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Numerous phenomena in the fields of physics and mathematics as seemingly different as seismol-ogy, ultrasonics,
crystallography, photonics, relativistic quantum mechanics, and analytical number theory are described by integrals with
oscillating integrands that contain three coalescing critical-ities, a branch point, stationary phase point, and pole as well as
accumulation points at which the speed of integrand oscillation is infinite. Evaluating such integrals is a challenge addressed in
this paper. A fast and efficient numerical scheme based on the regularized composite Simpson’s rule is proposed, and its
efficacy is demonstrated by revisiting the scattering of an elastic plane wave by a stress-free half-plane crack embedded in an
isotropic and homogeneous solid. In this canonical problem, the head wave, edge diffracted wave, and reflected (or
compensating) wave each can be viewed as a respective contribution of a branch point, stationary phase point, and pole. The
pro-posed scheme allows for a description of the non-classical diffraction effects near the “critical” rays (rays that separate
regions irradiated by the head waves from their respective shadow zones). The effects include the spikes present in diffraction
coefficients at the critical angles in the far field as well as related interference ripples in the near field.

I. INTRODUCTION

Wave scattering can be described using integral equa-

tions, which involve integration over scattering surfaces.

There are many exact numerical schemes for solving them;

however, in the far field, otherwise known as the high-

frequency or small wavelength regime, these are difficult to

implement, and approximations prove more useful. In this

regime the corresponding integrands are products of rapidly

oscillating exponents and slowly varying amplitudes. This

means that the scattering integrals can be evaluated asymp-

totically, with the contributions coming from isolated or coa-

lescing criticalities, that is, poles, stationary phase points,

and branch points. In physical terms, contributions from

isolated criticalities describe the geometrical regions sup-

porting, respectively, GO/GA/GE (geometrical optics/acous-

tics/elastodynamics) waves, edge diffracted waves, and head

waves, while contributions from coalescing criticalities

describe transition zones in between.1

The most popular approximate theories are KA (the

Kirchhoff approximation)2,3 and GTD (Geometrical Theory

of Diffraction),4,5 both applicable where wave fronts and

scattering surfaces are locally plane and scatterers’ edges are

locally straight. In the shadow both postulate the existence

of the field compensating the incident field. KA involves

an additional assumption that the scattered field on the irradi-

ated/shadow side of the scatterer is simply the reflected/

compensating field, reducing the problem to evaluation of a

surface integral. Mathematically speaking, the GO/GA/GE

reflected waves and compensating fields are contributions of

the isolated poles in the corresponding integrands.

In the electromagnetic and acoustic GTD, each ray inci-

dent on a sharp edge and carrying a high-frequency wave

produces one cone of diffracted rays.4 In an isotropic solid

two cones are generated, with the rays forming the surfaces

of the inner and outer cone, which carry the longitudinal and

transverse motions, respectively. The half-angles of the

cones are determined by the Snell law of diffraction. KA

estimates the amplitudes of the diffracted waves generated

by the straight edge too, but at smaller angles to the edge

GTD provides a much better recipe. GTD is valid only in the

geometrical regions where the diffracted waves do not inter-

fere with other waves. Mathematically speaking, the dif-

fracted waves are asymptotic contributions of the isolated

stationary phase points in the corresponding integrands. The

GTD amplitudes carried by each diffracted ray decrease as

the square root of both distance to the tip of the diffraction

cone and wave frequency and involve edge diffraction coef-

ficients dependent on directions of the incident and dif-

fracted rays only. GTD is used in radar technology, design

of reflector antennas, and ultrasonic NDE (Non-Destructive

Evaluation of industrial materials).6–8

PTD (Physical Theory of Diffraction) is the theory that

extends the classical KA using the exact description of edge

diffracted waves.2,3 In the high-frequency regime, when

such a description is unknown the corrections to the

Kirchhoff diffraction coefficients can be obtained using their

GTD counterparts.2,3,9 Unlike GTD and KA diffractiona)Electronic mail: l.fradkin@soundmathematics.com
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coefficients, the corrections have no singularities at the

shadow boundaries. The high-frequency PTD leads to an

extension of GTD to “penumbras” (transition zones between

regions irradiated by GO/GA/GE waves and their respective

shadow zones). Mathematically speaking, the total penum-

bral field is the contribution of a coalescing pole and station-

ary phase point.

