourselves to configurations where the material distribution and
the excitation current

__

j s are rotationally symmetric. No assumption is made instead

concerning the boundary term
__

b
(b)

. Due to the rotational symmetry of the geometry,
the solution can be decomposed into a series of modes along the azimuthal direction ϕ,
namely [7]:

φφφ =

N∑
m=−N

φφφme
jmϕ. (4)

The sum theoretically extends over an infinite number of modes, however the series can
be truncated to a specific number of termsN (which is determined by geometric criteria)
with negligible impact to the accuracy of the results. This is a well studied issue in modal
techniques and bears standard treatment.

Starting from a conventional 3D FIT discretisation using a cylindrical grid, we intro-
duce (4) into the magnetostatic formulation (3), and, after taking the orthogonality of the
exponential functions into account, we arrive at the following set of discrete equations[

S̃MT
µG− α2

mMN
µ

]
φφφm = S̃MT

µ

_

hiδm,0 +
__

b
(b)

m , for m = −N . . .N, (5)



with αm = m∆ϕ, ∆ϕ being the angular opening of a FIT cell and δm,0 the Kronecker
delta. Notice that in the above equation the 3D spatial vectors are reduced to their 2D
projections for each mode. In other words, the spatial discretisation is now restricted to
the normal to azimuthal direction plane (i.e. the ρ− z plane). Finally, the material matrix
Mµ is decomposed into a co-planar MT

µ and a normal to the discretisation plane ρ − z
one MN

µ , and the topological operators G and S̃ are the 2D operators corresponding to
that plane. Hence for m = 0, (5) reduces to the usual 2D FIT formulation.

Once the internal problem has been solved and the potentialφφφm distribution through-
out the FIT box is known, the solution has to be propagated into the external region in or-
der to calculate the effect of the workpiece. The external field calculation is based on the
second Green’s theorem, which in the case of free space outside an arbitrary boundary Γ
reads:

H(r) = −∇
ˆ

Γ

[
g(r, r′)

∂Φ(r′)

∂n′
− ∂g(r, r′)

∂n′
Φ(r′)

]
dS′, (6)

where g(r, r′) = 1/4π|r−r′| is the scalar Green’s function of the free space. The Green’s
function can be developed onto a basis of cylindrical wave functions, namely

g(r, r′) =
1

4π

∞∑
m=−∞

eim(ϕ−ϕ′)

ˆ

κ

gmo (ρ, z, κ)gms (ρ′, z′, κ)dκ (7)

with

gms (ρ′, z′, κ) =

{
Jm(κρ′)e±κz

′
, z ≶ z′

1
π Im(κρ′)eiκz

′
, ρ ≥ ρ′

, and gmo (ρ, z, κ) =

{
Jm(κρ)e∓κz, z ≶ z′

Km(κρ)eiκz, ρ ≥ ρ′ .

For convenience in the integration, we switch between the upper and the lower expression
in the above relations according to the relative position of the source and the integration
point. This will permit to remain on the same branch during the integration along Γ. Note
that the spectral domain is different for each case, i.e. it is κ ∈ [0,∞) for the upper
expression and κ ∈ (−∞,∞) for the lower one. Applying (7) on the FIT solution, we
obtain after some algebra:

H(r) = −1

2

∞∑
m=−∞

ˆ

κ

Qm(κ)∇gmo (ρ, z, κ)dκ, (8)

with

Qm(κ) =
∑
i∈ΓT

[
gms (ρi, zi, κ)bi,m −

∂gms (ρi, zi, κ)

∂ni
φi,m(ρi, zi)

]
, (9)

where ΓT is the intersection of the Γ boundary with that plane, and φi,m and bi,m are the
FIT vector elements for the m-th mode of the magnetic scalar potential and the magnetic
flux density, respectively.

The elements of the boundary vector
__

b
(b)

m in (5) will be thus given by the following
relation



__

b
(b)

m,i = µ0

[
H(p) (ri) +H(r) (ri)

]
· n∆Ai, ri ∈ ΓT (10)

where ∆Ai is the area of the boundary facet centred at ri. H(p) stands for the direct
contribution to the field calculated by the integration of the FIT solution on ΓT according
to (8), andH(r) gives the reflection from the work-piece. Its calculation will be presented
in a next paragraph.

3.2. Solution for probes of arbitrary shape: the surface integral equation method

3.2.1. Formulation

In the box of the sensor, we consider the linear magnetostatic problem{
∇×H = J0

∇ · µH = 0
,

with µ = µf in the ferrite and µ = µ0 (relative permeability of vacuum) on the outside,
where J0 is the current flowing through a coil, and where H is the magnetic field. The
first equation of the system allows decomposition of the magnetic field in the form

H = H0 −∇ϕ,

where H0 is the field emitted by the source J0 with no ferrite (obtained by Biot and
Savart). The second equation of the system then imposes the transmission condition

[µ
∂

∂n
ϕ] = [µ]H0 · n, (11)

where the normal n is oriented from the inside to the outside of the ferrite and wherein
the brackets indicate the jump on either side of its surface.