Neither KA nor GTD nor high-frequency PTD is valid

on the “critical” rays (rays that separate regions irradiated by

the head waves from their respective shadow zones) or criti-

cal zones (the transition zones that surround critical rays)—

see Fig. 1, where, for simplicity of presentation, the incident

ray is normal to the crack, so that both diffraction cones

degenerate into cylindrical surfaces; the shaded regions are

the corresponding critical zones. Mathematically speaking,

the head wave is an asymptotic contribution of an isolated

branch point and the fields in the critical zones are the contri-

butions of the coalescing stationary phase point and branch

point. The head waves in Fig. 1 have conical fronts. They

travel along the boundary with the longitudinal speed cL,

detach from it at the critical angle, and propagate in the solid

with the transverse speed cT< cL. Waves of this nature were

first discovered in geophysics10,11 and are a manifestation of

an ubiquitous phenomenon of total internal refection.

No high-frequency asymptotics are available when the

critical transition zones overlap penumbras,12,13 that is when

all three critical points coalesce, but when they do not the

critical zones can be described using asymptotics involving

the Weber functions or their variant, the parabolic cylinder

functions.1,11,12,14 In some situations of practical interest

none of these asymptotics prove satisfactory.15 The need to

resolve this difficulty has been the main rationale for the

present study.

Our aim is threefold: First, a novel fast and efficient nu-

merical scheme is proposed for evaluating integrals with

oscillating integrands that contain three coalescing critical-

ities, a branch point, stationary phase point, and pole. Such

integrals arise not only in scattering5 but also in

crystallography,16 photonics,17 relativistic quantum mechan-

ics,18 and even analytic number theory.19 Our scheme deals

with an additional complication—the presence in the inte-

gration domain of “accumulation” points (the points at

which the speed of oscillation is infinite), which are also

weak singularities. Second, efficacy of the proposed scheme

is demonstrated by revisiting the canonical problem of scat-

tering of a transverse plane harmonic wave by a stress-free

half-plane crack in an isotropic homogeneous solid. This

problem has been chosen to test the scheme, because it has a

well-known analytical solution5 and because PTD can utilize

this solution to simulate complex large scatterers. Third,

hybrid schemes are introduced relying on the proposed nu-

merical scheme, if the branch and phase stationary points

coalesce, and on the classical GTD or high-frequency PTD,

otherwise.

The paper is organized as follows: In Sec. II the canoni-

cal problem of scattering of a harmonic plane wave by a

stress-free half-plane crack in a homogeneous and isotropic

solid is stated. In Sec. III the well-known exact solution of

this problem21 is given in an integral form, and in Sec. IV

the GTD and high-frequency PTD asymptotics of this solu-

tion are described. In Sec. V this exact solution is rewritten

in the form of an integral scattering coefficient, and a novel

numerical scheme is offered for its evaluation. Section VI is

devoted to cross-validation of this scheme and GTD and

high-frequency PTD. In Sec. VII the scheme is incorporated

into a semi-numerical schedule applicable at any distance to

diffracting edge. Conclusions are presented in Sec. VIII.

II. STATEMENT OF THE CANONICAL EDGE
DIFFRACTION PROBLEM

The following conventions are used throughout: When

the same symbol appears in bold and regular font, the bold

font is used to denote a vector quantity and the regular font,

its amplitude. Whenever appropriate, the field symbols are

supplied with superscripts and subscripts describing the na-

ture of the motions. In particular, the descriptors inc, tot, sc,

GE, and d denote, respectively, the incident, total, scattered,

geometrico-elastodynamic, and diffracted waves. The

descriptors a; b ¼ L, TH, TV, or Ray refer to the longitudi-

nal, transverse horizontal, transverse vertical, or Rayleigh

wave, respectively, with superscript a reserved for the inci-

dent modes and subscript b for the scattered ones. Numerical

subscripts are used to refer to base vectors or else the corre-

sponding vector components. Everywhere c is wave speed

and wavenumber k ¼ x=c, with x the circular frequency.

The three-dimensional space is assumed to be filled with

an isotropic homogeneous solid. In the presence of a scat-

terer, Utot, the total displacement field in this solid is the sum

of incident field U
inc and scattered field U

sc. In the high fre-

quency approximation, the field scattered by a scatterer with

an edge is the sum of the geometrico-elastodynamic field

U
GE, classical diffracted field U

d, the surface Rayleigh wave

U
Ray, and head wave UH.

Let the scatterer be a semi-infinite planar crack, and the

Cartesian coordinate system be chosen so that the positive

e1-axis lies on the crack and the e2-axis runs along the crack

FIG. 1. Representative edge diffracted rays and wave curves (cross-sections

of wave fronts). The key: L—longitudinal wave, T—transverse wave, H—

head wave; dashed lines—wave curves, solid lines—critical rays, shaded

regions—critical zones.
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edge (see Fig. 2). Then every vector v can be described by

the corresponding components ðv1; v2; v3Þ: Below only time-

harmonic waves Uðx; tÞ ¼ uðxÞ expð�ixtÞ are considered,

with i the imaginary unity; x ¼ ðx1; x2; x3Þ an observation

point; t is the time; and the factor expð�ixtÞ is implied but

omitted everywhere. The equation of motion is

r � rtot xð Þ ¼ q
@2 utot

@ t2
xð Þ; (1)

where r ¼ ð@=@x1; @=@x2; @=@x3Þ is the nabla operator; r is

the stress tensor;5 and q is the solid density. The crack faces

are assumed to be stress-free,

ttotðxÞjcrack ¼ 0; (2)

where the traction tðx6Þ ¼ 6e3 � rðxÞ and xþ and x� are

points on the irradiated and shadow side of the crack, respec-

tively.5 It is further assumed that the scattered waves satisfy

the radiation condition at infinity, which demands that they

are outgoing.5,21

Using the Green’s stress tensor rG and crack opening

displacement DuaðscÞðxÞ ¼ uaðscÞðxþÞ � uaðscÞðx�Þ this prob-

lem can be reformulated as the integral equation5

ua scð Þ xð Þ¼ kL

2p

ð1

0

dx01

ð1

�1
e3 �rG
� �

x�x0ð ÞDua scð Þ x0ð Þdx02:

(3)

III. THE ANALYTICAL SOLUTION OF THE CANONICAL
EDGE DIFFRACTION PROBLEM

Solving the above problem confirms that isotropic media

support L (longitudinal) and T (transverse) plane waves

u ¼ Ad expðikp � xÞ. Any polarization vector dL (dT) is parallel
(perpendicular) to propagation vector p. Any dT is traditionally

decomposed with respect to a reference plane into a vertical

component TV and a horizontal component TH. The reference

plane can be the plane of the crack21 or incidence plane.5,20

Defining the single Fourier transform of any integrable

function gðx1Þ to be

ĝ n1ð Þ ¼ kL

2p

ð1

�1
g x1ð Þ e�ikLn1x1dx1; (4)

it has been shown21 that the scattered field is the inverse

Fourier transform

uaðscÞðxÞ ¼
ð1

�1
û
aðscÞðn1; x2; x3Þ eikLn1x1dn1; (5)

with û
aðscÞðn1; x2; x3Þ being the sum of all scattered modes,

û
a scð Þ n1;x2;x3ð Þ¼ �i

j2T n1þna1
� �

X

b¼L;TV;TH

j2b

cb n1ð Þ

� vb fð Þ�va fað Þ
� �

db fð ÞeikL n2x2þcb n1ð Þjx3j½ �:
(6)

Above jL ¼ 1; jT ¼ cL=cT > 1; f ¼ ð�n1; n2; scbðn1ÞÞ ¼
jp is a dimensionless wave vector; and s ¼ sgn ðx3Þ, with
cbðn1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2b � n21 � n22

q

. There is no need to reproduce here

the expressions for displacement vectors d and vectors v,

only to note that for b ¼ T ðTV orTHÞ all third components

vT;3ðfÞ contain a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n22

q

r

and thus the branch

point nbr ¼ �cLð0Þ: Also, each component of each T-inte-

grand contains pole np ¼ �na1 and has phase kLfT � x ¼
kLð�n1x1 þ n2x2 þ cT ðn1Þjx3jÞ: The stationary phase point

nst is denoted by �nT;1: Since the problem is invariant with

respect to translations along the e2-direction all dimension-

less wave vectors f have the same second component n2:

IV. THE FAR FIELD APPROXIMATIONS FOR THE
CANONICAL EDGE DIFFRACTION PROBLEM

In order to find the KA to the Green’s formula (3),

which is based on Eq. (5), it is helpful to note that under this

approximation, on the crack surface, the single Fourier trans-

form of the scattered field is the sum of GE modes5

û
a GEð Þ

n1;x2;0ð Þ ¼ �i

j2T n1 þ na1
� �

X

b¼L;TV;TH

j2b

cb n1ð Þ

� vb fGEb

� �

� va fað Þ
h i

db fGEb

� �

eikLn2x2 ;

(7)

with fGEb ¼ ð�na1; n2; scbðna1ÞÞ. Therefore, using Eqs. (5) and

(6) the KA scattered field is

ua Kirð Þ
xð Þ ¼ � i

j2T

X

b¼L;TV;TH

vb fGEb

� �

� va fað Þ
h i

� db fGEb

� �

ð1

�1

j2b

cb n1ð Þ
eikLfb�x

n1 þ na1
dn1: (8)

Both integrals (5) and (8) can be evaluated in the far

field approximation kL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22 þ x23
p