We use the single layer potential formulation to solve this problem [2,3]. The un-
known is the left-hand side of the transmission condition (11),

ω := [µ
∂

∂n
ϕ],

and is the solution of the integral formulation(
µf + µ0

2
I − (µf − µ0)K ′

)
ω = (µf − µ0)H0 · n (12)

where K ′ is the normal derivative of the single layer potential (Γ denotes the surface of
the ferrite core):

K ′ω(x) :=
1

4π

∂

∂nx

ˆ
Γ

1

‖x− y‖
ω(y) dy.

The magnetic field can then be calculated at any observation point x outside the ferrite
core like



H(x) = H0(x)− 1

4π
∇x
ˆ

Γ

1

‖x− y‖
ω(y) dy. (13)

In its variational form and after discretization by a suitable Galerkin method [3], the
linear system and the computation of the magnetic field are written like

SX = Y0,H = H0 + RX,

with

[S]ij := 〈ti,Sbj〉, [Y0]i := 〈ti,Y0〉,

ω(x) ∼
∑
j [X]jbj(x), [R]kj := Rbj(xk),

where ti and bj are the i-th test and j-th basis functions, xk is the k-th observation point,
S and Y0 correspond to the left and right terms of formulation (12), R to the integral
term of formulation (13), respectively.

3.2.2. Coupling process

Within the coupling, it is necessary to compute

Hn+1/2 = Hn + RS−1Yn (14)

for each iteration (n) of the iterative process the term, where Hn+1/2 stands for the new
incident field emitted by the ferrite core on the workpiece, Hn (and Yn) stands for the
previous incident field emitted by the workpiece on the ferrite core (whose incident field
was Hn−1/2 . . . )

The advantage of using a boundary element method lies in the significant decrease
of the number of unknowns in comparison to methods such as the finite element method.
When this reduction allows the use of a direct solver, the computation of RS−1 (or the
computation of R and of the LU decomposition of the matrix S) is performed only once
and reused for each iteration.

Therefore, minimizing the number of unknowns of the boundary element method
(while maintaining an acceptable accuracy) stands for a major issue. To this end, higher
order (quadrilateral) Lagrangian elements have been used to approximate the unknown
and geometry. That is to say, the shape, basis and test functions are high degree interpo-
lation polynomials (rather than constant or linear functions). The increasing order allows
to converge faster to the solution with the increase of the number of unknowns, and thus
to reduce the number of unknowns while achieving a given accuracy.

4. Solution of the external problem: probe field interaction with the work-piece

The field perturbation due to the presence of the specimen can be obtained by the fol-
lowing Fourier integral [8]:



H(r) (r) = − 1

2π

∞̂

−∞

∞̂

−∞

H̃
(p)
z (u, v)

a
R (u, v) e−az(iuex + ivey − aez)eiuxeivydudv

(15)

where H̃(p)
z is the 2D Fourier transform of the normal to the piece interface primary

magnetic field calculated by (8) or (13), ex, ey and ex denote the unit vectors in x, y and
z axis and a =

√
u2 + v2.R stands for the generalised reflection coefficient of the planar

piece and its expression for the case of a multilayered medium is given in [9]. Note that
all variables are given in the reference frame of the plane.

5. Results

The proposed coupled approach is applied for the calculation of a cylindrical, ferrite-
cored coil interaction with a planar conducting and non-magnetic half-space. The con-
sidered ferrite is rod-shaped and had negligible losses. The coil and core characteristics
are given in Table 1. The half-space conductivity is taken 18 MS/m.

Table 1. Coil and core parameters

Coil parameters

Inner radius rin 3 mm
Outer radius rout 6 mm

Length l 2 mm
Number of turns N 2000

Core parameters

Radius r 2 mm
Length l 5 mm

Relative permeabity 10

Fig. 2 illustrates the normal component of the induced magnetic flux density on the
half-space interface calculated using the two coupled approaches (i.e. SIE/semi-analytic
and FIT/semi-analytic) versus the fully numerical solution obtained by a commercial
FEM package (COMSOL) [4] at 1 KHz. The probe axis is tilted in respect to the normal
of the plane by an angle of 20 degrees. The convergence of the iterative solution has been
reached after 5 iterations for the FIT/semi-analytical coupling and 3 iterations for the
SIE/semi-analytical one. The calculation time was ca. 5 minutes for both approaches on
a standard PC whereas FEM simulation time was 10 minutes on a 24 GB, Xeon PC with
8 cores.

A second comparison between the FIT/semi-analytical results and the full numerical
FEM simulation has been carried out for the calculation of the probe impedance as a
function of the tilt angle. The results are shown in Fig. 3

6. Conclusions

A coupled approach combining numerical with semi-analytical methods has been pro-
posed for the calculation of ferrite-cored probes interaction with planar work-pieces. The
restriction of the discretisation to a small part of the structure and the rapid convergence
of the iterative procedure provide a computational efficient treatment of the interaction
problem. Furthermore, the fact that the coupling method does not depend on the specific
geometry of the work-piece, make the approach also applicable to other geometries for
which analytical solutions are available, such as tubes, boreholes, right-angle corners etc.



Figure 2. Bz field component on the half-space interface calculated using the two coupled approaches versus
FEM results obtained with COMSOL.

Figure 3. Real and imaginary paty of the probe impedance variation as a function of the tilt angle.
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