� 1. In order to

describe the result in a traditional form we introduce (see

Fig. 2) the Cartesian coordinate system with the origin at theFIG. 2. The coordinate systems associated with the crack.
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diffraction point xb ¼ ð0; xb;2; 0Þ on the edge and the zenith

direction e2, with the corresponding polar angle / and azi-

muthal angle h. Then the edge diffracted field, the contribu-

tion to integral (5) of the isolated stationary point nst is
21

u
a dð Þ
b xð Þ ’ D

a GTDð Þ
b hb;/

a; ha
� � e

ikL fa�xbþjbRb½ �

kbRbð Þ1=2
; (9)

where the scalar diffraction coefficient is21

Da GTDð Þ
b hb;/

a;ha
� �

¼
j3be

ip=4

ffiffiffiffiffiffi

2p
p

j2Tcb 0ð Þ
vb fb
� � �va fað Þ
nb;1�na1

; (10)

ikLf
a � xb is the phase of the incident wave at the diffraction

point xb; the distance from xb to observation point

Rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ ðx2 � xb;2Þ2 þ x23

q

; and its radius-vector is

x� xb ¼ j�1
b Rbfb

¼ Rbð�sin/b coshb; cos/b; sin/b sinhbÞ; (11)

implying that xb;2 ¼ x2 � Rb cos/b and xj ¼ nb;jRb=jb;
j ¼ 1; 3. Note that each vector diffraction coefficient

D ¼ Dd. Note too that given an incident angle /a and obser-

vation point x, the Snell law of diffraction jb cos/b

¼ ja cos/
a allows one to find the half solid angles /b of

both diffraction cones and therefore to find both xb’s.

Analogously, the Kirchhoff diffracted field can be found

as the contribution to the integral [Eq. (8)] of the isolated

stationary point �nb;1. It has the same form as Eq. (9) but

with the GTD diffraction coefficient replaced by the

Kirchhoff diffraction coefficient,

Da Kirð Þ
b hb;/

a; ha
� �

¼
j3be

ip=4

ffiffiffiffiffiffi

2p
p

j2Tcb 0ð Þ
vb fGEb

� �

� va fað Þ
nb;1 � na1

:

(12)

As mentioned in Sec. I, outside the critical zones the

scattered field can be described by using the high-frequency

version of PTD, which has no unphysical singularities in

penumbras,2,3,9

ua PTDð Þ
xð Þ¼ua Kirð Þ

xð Þþua Rayð Þ xð Þ

þ
X

b¼L;TV;TH

D
a Corrð Þ
b hb;/

a;ha
� �eikL fa�xbþjbRb½ �

kbRbð Þ1=2
;

(13)

where the smooth GTD correction to the Kirchhoff diffrac-

tion coefficient is

D
aðCorrÞ
b ¼ D

aðGTDÞ
b � D

aðKirÞ
b : (14)

V. A NOVEL NUMERICAL SCHEME FOR THE
CANONICAL EDGE DIFFRACTION PROBLEM

Only the scattered T fields are considered below, since

only they involve the head waves, the main focus of this

paper. In order to alleviate comparison of such description

with the far-field asymptotics, each scattered T ðTV or THÞ
field [Eq. (5)] is represented as

u
a scð Þ
T xð Þ ¼ SaT hT ;/

a; ha; aTð Þ e
ikL fa�xTþjTRTð Þ

kTRTð Þ1=2
; (15)

where using Eq. (6), each vector scattering coefficient S

¼ Sd has the magnitude

SaT hT ;/
a; ha; aTð Þ

¼ �i kTRTð Þ1=2
ð1

�1

vT fð Þ � va fað Þ
� �

dT fð Þ � dT fTð Þ
� �

cT n1ð Þ n1 þ na1
� �

� eiaT fT n1ð Þ dn1; (16)

with the angle hGET defined by the Snell law jTn
GE
T;1 ¼ janin1 ;

aT ¼ kTRT=2p—the non-dimensionalized distance from the

diffraction to observation point; and phase function

fT n1ð Þ ¼ kL

2paT
fa � xT þ jTRTð Þ

¼ j�2
T �n1 nT;1 þ cT n1ð ÞjnT;3j � c2T 0ð Þ
h i

: (17)

Similarly, Eq. (8) can be used to introduce the scalar

Kirchhoff scattering coefficient

Sa Kirð Þ
T hT ;/

a; ha; aTð Þ

¼ �2pi kTRTð Þ1=2 ResT �na1
� �

H cos hGET � cos hT
� �

�i kTRTð Þ1=2 vT fGET

� �

� va fað Þ
� �

dT fGET

� �

� dT fTð Þ
� �

�
ð1

�1

1

cT n1ð Þ n1 þ na1
� � eiaT fT n1ð Þ dn1; (18)

and PTD correction to the scalar Kirchhoff scattering

coefficient

S
aðCorrÞ
T ¼ SaT � S

aðKirÞ
T : (19)

Let us denote the integrals in Eqs. (16) and (18) by I1
to indicate that the integration is over the entire real axis.

Note that outside the interval I ¼ ½�cTð0Þ; cTð0Þ� the magni-

tude of their integrands is exponentially decaying. In most

cases of interest, I contains the stationary point nst ¼ �nT;1
and GE pole np and inside I, the integrand is rapidly oscillat-

ing. The endpoints of this interval are weak singularities

(limn1!6cTð0ÞjcTðn1Þj ¼ 0) as well as accumulation points [so

that as they are approached from within, the speed of inte-

grand oscillation increases without bounds, limn1!6cTð0Þ70

jf 0Tðn1Þj ¼ 1—see Fig. 3(a)]. When jn2j � 1, I in Eq. (16)

contains the branch point nbr ¼ �cLð0Þ too. There are nu-

merical schemes, which handle combinations of the chal-

lenges presented by the above features,22,23 but as far as we

know our scheme is the first one to address all of them at

once, striking a reasonable trade-off between accuracy and

speed. Below we describe how.
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A. The integration interval

Even at high frequencies, truncating the integration

interval to I is not helpful, because 6cTð0Þ are accumulation

points. Instead it is truncated to Id ¼ ½n�1 ; nþ1 �, where

n61 ¼ 6cTð0Þ7d6. To assure that both nst and nbr lie inside

Id, the offsets are chosen to be d6 ¼ dminðjcTð0Þ7nstj;
jcTð0Þ7nbrjÞ: It has been established by trial and error that

the optimal choice of d is 0.1: When d < 0:1 the results are

the same but the code takes longer to run; when d > 0:1 the

quality of results is inferior.

To compensate for the truncation of the integration

interval from ð�1;1Þ to Id the integrand in I1 is repre-

sented as F1 expðiaT fTÞ and the contribution of its semi-

infinite tails is estimated integrating by parts and neglecting

terms of order Oða�2
T Þ3

I1 � Id �
1

iaT f
0
T n1ð ÞF1 n1ð ÞeiaT fT n1ð Þ

	 

�

�

�

�

nþ
1

n�1

;

I d ¼
ðnþ

1

n�1

F1 n1ð ÞeiaT fT n1ð Þ dn1: (20)

The subtracted term above is referred to as the

Borovikov correction.

B. Accumulation points and weak singularities

In the presence of accumulation points, choosing the

nodes is an issue and instead of the standard Simpson’s rule

a composite Simpson’s rule is implemented, briefly reported

before.24 This involves partitioning Id both sides of nst
(whose neighborhood makes the largest contribution) a num-

ber of times, each time halving the two subintervals closest

to the endpoints of Id. We denote the resulting subintervals

by I6m ¼ ½n�m ; nþm �;m ¼ 1; :::;M, with the þ/– superscript

indicating that the subinterval lies to the right/left of nst. For

each resulting subinterval, the minimum number of nodes nm
is estimated by dividing its length by the length of its small-

est integrand cycle ‘m ¼ 2p=kT jf 0Tðn6m j, and this upper bound

on the number of cycles is multiplied by 10, to cover each

cycle fully. If an integration subinterval is close to an

accumulation point (its length is <0.05) nm is scaled by

1=cTðn6m Þ—it has been checked that this accounts for the

weak singularities at 6cTð0Þ as well as the Gauss-

Chebyshev scheme does. On each subinterval the standard

Simpson’s rule is applied. The optimal number of subinterv-

als M has been established by trial and error to be 22: For

M> 22 there is no improvement in the run-time or quality of

results; for M< 22 the run-time is greater.

C. Poles

Let I contain np. If this pole lies outside Id the corre-

sponding endpoint of Id is moved to n61 ¼ 6cTð0Þ
70:001dðcTð0Þ7npÞ, so that np is absorbed into the rede-

fined Id. If np lies too close to an accumulation point

(cTð0Þ7np < 10�10) but far from the stationary point

(kT ½fTðnpÞ � fTðnstÞ� < p), its contribution is negligible and

Id is not redefined.

When Id contains a pole, we introduce F2ðn1Þ ¼
F1ðn1Þðn1 � npÞ exp½iaT fTðn1Þ� to write1

I d ¼
ðnþ

1

n�1

F2 n1ð Þ
n1 � np

dn1 ¼ p:v:

ðnþ
1

n�1

þ
ð

C

" #

F2 n1ð Þ
n1 � np

dn1;

(21)

FIG. 3. (Color online) Testing the

numerical code for /T ¼ hT ¼ 60	

(hH ¼ 77	) and aT ¼ 80: (a) Real part

of typical integrand in Eq. (16): h¼
60	; I� ½�1:589;1:589�; Id � ½�1:513;
1:387�; nbr ��0:398; nst ¼ np
��0:795; (b) DS

TVðmodÞ
TV [Eq. (25)]; (c)

STVTV [num, Eq. (16)] vs DTV
TV [asym, Eq.

(10)]; (d) STVTV [num, Eq. (24)] vs DTV
TV

[asym, Eq. (10)].
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where C is a small half-circle passing under the pole �na1, so

that the second term above is piF2ð�na1Þ, half the standard

pole contribution. We also re-write the Cauchy Principal

Value integral as

p:v:

ðnþ
1

n�1

F2 n1ð Þ
n1 � np

dn1 ¼
ðnþ

1

n�1

F2 n1ð Þ � F2 np
� �

n1 � np
dn1

þ F2 np
� � � ln nþ1 � np

np � n�1

 !

: (22)

This assures a numerically stable evaluation, unless the pole

is located at an interior node nj or else at either endpoint n
6

1 .

To avoid this eventuality Id is first partitioned to establish

what node shift would assure that the pole is half-way

between two neighboring nodes, then the endpoints of Id are

shifted accordingly and the new Id is repartitioned as above.

Note that the Rayleigh pole lies outside I and therefore

its contribution is evaluated in a standard manner using the

Cauchy Residue Theorem.

D. Removal of asymptotic pole contribution (optional)

In the vicinity of pole np the phase in I d is

fTðn1Þ � fTðnpÞ þ f 0TðnpÞðn1 � npÞ: (23)

In the high-frequency regime the asymptotic contribution of

regular integrand points is negligible and therefore the inter-

val of integration can be extended beyond the limits of valid-

ity of Eq. (23) to ð�1;1Þ. To satisfy the radiation

condition, the resulting integral can be evaluated by closing

the integration contour in the upper n1 half-plane. When

f 0TðnpÞ < 0 the Jordan Lemma is inapplicable and the pole

makes no contribution. It can be easily checked that the sta-

tionary point is a maximum and hence f 0TðnpÞ > 0 when

np < nst. Then the Jordan Lemma is applicable and the

pole’s asymptotic contribution1 describes the outgoing

reflected or compensating wave. If only diffraction is of in-

terest this contribution can be subtracted to modify Id in Eq.

(21) to

I d
d ¼ p:v:

ðnþ
1

n�1

F2 n1ð Þ
n1 � np

dn1

þ � 1

2
þ H �sgn f 0T np

� �

� �

	 


2piF2 np
� �

: (24)

E. Branch cut

The third component of vTðn1; x2; x3Þ in Eq. (6) contains

the factor cLðn1Þ. Since the radiation condition requires the

integration contour to encircle the upper half-plane (see Sec.

VD), when jn2j > 1 ð� 1Þ it is natural to make the branch

cut from the imaginary (real) nbr ¼ �cLð0Þ down (left),21

and when nbr is real to run the integration contour along the

upper side of the cut. Then the cut makes no contribution

when nbr is imaginary—for obvious reasons (in physical

terms, the incidence is subcritical) and also when nbr is real,

isolated and such that f 0TðnbrÞ 
 0—as a consequence of the

Jordan Lemma and Cauchy Residue Theorem—since the

integrand is holomorphic in the upper half-plane and expo-

nentially decreasing along the positive part of the imaginary

axis (in physical terms, we are in the shadow of the head

wave.) The same reasoning applies when f 0TðnbrÞ ¼ 0 (that

is, when nbr ¼ nst), because nst is a maximum and therefore

f 00T ðnstÞ < 0. When f 0TðnbrÞ < 0 the Jordan Lemma is inappli-

cable and the contribution of the real branch cut is non-zero

(in physical terms, we are in the region irradiated by the

head wave.)

F. Limits of applicability of the proposed scheme

Due to the asymptotic nature of the Borovikov correc-

tion, similar to a recent numerical algorithm,23 but in con-

trast to many standard schemes (see references therein), as

the non-dimensionalized distance increases so does the qual-

ity of the scheme. It fails at near grazing incidence angles

when n2 � j2 [since then cTð0Þ � 0 and hence Id � 0],

which can be handled by calculating the total field rather

than the scattered field.2 The scheme also fails at near graz-

ing scattering angles (when near the crack boundary the

diffracted waves interfere with the Rayleigh wave, the

Rayleigh pole lying near an accumulation point). However,

at grazing scattering angles the branch point can be near the

stationary point only if the incidence is grazing. If not, at

high frequencies the classical GTD applies.

G. Mixed GTD/Simpson’s scheme

To speed up the code, the above numerical scheme for

calculating the scattering coefficient [Eq. (24)] should be

used in the critical zones only, otherwise relying on GTD or

PTD. A critical zone where a head wave interferes with an

edge diffracted wave is defined by the proximity condition

2paT jfTðnstÞ � fTðnbrÞj < 6p; with the coefficient 6 chosen to

assure that the diffraction coefficients are smooth functions

of hT. A similar definition describes proximity of a branch

point to pole. The resulting estimates are denoted by �S.

VI. CROSS-VALIDATION OF THE PROPOSED
NUMERICAL SCHEME AND GTD AND PTD

In all numerical examples reported below, cL ¼
5890m s�1 and cT ¼ 3210m s�1 as in mild steel. For easy

comparison with the previously reported diffraction coeffi-

cients20 the TV� TH decomposition was defined using the

incidence plane.

The treatment of the integration interval and pole proposed

in Sec. VC, has been tested by evaluating [cf. Eq. (24)]

DI modð Þ
d ¼ p:v:

ðnþ
1

n�1

F2 n1ð Þ
n1 � np

e
� 2 n1�npð Þ2=d2
� �

dn1

þ
h

� 1

2
þ Fð�sgnf 0T np

� �

; sgnðf 00T ðnstÞÞ
i

� 2piF2 �np
� �

; (25)

where d ¼ minðnp þ cTð0Þ � d; cTð0Þ � d� npÞ; and the

Fresnel functions are defined as

6



F x;6ð Þ ¼ 1
ffiffiffi

p
p
ðx

�1
e6i s2�p=4ð Þds: (26)

The Gaussian exponential factor has been introduced above

to assure that the modified integrand is analytic. The factor 2

in its exponent has been chosen by trial and error to assure a

trade-off between the requirements that the whole vicinity of

nst is covered and that at the endpoints n61 of the modified

integrand is small. Since the integrand is analytic and almost

has a finite support on the integration interval, the Fresnel

term in Eq. (25) estimates the uniform asymptotic pole con-

tribution to the integral there1 better than the non-uniform

Heaviside term in Eq. (24). Since the finite support condition

is not satisfied exactly the asymptotics are not rigorous and

the error [Eq. (25)] is not purely numerical. At the observa-

tion point where the above trade-off is optimal (this happens

to be h ¼ 58:5	)—see Fig. 3(b)—the corresponding relative

error is 0.05%.

The treatment of the integration interval proposed in

Sec. V has been tested further against GTD and the high-

frequency PTD, because when well within their limits of

validity, their accuracy had been well established. Figures

3(c) and 3(d) demonstrate the effect of subtracting the as-

ymptotic pole contribution in Eq. (24): In Fig. 3(c) this

contribution describes for hT < 60	 the compensating

field and for hT > 300	, the reflected field. The

contribution grows with distance, since it contains the

factor ðkTRTÞ1=2 and the plane waves have constant ampli-

tudes. In Fig. 3(d) only the pure edge diffracted field in

the irradiated regions and interference patterns in the

penumbras are present. The figure shows that outside crit-

ical regions the proposed numerical scheme produces the

same results as GTD.

Let us now apply the new scheme for description of the

critical zones where the head waves interfere with edge dif-

fracted waves only. Typical TV - TV scattering coefficients �S

[Eq. (16)] and GTD diffraction coefficients D [Eq. (10)] are

presented in Figs. 4 and 5. It is clear that at smaller aT the

critical spikes in scattering coefficients are smoothed. At

larger distances, somewhat surprisingly, they turn out to be

the same as the critical spikes in GTD diffraction coeffi-

cients. Numerical experiments confirm that they do not grow

beyond aT¼ 500. Thus, the critical spikes in GTD diffraction

coefficients are physical in nature. They must be due to the

energy redistribution inside the critical zones, with practi-

cally no edge diffracted T waves propagating through the

regions, which do not support the head waves.25 The

smoothing near the edge must be due to destructive interfer-

ence between head waves and diffracted waves, ceasing

away from the edge, because around critical rays the uniform

asymptotics of Eq. (15) decay faster1 than the stationary

phase asymptotics [Eq. (9)].

FIG. 4. (Color online) �S
TV

TV [mix, Eq.

(16), from now on calculated using the

mixed GTD/Simpson’s scheme] vs

DTV
TV [asym, Eq. (10)], /T ¼ 90	; hT ¼

0	 (hH ¼ 57	): aT¼ (a) 10; (b) 500.

FIG. 5. (Color online) �S
TV

TV vs DTV
TV .

/T ¼ 90	; hT ¼ 120	 ðhH ¼ 57	). aT’s

and key as in Fig. 4.
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Let us turn to the critical zones where the head waves

interfere with both edge diffracted and GE waves. The typical

TV - TV scattering coefficients �S [Eq. (16)] and GTD diffrac-

tion coefficients D [Eq. (10)] are presented in Fig. 6. The fig-

ure shows that as above, in critical regions, at smaller aT the

numerical scheme produces the scattering coefficients smaller

than GTD, while the critical spikes grow even for aT � 500.

Moving from GTD to PTD, typical corrections to scat-

tering [Eq. (19)] and corrections to diffraction coefficients

[Eq. (14)] are presented in Fig. 7. At aT¼ 500 the critical

spikes are the same whether calculated using Eq. (14) or Eq.

(19). Beyond aT¼ 500 the critical spikes in SCorr do not

grow, confirming the physical nature of such spikes in DCorr.

To conclude, not only have we tested the new scheme

against GTD and high-frequency PTD, we performed cross-

validation as well: There has been a general consensus that

GTD does not apply near the critical angles, but we have

shown that in the very far field it does.

VII. A NOVEL SCHEDULE FOR DESCRIBING CRITICAL
ZONES IN THE DIFFRACTED FIELD

Whether a critical zone overlaps a penumbra or not the

distance dependence of the scattered field u
aðscÞ
T has been

shown1,12 to be roughly a
�3=4
T , so that in critical zones the

difference between the respective correction coefficients

[Eqs. (19) and (14)] has to be decreasing as a
�1=4
T . Typical

plots are presented in Figs. 8 and 9. It follows that in the crit-

ical regions the scattered field u
TðcritÞ
T can be modeled using a

relatively fast semi-analytical schedule

u
T critð Þ
T xð Þ ¼ u

T Kirð Þ
T xð Þ þ eikL fa�xTþjTRTð Þ

kTRTð Þ1=2
�

S
a Corrð Þ
T ; aT < aT minð Þ;

D
a Corrð Þ
T þ

S
a Corrð Þ
T � D

a Corrð Þ
T

h i

aT minð Þ

aT=aT minð Þ
� �1=4

; aT minð Þ � aT � aT maxð Þ;

D
a Corrð Þ
T ; aT > aT maxð Þ;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(27)

FIG. 6. (Color online) �S
TV

TV vs DTV
TV .

/T ¼ 60	; hT ¼ 77	 (hH ¼ 76	). aT’s

and key as in Fig. 4.

FIG. 7. (Color online) �S
TVðCorrÞ
TV [mix,

Eq. (19)] vs D
TVðCorrÞ
TV [asym, Eq. (14)].

Configurations as in Fig. 6.
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where for clarity of presentation, the arguments of the dif-

fraction and scattering coefficients have been omitted.

According to numerical experiments, in steel this simple rec-

ipe works for isolated critical regions when aTðminÞ ¼ 10 and

for the critical regions overlapping penumbras when

aTðminÞ ¼ 40. In both cases a good choice for aTðmaxÞ is 500,
making the jump experienced by the scattering coefficient at

aT ¼ aTðmaxÞ very small.

VIII. CONCLUSIONS

A schedule has been proposed for describing critical

zones in the scattered field. It is based on a novel mixed

GTD/Simpson’s scheme for simulating the head waves and

associated critical regions, whether the latter overlap penum-

bras or not and at any frequency and distance to diffracting

edge. The numerical component of the scheme has been

shown to have accuracy sufficient in envisaged applications.

It implements fast integration over the real axis of the inte-

grand, which has a branch point, stationary point, and maybe

a pole inside a finite interval on this axis, is exponentially

decreasing outside this interval while oscillating inside it so

that the endpoints of the interval are the integrand’s accumu-

lation points.

It has been shown that in the very far field, when a criti-

cal region overlaps no penumbra, the classical GTD diffrac-

tion coefficients give a good description of edge diffracted

waves and when such overlap takes place good results can

be obtained with the high-frequency version of PTD.

Though there is no mathematical justification for these

asymptotics to be applicable when the rapidly oscillating

integrand possesses a branch point coalescing with the sta-

tionary phase point or pole, the result is consistent with the

fact that the head waves decay with distance faster than edge

diffracted waves.

It is envisaged that the proposed schedule for simulating

critical zones is implemented in CIVA [software platform

developed at CEA/LIST and widely used in NDE (Refs. 7

and 8)] in order to improve simulation of the ultrasonic

response from large cracks near critical angle. The schedule

could prove to be of interest in other branches of physics and

mathematics too, as long as the effects they describe are pre-

sented in an integral form, with integrands containing a

branch point coalescing with a stationary phase point and

maybe a pole.

FIG. 8. (Color online) �S
TVðCorrÞ
TV � D

TVðCorrÞ
TV (mix) vs D

TVðCorrÞ
TV [asym, Eq. (14)]. /T ¼ 60	; hT ¼ 120	, (hH ¼ 77:5	): aT¼ (a) 10; (b) 500; (c) 1000.

FIG. 9. (Color online) �S
TVðCorrÞ
TV � D

TVðCorrÞ
TV (mix) vs D

TVðCorrÞ
TV [asym, Eq. (14)]. /T ¼ 60	; hT ¼ 90	 (hH ¼ 77:5	): aT¼ (a) 10; (b) 500; (c) 1000.
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